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Observer Design for Nonlinear Systems with Output Transformation

This paper addresses the problem of robust observer design for nonlinear systems with transformed output. We first assume that there exists an observer design for a given nonlinear system. The structure of the system output is often crucial for estimating the system states. Therefore, we consider the problem that arises when the output is only available under a nonlinear transformation (affected by noise). This formulation is especially useful in engineering applications, where nonlinear sensors are frequent. We propose a new interconnected observer that estimates both: the unavailable output and the system states, and we establish small-gain type conditions ensuring the asymptotic convergence of the overall error dynamics. To explicit our design parameters, we study the particular cases of stateaffine systems up to output injection and systems with additive triangular nonlinearities. Finally, we provide corresponding numerical examples and comparisons with known observers.

I. INTRODUCTION

The problem of observer design for nonlinear systems has been a major research topic in control for many decades. Common applications include process monitoring, diagnosis and control. Indeed, it is often the case that nonlinear control laws depend on state information making the observer an essential estimation tool [START_REF] Khalil | Nonlinear systems[END_REF], [START_REF] Meurer | Control and observer design for nonlinear finite and infinite dimensional systems[END_REF]. We next discuss some of the available approaches to observer design.

The usual observers for linear systems are the so-called Luenberger observer and Kalman observer, which can be extended to nonlinear systems in specific forms. Therefore, one common strategy is to look for a coordinate transformation that steers the system into a convenient form [START_REF] Gauthier | Deterministic observation theory and applications[END_REF], [START_REF] Khalil | Nonlinear Control[END_REF]. Early important contributions in this direction include: a linear form with output injection [START_REF] Krener | Linearization by output injection and nonlinear observers[END_REF], a bilinear form with output injection and its Kalman-like observer [START_REF] Hammouri | Bilinearization up to output injection[END_REF], [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF], and a triangular form for uniformly observable system and its Luenberger-like or highgain observer [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF]. Indeed, a popular approach for observer design for nonlinear systems consists in compensating the Lipschitz nonlinearities by using high-gain. As stated in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], the two early and fundamental works [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF], [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF] start different research directions for high-gain observers. These directions concern: (i) global results under global growth conditions, and (ii) the interactions between the peaking phenomena and the nonlinearities. Although relatively simple and fast, high-gain observers tend to amplify measurement noise for large tuning parameters [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF], [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF]. Hence, a useful strategy consists in adapting the gain of the observer through time, see for example [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF], [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF].
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Even though these observer designs mainly concern nonlinear systems, their outputs tend to be linear. Accordingly, a common goal of sensor manufacturers is achieving linearity. This is often complicated since a large number of classical sensors, especially in engineering systems, exhibit nonlinear behavior [START_REF] Suranthiran | Signal Conditioning With Memory-Less Nonlinear Sensors[END_REF], [START_REF] Silva | Sensors and actuators: control systems instrumentation[END_REF]. For example, this is the case in: fuel cell power systems [START_REF] Arcak | A Nonlinear Observer Design for Fuel Cell Hydrogen Estimation[END_REF], image restoration [START_REF] Tekalp | Image restoration with multiplicative noise: incorporating the sensor nonlinearity[END_REF], digital imaging [START_REF] Rush | Nonlinear sensors impact digital imaging[END_REF], combustion control in automobiles [START_REF] Nwagboso | Automotive Sensory Systems[END_REF] and engineering medicine [START_REF] Kothari | Capacitive sensors for measuring the pressure between the foot and shoe[END_REF].

A popular choice of an observer for general nonlinear systems with nonlinear output is the Extended Kalman Filter (EKF) in its deterministic version. Despite its simplicity and noise filtering properties, it is not always implemented since only local convergence is guaranteed [START_REF] Reif | Nonlinear state observation using H infinity-filtering Riccati design[END_REF]. The early work in [START_REF] Gauthier | Deterministic observation theory and applications[END_REF] develops a global observer but for systems in observability canonical form with a smooth nonlinear output. On the other hand, systems with monotonic nonlinearities are studied in [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], where the authors remove the Lipschitz condition and avoid high-gain by using the so-called circle criterion. In [START_REF] Fan | Observer design for systems with multivariable monotone nonlinearities[END_REF], they expand these results and consider nonlinear outputs in the presence of model uncertainties. The work in [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF] instead deals with a more general type of nonlinearities, those satisfying incremental quadratic constraints. Finally, the authors in [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF] propose a simple observer design for systems in triangular form with a nonlinear output. This output function is not necessarily differentiable but it must satisfy an incremental sector condition.

The results above, except for the EKF, require systems in specific forms and sufficient conditions for the existence of the corresponding coordinate transformations are usually strong [START_REF] Gauthier | Deterministic observation theory and applications[END_REF], [START_REF] Besanc ¸on | Nonlinear observers and applications, ser. Lecture notes in control and information sciences[END_REF], [START_REF] Marino | Global adaptive observers for nonlinear systems via filtred transformations[END_REF]. Moreover, finding the right transformations can be difficult, especially in the multi-output case. Another limitation is that measurement noise is often ignored. A natural framework for studying the robustness of an observer with respect to measurement noise is that of input-to-state stability (ISS) as introduced in [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF], for a summary see [START_REF] Dashkovskiy | Input to state stability and allied system properties[END_REF]. Indeed, we can consider the error dynamics as the state and the measurement noise as the input [START_REF] Sontag | Output-to-state stability and detectability of nonlinear systems[END_REF]. In this context, ISS is referred to as disturbance-to-error stability (DES) [START_REF] Shim | Nonlinear Observers Robust to Measurement Disturbances in an ISS Sense[END_REF], [START_REF] Shim | Nonlinear observer design via passivation of error dynamics[END_REF], [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF].

In this paper, we first suppose that a DES observer has been designed for a given nonlinear system with an output y. This design cannot be directly implemented if we instead measure a nonlinear transformation ψ(y). Therefore, we propose a new interconnected observer that estimates both: y and the system states. We suppose that ψ is a local diffeomorphism, however, ψ can be difficult to invert or its inverse might not be available in closed form. In order to study the robustness of the new observer, we consider model uncertainties on y as in [START_REF] Fan | Observer design for systems with multivariable monotone nonlinearities[END_REF] and measurement noise on ψ(y). We use small-gain arguments [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF] to show that the new observer is asymptotically convergent to a neighborhood of the origin that depends on the amplitude of the disturbances (or convergent to zero in their absence). Our observer design is partially inspired by the Newton-Raphson method and [START_REF] Hammouri | An observer design for a class of implicit systems[END_REF], where the authors develop an explicit observer for systems defined on a manifold given by algebraic equations. On the other hand, the authors in [START_REF] Grip | Observers for interconnected nonlinear and linear systems[END_REF] assume the existence of a Lyapunov function for the error dynamics of an observer that cannot be directly used, given that the output is only measured through a second linear system. We apply our general results to two families of systems: state affine systems up to output injection and systems with additive triangular nonlinearity. These families differ considerably since they represent non-uniformly and uniformly observable systems respectively. We finish by providing numerical examples for both cases.

The present work improves and extends our CDC conference version [START_REF] González De Cossío | Observer design for nonlinear systems with implicit ouput[END_REF]. In particular: (i) we give a proof of the asymptotic convergence to zero of the new observer in the case of no disturbances, (ii) we present a more adequate version of the small-gain theorem and we provide detailed proofs in the Appendix, (iii) we apply our results to a new class of systems and we make a direct comparison with the observer given in [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF].

The paper is organized as follows. Section II includes the standard notation, the problem statement and adapted results from the ISS theory. Section III presents the main contribution of this paper, that is, the new observer design and the proof of its asymptotic convergence. Section IV studies the developed theory for two specific families of systems, and Section V provides the two corresponding numerical examples. Finally, Section VI gathers some brief concluding remarks and the Appendix presents some proofs from the ISS framework.

II. FRAMEWORK

A. Notation

• R + stands for the non-negative real numbers. We consider elements of R n as column vectors. 

2 = λ max (M M ). • We denote the pre-image of 0 under z : R + → R n as z -1 (0), that is, all t ∈ R + such that z(t) = 0. As usual, |z| ∞ = sup t∈R + |z(t)|.
• The abbreviation "a.e." stands for "almost every" and means for all except for a measure zero subset.

B. Problem statement

Let us consider a nonlinear system of the form

ẋ = f (x, u) y = h(x) + d, (1) 
where x ∈ R n is the state, y ∈ R p the output, u ∈ R m an input and d ∈ R p is any locally Lipschitz disturbance. We suppose that f and h are of class C 2 , that the system is forward-complete and we denote the input set by u ∈ U. We first assume that a "robust" observer has been designed for system [START_REF] Khalil | Nonlinear systems[END_REF] and that is given by

ẋ = f (x, g, y, u) ġ = G(g, u), (2) 
where x ∈ R n is the state estimation, g a dynamic gain and f is locally Lipschitz.

We then consider the case where y is not directly available for measurements. Instead, we measure a nonlinear transformation ψ(y) affected by noise. This situation arises frequently in engineering processes, where nonlinear sensor transformations are common. The new system takes the form

ẋ = f (x, u) y ψ = ψ(y) + d ψ , (3) 
where y ψ ∈ R p is the output, y = h(x) + d y , the disturbances d y , d ψ ∈ R p are bounded with bounded derivatives and ψ is of class C 2 . Here, d y can represent model uncertainties while d ψ measurement noise. As a consequence of changing the system output, observer (2) cannot be directly implemented and, thus, a redesign is needed. For a general nonlinear system, there is no systematic way to adapt a given observer design to output transformations. In this work, we provide a novel method of observer redesign that faces this challenge.

Remark 1: As an example, consider the uniformly observable systems as in Section IV-B. Many observers are easily designed for this class of systems, however, they are based on a linear output. If a nonlinear transformation of the output is instead measured, the convergence of these observers is no longer guaranteed.

Remark 2: Other solutions to our problem include: (i) coordinate change to steer system (3) into a convenient form. This can be difficult and it is not systematic, especially for multi-output systems [START_REF] Gauthier | Deterministic observation theory and applications[END_REF], [START_REF] Besanc ¸on | Nonlinear observers and applications, ser. Lecture notes in control and information sciences[END_REF]; (ii) using the EKF for system (3) without guarantee of its global convergence [START_REF] Reif | Nonlinear state observation using H infinity-filtering Riccati design[END_REF]; (iii) inverting ψ and using observer [START_REF] Meurer | Control and observer design for nonlinear finite and infinite dimensional systems[END_REF]. Unfortunately, the inverse of ψ might not be available in closed form or it can be difficult to compute.

We cannot implement observer (2) since y is not directly known. However, we require this observer to be robust with respect to measurement noise. The error dynamics are given by ė = F(t, e, d),

where e = x -x and for

F(t, e, d) =f (x(t), u(t)) -f (x(t) -e, g(t), h(x(t)) + d, u(t)), (5) 
therefore, what we need is the following assumption.

Assumption 1: There exists a continuous function V (t, e) : R + × R n → R + , of class C 1 on e = 0, and functions ᾱ1 , ᾱ2 ∈ K ∞ and ᾱ3 , χ ∈ K such that: 

ᾱ1 (|e|) ≤ V (t,
∈ R + , e ∈ R n -{0}, d ∈ R p and all u ∈ U, x(0) ∈ R n .
Assumption 1 is equivalent to the ISS of system (4), see [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] or, for time-varying Lyapunov functions, [START_REF] Edwards | On input-to-state stability for time varying nonlinear systems[END_REF]. That is, to the graceful degradation of observer (2) performance in the presence of measurement noise. Observers satisfying this property were first considered in [START_REF] Sontag | Output-to-state stability and detectability of nonlinear systems[END_REF] and they are known as disturbance-to-error stable (DES) observers [START_REF] Shim | Nonlinear Observers Robust to Measurement Disturbances in an ISS Sense[END_REF]. There are methods to determine if certain observers are DES [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF] or to redesign them if they are not [START_REF] Shim | Nonlinear observer design via passivation of error dynamics[END_REF].

Assumption 2: The function ψ : R p → R p is of class C 2 and its Jacobian is invertible on all its domain. Moreover, there exists

δ ∈ K ∞ ∩ C 2 such that δ(|ψ(y) -ψ(ŷ)|) ≥ |y -ŷ|, for all y, ŷ ∈ R p .
Assumption 2 implies in particular the injectivity of ψ. It is satisfied, for example, if p = 1 and if | ∂ψ ∂y | is bounded from below by a positive constant. The authors in [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF] require this last condition to hold when the nonlinear output they study is differentiable.

C. Input to state practical stability

The ISS theory has been the subject of intense research since its introduction in [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF]. It relates the states of a given system with the initial conditions and the inputs through the so-called comparison functions: (i) γ : R + → R + is of class K if it is strictly increasing, continuous and γ(0) = 0. If additionally γ(t) tends to infinity as t → ∞, then it is of class K ∞ , (ii) β : R + × R + → R + is of class KL if for each fixed t ∈ R + the function β(s, t) is of class K and if for each fixed s ∈ R + the function β(s, t) is decreasing and tends to zero as t → ∞. We use the notation γ ∈ K or γ ∈ K ∞ and β ∈ KL. A comprehensive study of the function classes K and KL can be found in [START_REF] Kellett | A compendium of comparison function results[END_REF]. The following general results will be used in Section III.

Remark 3: The function classes K and K ∞ are closed under composition. Also, functions in K ∞ are invertible and their inverses remain in the class. A frequently used triangletype inequality for γ ∈ K is

γ(s + t) ≤ γ(2s) + γ(2t), for all s, t ∈ R + .
Proposition 1 ( [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF]): For any locally Lipschitz function φ : R n1 → R n2 , there exist locally Lipschitz functions ϕ :

R n1 → R + and α ∈ K ∞ such that |φ(z) -φ(w)| ≤ ϕ(z)α(|z -w|), for all z, w ∈ R n1 .
A weaker notion than ISS is the so-called input-to-state practical stability (ISpS) as defined in [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF]. Here, we write the definition for a family of function pairs. As can be seen in the Appendix, this does not modify the usual results concerning ISpS and it simplifies our exposition.

Definition 1: Consider any family G formed by pairs of locally Lipschitz functions (z, w) :

I z,w = [0, T z,w ) → R n1 × R n2 .
We say that G is practically stable if there exist functions β ∈ KL and γ ∈ K and a constant c ≥ 0 such that for all (z, w) ∈ G we have

|z(t)| ≤ β(|z(0)|, t) + sup s∈[0,t] γ(|w(s)|) + c, ∀t ∈ I z,w . (6)
The functions β and γ and the constant c are respectively called decay rate, gain and constant of the practical stability.

The "practicality" comes from the constant c appearing in the right-hand side of equation ( 6). In fact, if c = 0 then we recover the ISS property. It is known that the practical stability of a system can be proved by constructing a Lyapunov function [START_REF] Sontag | On characterizations of input-to-state stability with respect to compact sets[END_REF]. In order to enlarge the class of admissible Lyapunov functions, the next definition uses the fact that locally Lipschitz functions are differentiable almost everywhere (Rademacher's theorem).

Definition 2: A function V : R + × R n1 → R + is a Lyapunov function for the family G if: (i) for each (z, w) ∈ G, V z = V (•, z(•)
) is everywhere continuous and locally Lipschitz outside z -1 (0), (ii) there exist α 1 , α 2 ∈ K ∞ , α 3 , χ ∈ K and c L ≥ 0 such that for all (z, w) ∈ G:

α 1 (|z(t)|) ≤ V z (t) ≤ α 2 (|z(t)|), (7) 
for all t ∈ I z,w and

V z (t) ≤ -α 3 (|z(t)|), (8) 
if

|z(t)| ≥ χ(|w(t)|) + c L and for a.e. t ∈ I z,w -z -1 (0).
The functions α i , the function χ and the constant c L are respectively called Lyapunov-bounds, gain and constant.

Theorem 1 (Lyapunov function): Consider any family G formed by pairs of locally Lipschitz functions. Then G is practically stable if it has a Lyapunov function.

The proof of Theorem 1 goes along the lines of that in [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] and it is included in the Appendix for completeness. We remark that c = 0 precisely when c L = 0.

The stability of the interconnection of ISpS subsystems can be achieved by imposing a small-gain condition as in [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF], [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF] and, for large networks, [START_REF] Dashkovskiy | An ISS small gain theorem for general networks[END_REF]. In our setting, let us define the set

G -1 = {(w, z)|(z, w) ∈ G}
and suppose that:

• there is a Lyapunov function for G with corresponding Lyapunov-bounds, gain and constant: α 11 , α 12 and α 13 , χ 1 and c L1 , • there is a Lyapunov function for G -1 with corresponding Lyapunov-bounds, gain and constant: α 21 , α 22 and α 23 , χ 2 and c L2 .

ẋ = f (x, u) y = h(x) + d y y ψ = ψ(y) + d ψ System (3) ẋ = f (x, g, y, u) ġ = G(g, u)
Observer ( 2)

y x ẏ = ĥ(x, ŷ, y ψ , u) ẋ = f (x, g, ŷ, u) ġ = G(g, u)
ŷ New observer [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] x y ψ 11) is represented on the bottom part as an interconnected system. Observer (2) requires the unavailable output y, while the new observer uses the measurements y ψ instead.

We can then define the mixed Lyapunov gains as:

χ m1 = α 12 2χ 1 (α -1 21 ) , χ m2 = α 22 2χ 2 (α -1 11 ) (9) 
and we have the following result.

Theorem 2 (small-gain): Consider any family G formed by pairs of locally Lipschitz functions (z, w) :

I z,w = [0, T z,w ) → R n1 × R n2 .
Suppose that there exist a Lyapunov function for G and a Lyapunov function for G -1 . Given the mixed Lyapunov gains in [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]

, if χ 1 is of class K ∞ and if χ m1 (χ m2 (t)) < t, ∀t > 0 (10) 
then G ×{0} is practically stable. That is, there exist a function β ∈ KL and a constant c ≥ 0 such that for all (z, w) ∈ G we have

|(z(t), w(t))| ≤ β(|(z(0), w(0))|, t) + c, ∀t ∈ I z,w .
The proof of Theorem 2, given in Appendix B, is based on the proof of the small-gain theorem in [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF]. As before, c = 0 precisely when c L1 = c L2 = 0.

III. NEW OBSERVER DESIGN

We propose the observer design for system (3) as the following interconnection:

     ẋ = f (x, g, ŷ, u) ġ = G(g, u) ẏ = ĥ(x, ŷ, y ψ , u), (11) 
where f and G are as in (2),

ĥ(x, ŷ, y ψ , u) = ∂ψ ∂y (ŷ) -1 ∂ψ ∂y (h(x)) ∂h ∂x (x)f (x, u) + ∂ψ ∂y (ŷ) -1 ϕ(x, u)K(y ψ -ψ(ŷ)),
and ϕ : R n × R m → R + and K : R p → R p are locally Lipschitz functions defined next. We emphasize that the observer in [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] only requires knowledge of y ψ and not directly of y. Figure 1 compares observers ( 2) and ( 11) and illustrates the relation of these observers with system (3).

In order to define the function ϕ, let us first consider the function φ given by

φ(x, u, d 1 , d 2 , d 3 ) = ∂ψ ∂y (h(x) + d 1 ) ∂h ∂x (x)f (x, u) + d 2 + d 3 , (12) 
for all x ∈ R n , u ∈ R m and d 1 , d 2 , d 3 ∈ R p . According to Proposition 1, there exist locally Lipschitz functions ϕ :

R n × R m → R + and α ∈ K ∞ such that, |φ(x, u, d 1 , d 2 , d 3 ) -φ(x, u, 0, 0, 0)| ≤ ϕ(x, u)α(|(x -x, d 1 , d 2 , d 3 )|) (13) 
on all its domain and we can assume that ϕ ≥ 1.

Remark 4: Finding α and ϕ in ( 13) is simpler if ψ and the functions in expression [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF] satisfy global Lipschitz conditions. This is the case, for example, if system (3) has bounded states and if we use saturation techniques as explained in Remark 7. We can then take α as the identity function and

ϕ(x, u) ≥ c ϕ (|f (x, u)| + 1),
for some c ϕ ≥ 1 and for all x ∈ R n and all u ∈ R m . There is a vast literature dealing with the computation of Lipschitz constants like those defining c ϕ .

We now continue with the definition of K. Consider a function ρ ∈ K ∞ ∩ C 2 , a positive constant k and set K : R p → R p as

K(ξ) = k ρ(|ξ|) |ξ| ξ, if ξ = 0 0, if ξ = 0. ( 14 
)
The choice of ρ guarantees that K is locally Lipschitz. Indeed, using that ρ(0) = 0 and L'Hôpital's rule, we can show that the function

ρ(t) t , if t > 0 ρ(0), if t = 0
is continuously differentiable on R + . The function ρ provides a degree of freedom for the design of the new observer [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF].

Given initial conditions x(0) ∈ R n , ŷ(0) ∈ R p and an input u ∈ U, there is a corresponding maximal interval of existence [0, T ) for the unique solution (x, ŷ) of [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF]. We denote the estimation errors as

e(t) = x(t) -x(t), ξ(t) = y ψ (t) -ψ(ŷ(t)),
for all t ∈ [0, T ). Notice that the solution is unbounded if T is finite, see for example [START_REF] Cronin | Ordinary Differential Equations: Introduction and Qualitative Theory[END_REF]. We will see that this is not the case if ρ is properly chosen.

Lemma 1: Let Assumption 2 hold and consider systems (3) and ( 11) with ϕ and K as in ( 13) and [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF]. If k > 1, then there exists a Lyapunov function for the family

G = {(ξ, e)|x(0), x(0) ∈ R n , ŷ(0) ∈ R p , u ∈ U}, (15) 
where ξ = y ψ -ψ(ŷ) and e = x -x are defined on [0, T ). Moreover, if the disturbances d y and d ψ are both zero then the corresponding Lyapunov-constant can be chosen to be zero.

Proof: We propose the Lyapunov function simply as the norm. On the trajectory ξ, it takes the form

V ξ 1 (t) = |ξ(t)|, for all t ∈ [0, T ).
It is clear that property [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF] is satisfied by defining both α 11 and α 12 as the identity function.

We next prove that property ( 8) is also satisfied on [0, T )ξ -1 (0). From the definitions of φ in [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF] and of the new observer in [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] we have that

V ξ 1 = ξ |ξ| ∂ψ ∂y (y) ẏ + ḋ ψ - ∂ψ ∂y (ŷ) ẏ = ξ |ξ| (φ(e + x, u, d y , ḋy , ḋ ψ ) -φ(x, u, 0, 0, 0)) - ξ |ξ| ϕ(x, u)K(ξ),
where ξ denotes the transpose of ξ. It then follows from the construction of ϕ and K, respectively in ( 13) and ( 14), and by Remark 3 that

V ξ 1 ≤ ϕ(x, u)α(|(e, d y , ḋy , ḋ ψ )|) -kϕ(x, u)ρ(|ξ|) ≤ ϕ(x, u)(α(2|e|) + α(c d ) -kρ(|ξ|)), (16) 
where

c d = 2(|d y | ∞ + | ḋy | ∞ + | ḋ ψ | ∞ ). (17) 
On the other hand, suppose that χ 1 ∈ K is given by

χ 1 (t) = ρ -1 (2α(2t)), (18) 
for all t ∈ R + , and set the non-negative constant

c L1 = ρ -1 (2α(c d ))
.

If |ξ| ≥ χ 1 (|e|) + c L1 , then it follows that ρ(|ξ|) ≥ α(2|e|) + α(c d ).
Since k > 1 and ϕ ≥ 1, we get that the negative term ρ(|ξ|)kρ(|ξ|) dominates the last expression in [START_REF] Silva | Sensors and actuators: control systems instrumentation[END_REF]. By using this and the inequalities in [START_REF] Silva | Sensors and actuators: control systems instrumentation[END_REF] we conclude that

V ξ 1 ≤ -(k -1)ρ(|ξ|)
and, as a consequence, we can define

α 13 (t) = (k -1)ρ(t),
for all t ∈ R + . Finally, notice that if both disturbances d y and d ψ are the zero function then c d in ( 17) is zero and the same holds for the Lyapunov-constant c L1 .

Lemma 2: Let Assumptions 1 and 2 hold and consider systems (3) and [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] with ϕ and K as in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] and [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF]. There exists a Lyapunov function for the family

G -1 = {(e, ξ)|x(0), x(0) ∈ R n , ŷ(0) ∈ R p , u ∈ U}, ( 19 
)
where e = x -x and ξ = y ψ -ψ(ŷ) are defined on [0, T ). Moreover, if the disturbances d y and d ψ are both zero then the corresponding Lyapunov-constant can be chosen to be zero.

Proof: Consider the Lyapunov function V from Assumption 1 and the corresponding functions ᾱ1 , ᾱ2 , ᾱ3 and χ. Set V 2 = V , which on the trajectory takes the form V e 2 = V 2 (•, e), and define α 21 = ᾱ1 and α 22 = ᾱ2 . We next prove that property (8) holds on [0, T ) -e -1 (0). From the definition of F in [START_REF] Krener | Linearization by output injection and nonlinear observers[END_REF] we have that ė = F(•, e, ŷ -h(x))

and, therefore, we can select α 23 = ᾱ3 to get

V e 2 = ∂ V ∂t (•, e) + ∂ V ∂z (•, e) ė ≤ -α 23 (|e|), (20) 
whenever |e| ≥ χ(|ŷ -h(x)|). We also define the class K function χ 2 (t) = χ(2δ(2t)), for all t ∈ R + , and the non-negative constant

c L2 = χ(2|d y | ∞ ) + χ(2δ(2|d ψ | ∞ )).
Assumption 2 then implies that

χ 2 (|ξ|) + c L2 ≥ χ(2δ(|ψ(y) -ψ(ŷ)|)) + χ(2|d y | ∞ ) ≥ χ(2|y -ŷ|) + χ(2|d y | ∞ ) ≥ χ(|y -ŷ| + |d y | ∞ ) ≥ χ(|ŷ -h(x)|)
which, together with [START_REF] Nwagboso | Automotive Sensory Systems[END_REF], provides the needed property. Finally, notice that c L2 is zero precisely when the disturbances d y and d ψ are zero.

We are now ready to state our main result. It establishes a condition on the gain ρ in order to guarantee the asymptotic convergence to a neighborhood of zero (or to zero itself) of the state estimation error given by the new observer in [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF].

Theorem 3 (Observer gain design): Let Assumptions 1 and 2 hold and consider systems (3) and [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] with ϕ and K as in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] and [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF]. For any k > 1 and any

ρ ∈ K ∞ ∩ C 2 satisfying ρ(t) > 2α(2ᾱ -1 1 (ᾱ 2 (2 χ(2δ(4t))))), ∀t > 0 (21) 
there exist a class KL function β and a constant c ≥ 0 such that for all x(0), x(0) ∈ R n , all ŷ(0) ∈ R p and all u ∈ U the estimation errors e = x -x and ξ = y ψ -ψ(ŷ) are defined on R + and

|(ξ(t), e(t))| ≤ β(|(ξ(0), e(0))|, t) + c, ∀t ≥ 0. (22) 
Moreover, if the disturbances d y and d ψ are both zero then c is zero as well.

Proof: Using Lemmas 1 and 2, we deduce that there exist Lyapunov functions for the family G given in [START_REF] Suranthiran | Signal Conditioning With Memory-Less Nonlinear Sensors[END_REF] and for the family G -1 given in [START_REF] Rush | Nonlinear sensors impact digital imaging[END_REF]. Since the first two Lyapunov-bounds in the proof of Lemma 1 can be taken as the identity function, the small-gain condition in [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF] is given by:

χ m1 = 2χ 1 (α -1 21 ), χ m2 = α 22 (2χ 2 ). (23) 
It is then straight-forward to verify the equivalence of this condition with the inequality in [START_REF] Kothari | Capacitive sensors for measuring the pressure between the foot and shoe[END_REF]. Indeed, by using the expression of χ 1 in (18) and the functions defined in the proof of Lemma 2 we have that

2χ 1 (α -1 21 (α 22 (2χ 2 (t)))) < t, ∀t > 0
precisely when ρ satisfies [START_REF] Kothari | Capacitive sensors for measuring the pressure between the foot and shoe[END_REF]. Hence, Theorem 2 concludes that G ×{0} is practically stable. That is, there exist a function β ∈ KL and a constant c ≥ 0 such that ( 22) is satisfied on [0, T ). As a consequence, this interval is necessarily the whole R + . Finally, if both disturbances d y and d ψ are zero then in Lemmas 1 and 2 both Lyapunov-constants c L1 and c L2 are zero as well. The details of the proofs in the Appendix imply then c = 0.

Remark 5: In practice, the design of the new observer [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] starts by proposing an observer as [START_REF] Meurer | Control and observer design for nonlinear finite and infinite dimensional systems[END_REF] and by finding a Lyapunov function V for its error dynamics, together with the functions ᾱ1 , ᾱ2 and χ from Assumption 1. We then require δ from Assumption 2 and the functions ϕ and α from (13) (see Remark 4). Finally, the lower bound in [START_REF] Kothari | Capacitive sensors for measuring the pressure between the foot and shoe[END_REF] itself can be used to construct such a ρ and K is then given by ( 14).

Remark 6: From the proofs of Lemmas 1 and 2, we have that the new observer recovers a type of DES property: there exist β ∈ KL and γ ∈ K such that for all x(0), x(0) ∈ R n , all ŷ(0) ∈ R p , all u ∈ U and for all bounded, Lipschitz and differentiable d y and d ψ we have

|(ξ(t), e(t))| ≤ β(|(ξ(0), e(0))|, t) + γ(|(d y , d ψ , ḋy , ḋ ψ )| ∞ ), for all t ∈ R + .
Finally, notice that we can find the explicit decay rate β and constant c in ( 22) by following the next steps:

1) Find the Lyapunov-bounds, gain and constant from Assumption 2. Use them to construct ρ satisfying the inequality in [START_REF] Kothari | Capacitive sensors for measuring the pressure between the foot and shoe[END_REF]. 2) Get the Lyapunov-bounds, gains and constants from Lemma 1 and Lemma 2. 3) Consider the mixed gains in [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF] and choose an inbetween function σ as explained in the Appendix. 4) Compute the bounds, gain and constant of the Lyapunov function for G × {0} as in the proof of Theorem 2 in the Appendix. 5) Compute the corresponding decay rate β and constant c as shown in the proofs of Lemma 3 and Theorem 1 in the Appendix.

The following section concerns two classical and widely used families of nonlinear systems and it helps to illustrate the design of the new observer.

IV. PARTICULAR CASES

The aim of this section is to study Theorem 3 when system (1) belongs to the family of: (i) state affine systems, (ii) systems with additive triangular nonlinearity. We add the following assumption on ψ throughout this section.

Assumption 3: The function ψ and its derivative are both Lipschitz continuous.

This assumption is not a critical design requirement but it simplifies the computations of ϕ and α in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] as explained in Remark 4. Moreover, it can be easily met in the case of bounded states as shown in Remark 7 at the end of this section.

A. State-affine systems up to output injection

Consider A : R m → R n×n a continuous matrix functional, η : R p × R m → R n a nonlinear and continuous function and C ∈ R p×n a constant matrix. Our goal is to estimate the states of the system given by:

ẋ = A(u)x + η(Cx, u) y ψ = ψ(y) + d ψ , (24) 
where y = Cx + d y and where ψ : R p → R p satisfies Assumption 2. We need the next condition on η. The following observer [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF], [START_REF] Hammouri | Observer synthesis for stateaffine systems[END_REF], which cannot be directly implemented, plays the role of observer (2) and it is described by:

ẋ = A(u)x + η(y, u) + S -1 C (y -C x) Ṡ = -θS -A(u) S -SA(u) + C C, (25) 
where θ > 0 is a tuning parameter and S(0) ∈ R n×n is a symmetric and positive definite matrix. It is known that S(t) maintains these properties for all t ∈ R + . The equation defining S in ( 25) is the same as in [START_REF] Besanc ¸on | Observer Synthesis for a Class of Nonlinear Control Systems[END_REF]. Following their work, the input u is regularly persistent if there exist a > 0, T > 0 and t 0 ≥ T such that t t-T Φ u (s, t -T ) C CΦ u (s, t -T )ds ≥ aI n , for all t ≥ t 0 and where Φ u stands for the transition matrix, namely, the unique solution to where |u| ∞ ≤ c U , for all u ∈ U. If θ ≥ 3b 1 > 0 we can deduce the bounds [START_REF] Besanc ¸on | Observer Synthesis for a Class of Nonlinear Control Systems[END_REF]:

s 1 I n ≤ S(t) ≤ s 2 I n , (26) 
for all t ∈ R + and where

s 1 = a exp(-t 0 (θ + 2b 1 )), s 2 = b -1 1 |C| 2 + |S(0)| are positive constants.
We next show that observer (25) satisfies Assumption 1. We define the function V : R + × R n → R + as V (t, e) = e S(t)e, for all t ∈ R + and e ∈ R n . According to [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF], we can choose the class K ∞ functions:

ᾱ1 (t) = s 1 t 2 , ᾱ2 (t) = s 2 t 2 , ( 27 
)
for all t ∈ R + . Moreover, the following holds for all t ∈ R + , e ∈ R n and d ∈ R p . On one hand, the definition of S in [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF] provides 

∂ V ∂t (t, e) = -
where we used that e A(u(t)) Se, as a real number, coincides with its transpose. On the other hand, F from ( 5) takes the form

F(t, e, d) = A(u(t))e -S(t) -1 C (Ce + d) + η(Cx(t), u(t)) -η(Cx(t) + d, u(t)).
It then follows that ∂ V ∂e (t, e)F(t, e, d) = 2e S(t)F(t, e, d)

= 2e S(t)A(u(t))e -2e C (Ce + d) + 2e S(t)(η(Cx(t), u(t)) -η(Cx(t) + d, u(t))). (29) 
Putting ( 28) and ( 29) together we obtain that We now define the class K ∞ functions

∂ V ∂t (t, e) + ∂ V ∂e (t,
χ(t) = s -1 1 t, ᾱ3 (t) = s 1 (θ -b 2 )t 2 , ( 30 
)
where θ > b 2 = 2(|C| + c η s 2 ).
Hence, the inequality |e| ≥ χ(|d|) implies that

∂ V ∂t (t, e) + ∂ V ∂e (t, e)F(t, e, d) ≤ s 1 (-θ + 2|C| + 2c η s 2 )|e| 2 = -ᾱ 3 (|e|)
and we are required to tune θ > max{3b 1 , b 2 }, which is possible since b 1 and b 2 are independent of θ.

We can now construct the corresponding new observer [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF]. Notice that in this case, the function f is globally Lipschitz in x, uniformly in u such that |u| ≤ c U . Therefore, we are in the situation of Remark 4 and we can choose α as the identity function and

ϕ(x, u) ≥ c ϕ (|A(u)x + η(C x, u)| + 1), (31) 
for some c ϕ ≥ 1 and for all x ∈ R n and |u| ≤ c U . By using the functions in ( 27) and [START_REF] Dashkovskiy | Input to state stability and allied system properties[END_REF] and by using the small-gain condition in [START_REF] Kothari | Capacitive sensors for measuring the pressure between the foot and shoe[END_REF], we get

ρ(t) = 17(s -3 1 s 2 ) 1 2 δ(4t), (32) 
for all t ∈ R + and where δ is given in Assumption 2. As a consequence, K in ( 14) is given by:

K(ξ) = 17k(s -3 1 s 2 ) 1 2 δ(4|ξ|)|ξ| -1 • ξ, if ξ = 0 0, if ξ = 0, (33) 
for k > 1. The observer in [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] takes the form:

     ẋ = A(u)x + η(ŷ, u) + S -1 C (ŷ -C x) ẏ = ∂ψ ∂y (ŷ) -1 ∂ψ ∂y (C x)C(A(u)x + η(C x, u)) + ∂ψ ∂y (ŷ) -1 ϕ(x, u)K(y ψ -ψ(ŷ)), ( 34 
)
where S is as in [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF]. We summarize our results in the following corollary.

Corollary 1 (state-affine case): Let Assumptions 2, 3, 4 and 5 hold and consider systems ( 24) and [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF]. For any tuning parameter θ such that Proof: It follows from our previous development and from Theorem 3. Indeed, we showed that Assumption 1 is satisfied by using Assumptions 4 and 5.

θ > max{3b 1 , 2|C| + 2c η (b -1 1 |C| 2 + |S(0)|)},
Finally, we compute the explicit decay rate β and the constant c in [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF] as explained at the end of Section III. The function ρ is already given in [START_REF] Shim | Nonlinear Observers Robust to Measurement Disturbances in an ISS Sense[END_REF], this is Step 1). For steps 2) and 3), we suppose that δ is linear with slope c δ > 0 so that:

δ(t) = c δ t, ρ(t) = c ρ t, c ρ = 68(s -3 1 s 2 ) 1 2 c δ ,
for all t ∈ R + . The mixed Lyapunov gains then take the form:

χ m1 (t) = c χm1 t 1 2 , c χm1 = 2s -1 2 1 c -1 ρ , χ m2 (t) = c χm2 t 2 , c χm2 = 64s -2 1 s 2 c 2 δ ,
for all t ∈ R + . As described in the Appendix, we can select the function between the gains as

σ(t) = c σ t 2 , c σ = c -2 χm1 + c χm2 2 > 0,
for all t ∈ R + . Simple computations in Steps 4) and 5) show that the decay rate is given by

β(s, t) = s √ c 1 exp - c 2 c 1 t ,
for all s, t ∈ R + and with the positive constants:

c 1 = 8 max{s 2 , c σ } min{s 1 , c σ } , c 2 = 1 4 min{2(k -1)c ρ , (θ -b 2 )s 1 s -1 2 }.
Furthermore, the constant of the practical stability is

c = 16 c 1 s 1 min {s 1 , c σ } 1 2 (|d y | ∞ + 2c δ |d ψ | ∞ ) 1 2 + 64c -1 ρ c 1 c σ min {s 1 , c σ } 1 2 (|d y | ∞ + | ḋy | ∞ + | ḋ ψ | ∞ ).

B. Systems with additive triangular nonlinearity

Let us now consider the constant matrices A ∈ R n and C ∈ R 1×n given by

A =       0 1 0 . . . . . . . . . 1 0 0       , C = 1 0 . . . 0 and suppose that ζ : R n × R m → R n is a nonlinear and continuous function of the form ζ(x, u) =      ζ 1 (x 1 , u) ζ 2 (x 1 , x 2 , u)
. . .

ζ n (x, u)     
, for all x = (x 1 , . . . , x n ) ∈ R n and u ∈ R m . Our goal is to estimate the states of the system:

ẋ = Ax + ζ(x, u) y ψ = ψ(y) + d ψ , (36) 
where y = Cx + d y and where ψ : R → R satisfies Assumption 2. As in the previous case, we need to add an assumption on ζ. To simplify the notation, we define

xi = (x 1 , . . . , x i ) ∈ R i , for each x ∈ R n and each i = 1, . . . , n.
Assumption 6: The function ζ is coordinate-wise Lipschitz continuous in the first entrance. That is, for each i = 1, . . . , n, there exists a positive constant c ζi such that

|ζ i ( xi , u) -ζ i ( xi , u)| ≤ c ζi | xi -xi |, for all x, x ∈ R n and all u ∈ R m .
As opposed to the state-affine case, the nonlinearity ζ in system [START_REF] Hammouri | An observer design for a class of implicit systems[END_REF] depends on the full-state x which complicates its estimation. The following observer was introduced in [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF] and plays the role of observer (2):

ẋ = Ax + ζ(x, u) + S -1 ∞ C (y -C x) 0 = -θS ∞ -A S ∞ -S ∞ A + C C, (37) 
where θ > 0 is a tuning parameter. As before, S ∞ is symmetric and positive definite. Let us denote the eigenvalue extrema of S ∞ by

s 1 = λ min (S ∞ ), s 2 = λ max (S ∞ )
and define S ∞,1 as the solution of the second equation in [START_REF] Grip | Observers for interconnected nonlinear and linear systems[END_REF] corresponding to the unitary tuning, that is,

S ∞,1 = θ -1 ∆S ∞ ∆, (38) 
where

∆ =    θ 0 . . . 0 θ n    .
Finally, we name the following maxima:

c ζ = max i=1,...,n c ζi , s m = max i,j=1,...,n |(S ∞,1 ) i,j |. (39) 
We next show that observer (37) satisfies Assumption 1 by using similar techniques to those of [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF]. In this case, the input set U can be taken simply as the set of continuous functions u : R + → R m . We define the function V : R n → R + as the norm induced by S ∞ , that is,

V (e) = (e S ∞ e) 1 2 = |e| S∞ ,
for all e ∈ R n . Clearly, we can select the class K ∞ functions given by ᾱ1 (t) = s

1 2 1 t, ᾱ2 (t) = s 1 2
2 t, for all t ∈ R + . Moreover, the following holds for all t ∈ R + , e ∈ R n -{0} and d ∈ R. The function F from (5) takes the form

F(t, e, d) = Ae -S -1 ∞ C (Ce + d) + ζ(x(t), u(t)) -ζ(x(t) -e, u(t)). It then follows that ∂ V ∂e (e)F(t, e, d) = 1 2 |e| -1 S∞ (2e S ∞ F(t, e, d)) ≤ - θ 2 |e| S∞ -|e| -1 S∞ e C d + |e| -1 S∞ e S ∞ • (ζ(x(t), u(t)) -ζ(x(t) -e, u(t))) ≤ - θ 2 |e| S∞ + s -1 2 1 |C||d| + |ζ(x(t), u(t)) -ζ(x(t) -e, u(t))| S∞ . (40) 
On the other hand, computing the induced norm and using [START_REF] González De Cossío | Observer design for nonlinear systems with implicit ouput[END_REF] we have

|ζ(x(t), u(t)) -ζ(x(t) -e, u(t))| 2 S∞ = n i,j=1 θ θ i+j (S ∞,1 ) i,j ζ(i, t, e) ζ(j, t, e), (41) 
where

ζ(i, t, e) = ζ i ( xi (t), u(t)) -ζ i ( xi (t) -ēi , u(t)
). Therefore, Assumption 6 implies:

|ζ(x(t), u(t)) -ζ(x(t) -e, u(t))| 2 S∞ ≤ n i,j=1 θs m c 2 ζ θ i+j | ēi || ēj | ≤ n 2 s m c 2 ζ λ min (S ∞,1 ) -1 |e| 2 S∞ ,
where we used the inequality |θ -i ēi | ≤ |∆ -1 e|. Putting ( 40) and [START_REF] Kellett | A compendium of comparison function results[END_REF] 

χ(t) = s -1 1 t, ᾱ3 (t) = s 1 2 1 2 (θ -b)t,
for all t ∈ R + and for

θ > b = 2 ns 1 2 m c ζ λ min (S ∞,1 ) -1 2 + 1 .
Notice that such θ exists since S ∞,1 corresponds to the unitary tuning.

In order to construct the new observer [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] and given that we are in the case of Remark 4, we can choose α as the identity function and:

ϕ(x, u) ≥ c ϕ (|Ax + ζ(x, u)| + 1), ρ(t) = 17(s -3 1 s 2 ) 1 2 δ(4t)
for some c ϕ ≥ 1 and all x ∈ R n , u ∈ R m and t ∈ R + . The new observer [START_REF] Vasiljevic | Error bounds in differentiation of noisy signals by high-gain observers[END_REF] then takes the form:

     ẋ = Ax + ζ(x, u) + S -1 ∞ C (ŷ -C x) ẏ = ∂ψ ∂y (ŷ) -1 ∂ψ ∂y (C x)C(Ax + ζ(x, u)) + ∂ψ ∂y (ŷ) -1 ϕ(x, u)K(y ψ -ψ(ŷ)), (42) 
where S is as in [START_REF] Grip | Observers for interconnected nonlinear and linear systems[END_REF] and K as in [START_REF] Alessandri | Time-varying increasing-gain observers for nonlinear systems[END_REF] with k > 1.

Corollary 2 (triangular case): Let Assumptions 2, 3 and 6 hold and consider systems [START_REF] Hammouri | An observer design for a class of implicit systems[END_REF] and [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF]. For any tuning

θ > 2 ns 1 2 m c ζ λ min (S ∞,1 ) -1 2 + 1 ,
where c ζ and s m are as in [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF], there exist a function β ∈ KL and a constant c ≥ 0 such that for all x(0), x(0) ∈ R n , all ŷ(0) ∈ R and all u ∈ U the estimation errors e = x -x and ξ = y ψ -ψ(ŷ) are defined on R + and |(ξ(t), e(t))| ≤ β(|(ξ(0), e(0))|, t) + c, ∀t ≥ 0.

Moreover, if the disturbances d y and d ψ are both zero then c is zero as well.

Proof: It follows from our previous development and from Theorem 3. Indeed, we showed that Assumption 1 is satisfied by using the specific forms of A and C and by using Assumption 6.

Remark 7: If the states of system [START_REF] Hammouri | An observer design for a class of implicit systems[END_REF] are uniformly bounded and if ζ is of class C 1 then Assumption 6 can be met by saturating ζ. Indeed, denote by X the state space and let µ > 0 be such that |x| ≤ µ, for all x ∈ X. Set each

ζ s i : R i × R m → R as ζ s i (x 1 , . . . , x i , u) = ζ i (µ sat(µ -1
x 1 ), . . . , µ sat(µ -1 x i ), u), where sat : R → R is given by sat(t) = min{1, |t|} sign(t). Replacing ζ by ζ s defines an equivalent system and the latter function satisfies Assumption 6. We can proceed similarly for ψ and Assumption 3 but using a non-constant and smooth saturation.

V. NUMERICAL RESULTS

In this section, we study specific cases of systems ( 24) and (36) in order to provide numerical examples of Corollaries 1 and 2.

A. Example for state-affine systems

Let us suppose that system [START_REF] Fan | Observer design for systems with multivariable monotone nonlinearities[END_REF] is given by:

A(u) = 0 u 0 0 , η(y, u) = sin(y) u 2 , C = 1 0 ,
for all y, u ∈ R. The input and the nonlinear function are defined as:

u(t) = cos(t), ψ(y) = sin(y) + 2y.
The function ψ is a diffeomorphism whose inverse has no closed form, and it is straight-forward to check that Assumptions 2, 3 and 4 are satisfied. Moreover, we can select δ as the identity function and it can be shown that u is regularly persistent, see for example [START_REF] González De Cossío | Optimal observer design for disturbed state affine systems[END_REF]. The lower bound of θ in Corollary 1 has a value of 6 when S(0) = I 2 . A simple computation shows that, according to ( 31) and ( 33), we can select

ϕ(x, u)K(ξ) = r(|x 2 | + 1) • ξ, (43) 
for all x ∈ R 2 and u, ξ ∈ R and where r > 0 is to be tuned. We initialize the system and the observers at: x(0) = (10, 0) , x(0) = x(0) = (4, 9) and ŷ(0) = C x(0) and we set the tuning parameter θ = 7. The results are shown in Figures 2 and3. The left and right columns represent the tunings r = 0.5 and r = 2. We simulate two disturbance cases: (i) d y and d ψ are both zero (Figure 2), (ii) d y and d ψ are uniformly distributed numbers respectively between ±0.8 and ±1.3 (Figure 3).

Figure 2:

In the top two rows, we can see that observer [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF], which uses y, correctly estimates the states of the system. As also depicted in the top two rows, the new observer [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF] achieves at most the performance of observer [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF]. Moreover, the performance is closer for the larger choice of r (right column). Finally, the quality of the state estimation given by the new observer (34) depends of the estimation of y by ŷ, as can be seen in the third row.

Figure 3:

In the top two rows, we can see that the state estimation from observer (25) converges to a neighborhood of the system state, as expected from a DES observer. The performance of observer [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF] and the new observer (34) are again similar for the larger r. Moreover, the new observer [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF] outperforms observer [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF] in terms of noise robustness. This is not surprising since noise amplification is a common problem for high-gain observers when their tuning parameter θ is large [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF]. The noise, in contrast, is averaged out by the definition of ŷ.

These figures show that, for r large enough, the new observer in [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF] recovers the performance of observer [START_REF] Ac | Observers for systems with nonlinearities satisfying incremental quadratic constraints[END_REF]. Furthermore, the design of the new observer [START_REF] Alessandri | Observer design for nonlinear systems by using Inputto-State Stability[END_REF] seems to be more robust against measurement noise. 

B. Example for systems with triangular nonlinearity

The authors in [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF] consider systems in the form of [START_REF] Hammouri | An observer design for a class of implicit systems[END_REF] and illustrate the case given by:

A = 0 1 0 0 , C = 1 0 , ζ(x, u) = 0 -x 1 -2x 2 + ax 2 1 x 2 + u ,
for all x ∈ R 2 and u ∈ R and for some a > 0. They also define the input and the nonlinear output as:

u(t) = b sin(2t), ψ(y) = 1 3 y 3 - 1 2 y 2 + y,
for some b > 0. As opposed to [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF], we consider disturbances. Notice that ψ is a diffeomorphism whose derivative is bounded from below by 0.75 and, therefore, Assumption 2 is met. However, ψ does not satisfy Assumption 3 and ζ satisfies only locally Assumption 6. Hence, we make use of the following.

As in [START_REF] Khalil | Nonlinear Control[END_REF] or [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF], for a = 0.25 and b = 0.2 every state starting at

X = {x ∈ R 2 |1.5x 2 1 + x 1 x 2 + 0.5x 2 2 ≤ √ 2}
remains in that set for all positive times. Therefore, in Remark 7 we can replace ψ and ζ by their saturated versions ψ s and ζ s . These new functions satisfy Assumptions 2, 3 and 6. Similar to the first case, we set for all x ∈ R 2 and u, ξ ∈ R and where r > 0. On the other hand, the observer from [START_REF] Lei | High-gain observers in the presence of sensor nonlinearities[END_REF] is given by

ϕ(x, u)K(ξ) = r(|x 1 | + |x 2 | + |x 2 1 x2 | + 1) • ξ,
ż = Aẑ + 0 ζ 0 (ẑ, u) + (8/3) -1 (4/3) -2 (y ψ -ψ(C ẑ)), (44) 
where ζ 0 (ẑ, u) = -ẑ 1 -2ẑ 2 + a sat(ẑ 2 1 ẑ2 ) + u, y ψ = ψ(Cx + d y ) + d ψ and where > 0 is to be tuned.

In order to make a fair comparison of observers ( 42) and ( 44): first we choose two far enough values of , then we try to improve or to match this performance by tuning θ and r.

We initialize the system and the observers at: x(0) = (1, -1) , x(0) = ẑ(0) = (0, 0) and ŷ = C x(0) and we fix the value r = 20. The results can be seen in Figures 4 and5. The left column represents the tunings θ = 2 and = 0.5 while the right column corresponds to θ = 9 and = 0.11. We simulate two cases: (i) d y and d ψ are both zero (Figure 4), (ii) d y and d ψ are uniformly distributed numbers respectively between ±0.3 and ±0.4 (Figure 5). [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF] and observer (44) render quite similar estimations that converge to the system states. Furthermore, higher tuning of θ and -1 leads to faster state reconstruction at the price of higher peaking (right column). The third row shows that tuning θ does not have a very strong effect in the estimation of y given by ŷ. for the larger choice of θ and the new observer (42) (right column).

These figures suggest that both observers have similar performances if they are properly tuned. It is clear that observer [START_REF] Sontag | On characterizations of input-to-state stability with respect to compact sets[END_REF] has a simpler design. Nevertheless, our methodology provides a new observer design for a much more general family of systems.

VI. CONCLUSION

The method presented in this work concerns observer redesign for nonlinear systems in the presence of output transformations. The new observer consists in an interconnection of the initial observer dynamics with an estimator of the unavailable output. By using the small-gain theorem, we showed that the new observer converges asymptotically to a neighborhood of zero that depends on the amplitude of the disturbances and their derivatives. We then studied the new observer design for two major families of systems that differ in their observability properties. The simulations showed that the new observer recovers the performance of the initial observer and that its performance is comparable to that of other related observers. Unlike previous studies, the generality of our approach considers systems without a specific form at the cost of a more intricate design. Future work will focus on relaxing the conditions on the initial observer by considering weaker versions of the DES property, such as quasi-DES developed in [START_REF] Shim | Nonlinear Observers Robust to Measurement Disturbances in an ISS Sense[END_REF]. 

First, we prove by contradiction that for all t 0 ∈ R + :

t 0 ∈ S implies t ∈ S, ∀t ∈ [t 0 , T z,w ). ( 46 
)
If this is not the case, then there is t 0 ∈ S such that

t * = inf{t ∈ [t 0 , T z,w )|V z (t) ≥ Γ(t) + } < ∞,
where > 0 is small enough. Notice that the continuity of V z and property [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF] imply that t * > t 0 and that α 2 (|z(t * )|) > Γ(t * ). In particular, z(t * ) = 0. It follows from the definition of Γ in [START_REF] Dashkovskiy | An ISS small gain theorem for general networks[END_REF] and from property (8) that V z (t) ≤ -α 3 (|z(t)|), for a.e. t ∈ B 1 (t * ) ⊆ [t 0 , T z,w ) -z -1 (0) and where 1 is a small enough radius. This means that V z does not increase on B 1 (t * ), which contradicts the choice of t * . We conclude that our assumption in (46) must be true.

Let us now define

s * = inf S ≤ ∞
and assume for now that s * is finite. Notice that [s * , T z,w ) ⊆ S, indeed, this is a consequence of s * ∈ S and of the claim shown in [START_REF] Cronin | Ordinary Differential Equations: Introduction and Qualitative Theory[END_REF]. Therefore, property [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF] 

Figure 1 .

 1 Figure 1. System (3) and observer (2) are represented on the top part of the diagram. The new observer (11) is represented on the bottom part as an interconnected system. Observer (2) requires the unavailable output y, while the new observer uses the measurements y ψ instead.

Assumption 4 :

 4 The function η is Lipschitz continuous with respect to its first entrance. That is, there exists a positive constant c η such that|η(y, u) -η(ŷ, u)| ≤ c η |y -ŷ|,for all y, ŷ ∈ R p and all u ∈ R m .

Assumption 5 :

 5 ∂Φu ∂s (s, t) = A(u(s))Φ u (s, t) Φ u (t, t) = I n , for all s, t ∈ R + . The input set U consists of continuous, uniformly bounded and regularly persistent inputs u : R + → R m . Let us consider 0 < a ≤ λ min (S(0)) to simplify and let us denote b 1 = sup |u|≤c U |A(u)|,

  θe S(t)e -e A(u(t)) S(t)e -e S(t)A(u(t))e + e C Ce = -θe S(t)e -2e S(t)A(u(t))e + e C Ce,

where b 1 =

 1 sup |u|≤c U |A(u)|, there exist a function β ∈ KL and a constant c ≥ 0 such that for all x(0), x(0) ∈ R n , all ŷ(0) ∈ R p and all u ∈ U, the estimation errors e = x -x and ξ = y ψ -ψ(ŷ) are defined on R + and |(ξ(t), e(t))| ≤ β(|(ξ(0), e(0))|, t) + c, ∀t ≥ 0.(35)Moreover, if the disturbances d y and d ψ are both zero then c is zero as well.

Figure 2 .

 2 Figure 2. Comparison of the new observer with the observer that uses y in the case: dy = 0, d ψ = 0. Estimation of the system states of (24) (blue solid) by observer (25) (red pointed-dashed) and by the new observer (34) (black dashed). The columns correspond to different tunings of r in (43).
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 3 Figure 3. Comparison of the new observer with the observer that uses y in the case: dy = 0, d ψ = 0. Estimation of the system states of (24) (blue solid) by observer (25) (red pointed-dashed) and by the new observer (34) (black dashed). The columns correspond to different tunings of r in (43).

Figure 4 :

 4 Figure 4:In the top two rows, we see that both the new observer[START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF] and observer (44) render quite similar estimations that converge to the system states. Furthermore, higher tuning of θ and -1 leads to faster state reconstruction at the price of higher peaking (right column). The third row shows that tuning θ does not have a very strong effect in the estimation of y given by ŷ.

Figure 5 :

 5 Figure5: The top two rows show that both observers[START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF] and (44) provide similar estimations, this time converging to neighborhoods of the states. Increasing the value of -1 in observer[START_REF] Sontag | On characterizations of input-to-state stability with respect to compact sets[END_REF] amplifies the noise, this is slightly less visible

Figure 4 .

 4 Figure 4. Comparison of the new observer with the observer of J. Lei and H.K. Khalil [26] in the case: dy = 0, d ψ = 0. Estimation of the system states in (36) (blue solid) by observer (44) (green pointed-dashed) and by the new observer (42) (black dashed). The columns correspond to different tunings of θ and .

Figure 5 .

 5 Figure 5. Comparison of the new observer with the observer of J. Lei and H.K. Khalil [26] in the case: dy = 0, d ψ = 0. Estimation of the system states in (36) (blue solid) by observer (44) (green pointed-dashed) and by the new observer (42) (black dashed). The columns correspond to different tunings of θ and .

  e) ≤ ᾱ2 (|e|), for all t ∈ R + and all e ∈ R n , and such that:

	∂ ∂t V	(t, e) +	V ∂e ∂	(t, e)F(t, e, d) ≤ -ᾱ3 (|e|),
	whenever |e| ≥ χ(|d|) and for all t

for all t ∈ [s * , T z,w ) and where

On the other hand, it is clear that S ∩ [0, s * ) is empty and, as a consequence, also z -1 (0) ∩ [0, s * ). Then, properties [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF] and [START_REF] Gauthier | A simple observer for nonlinear systems. Applications to bioreactors[END_REF] provide

for a.e. t ∈ [0, s * ) and where α = α 3 (α -1

2 ) ∈ K. We can then apply Lemma 3 to get a function β ∈ KL such that V z (t) ≤ β(V z (0), t), for all t ∈ [0, s * ). Hence, property [START_REF] Bornard | Regular persistent observers for bilinear systems[END_REF] implies that |z(t)| ≤ β(|z(0)|, t), [START_REF] Besanc ¸on | Observer Synthesis for a Class of Nonlinear Control Systems[END_REF] for all t ∈ [0, s * ) and where β(s, t) = α -1 1 ( β(α 2 (s), t)), for all s, t ∈ R + . It is straight-forward to check that β ∈ KL. We conclude the desired inequality in ( 6) by joining inequalities [START_REF] Hammouri | Observer synthesis for stateaffine systems[END_REF] and [START_REF] Besanc ¸on | Observer Synthesis for a Class of Nonlinear Control Systems[END_REF].

We proceed similarly if s * is infinite. The only difference being that inequality [START_REF] Besanc ¸on | Observer Synthesis for a Class of Nonlinear Control Systems[END_REF] is satisfied on the whole interval [0, T z,w ). Finally, notice that β, γ and c are independent from the choice of (z, w).

B. Proof of Theorem 2 (small-gain)

Lemma 4 ( [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF]): Consider functions σ 1 ∈ K and σ 2 ∈ K ∞ and suppose that σ 1 (t) < σ 2 (t), for all t > 0. Then, there exists a function σ ∈ K ∞ that is continuously differentiable on t > 0 and that satisfies:

The fact that the derivative of σ is strictly positive on t > 0 is crucial. This is not necessarily true for an arbitrary function K ∞ ∩C 1 as shown in [START_REF] Kellett | A compendium of comparison function results[END_REF]. Notice that the function σ at zero is no more than continuous and that it appears in the definition of V below. This does not cause any problems given our specific definition of Lyapunov function.

Proof of Theorem 2:

The small-gain condition in [START_REF] Esfandiari | Output feedback stabilization of fully linearizable systems[END_REF] implies the existence of σ as in Lemma 4, that is:

By Theorem 1, it suffices to find a Lyapunov function for the family G × {0}. Consider the Lyapunov functions V 1 and V 2 , respectively for G and for G -1 , and set

Let us fix for the moment any (z, w) ∈ G and, as before, the notation V z 1 , V w 2 and V z,w indicates evaluation on the corresponding trajectories.

It is clear that V z,w is everywhere continuous. Moreover, V z 1 and V w 2 are zero precisely where their corresponding trajectories are zero. Hence, V z,w is also locally Lipschitz on I z,w -(z -1 (0) ∪ w -1 (0)). We consider the following partition of the interval I z,w :

in order to write

The open subsets D z and D w of I z,w are contained respectively in I z,w -z -1 (0) and I z,w -w -1 (0). In particular, this implies that V z,w is also locally Lipschitz on D z ∪ D w and, consequently, on the whole I z,w -(z, w) -1 (0) as needed.

The following verifies property (7) of V z,w by using:

The corresponding property of V z 1 and V w 2 implies:

for all t ∈ R + . We now continue by checking property (8) of V z,w . For this purpose, we select the function

where α1 (0) = 0 and

)) and we also select the non-negative constant

Fix a time t 0 ∈ I z,w -(z, w) -1 (0) where V z,w , V z 1 and V w 2 are differentiable and suppose that

It then suffices to show the inequality

Using (50), we have three possible cases:

1) Suppose that t 0 ∈ D z , in particular, z(t 0 ) = 0. There exists 1 > 0 such that

for all t ∈ I z,w ∩ B 1 (t 0 ). As a consequence,

On the other hand, (51) and ( 53) together with the properties of α 1 imply σ(V z 1 (t 0 )) ≥ σ(α 12 (2c L1 )) and, hence,

Summing this inequality with (55) leads to

and, using (53) and (54), property (8

2) Suppose that t 0 ∈ D w , in particular, w(t 0 ) = 0. The procedure in this case follows the same ideas. We have that:

) and, together with assumption (51), we have

3) Now suppose that t 0 ∈ D so that

In particular, both z(t 0 ) and w(t 0 ) differ from zero. Just as in the previous two cases, we have:

As a consequence, there exists 2 > 0 such that

for all t ∈ I z,w ∩ B 2 (t 0 ). Then (56) leads to

for all t ∈ I z,w ∩ B 2 (t 0 ), which implies (52). Finally, notice that the functions α 1 , α 2 and α 3 and the constant c L are all independent from the choice of (z, w).