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Abstract

In this note we consider non-stationary cluster point processes and we derive their

conditional intensity, i.e. the intensity of the process given the locations of one or

more events of the process. We then provide some approximations of the condi-

tional intensity.

Conditional intensity; Neyman-Scott process; Point process

1 Introduction

The problem of conditioning is an old problem in the point process theory. The conditional distri-

bution of a spatial point process, say Φ, given a realisation of some events of Φ was introduced by

Palm (1943) for stationary point processes on the real line and recently summed up in Cœurjolly

et al. (2017) in the general case.

We consider locally finite point processes Φ defined in a compact set S ⊂ R2 and specified by

a density f . We assume that we have observed Φ in W ⊆ S and we denote ΦW its restriction

to the set W . A natural way to predict ΦS\W is to consider the conditional distribution of ΦS\W
given ΦW , which is can be expressed in terms of the conditional density (cf Cœurjolly et al. (2017)).

Unfortunately, the density of Φ restricted to W is tractable for few usual processes, as Poisson,

Gibbs and determinantal processes, but not for Cox and cluster point processes.

In this note, we derive the conditional intensity of non-stationary cluster point processes and

provide some approximations for practical applications. Note that Gabriel et al. (2017) and Gabriel

et al. (2021) define a “model-free” predictor of the conditional intensity for stationary and non-

stationary processes, in sense that it is only related to the first and second-order moments of the

point process.

2 Conditional intensity of non-stationary cluster point processes

Cluster point processes, developed by Neyman and Scott (1958), are formed by a simple procedure,

with a homogeneous Poisson process Ψ with intensity κ generating parent points at a first step and
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a random pattern of offspring points around each parent point at a second step. The number of

offspring points has a Poisson distribution with mean µ and the offspring points are independently

and identically distributed with a bounded support kernel k depending on the distance from offspring

to parent. The cluster point process Φ̃ is the set of offspring points, regardless their parentage. This

process is stationary with intensity λ̃ = κµ.

We focus on the p(x)−thinned process of Φ̃, where p(x) is a deterministic function on R2 with

0 ≤ p(x) ≤ 1. If the point x belongs to Φ̃, it is deleted with probability 1−p(x) and again its deletion

is independent of locations and possible deletions of any other points. Let Φ be the p(x)−thinned

process. The process Φ is second-order intensity reweighted stationary with λ(x) = κµp(x) (see

Chiu et al. (2013)).

Here we want to know the conditional intensity of ΦS\W given ΦW . We denote ∂W the border

of the observation window W , with width defined by the range of the dispersion kernel k, say r. In

other words, ∂W = W⊕r\W . Figure 1 illustrates the different steps of the generating procedure.

Figure 1: Generating procedure of the p(x)-thinned cluster process. Parent points (Ψ =blue crosses) are
generated in the union of the observation window W (white area) and ∂W (hatched area). Offspring (Φ̃ =red
dots) are generated within the circle around the parent points (blue area). The final process (Φ =black dots)
is obtained by p(x)-thinning. The window of interest S is delineated in black. The prediction window is
represented by the grey shaded central square.

Proposition 1. The conditional intensity of a p(x)-thinned cluster process observed in W ⊆ S is:

λ(xo|ΦW ) =

∫  ∑
y∈W∪∂W

µp(xo)k(y − xo)

+µκ

∫
b(xo,r)\(W∪∂W )

p(xo)k(y − xo) dy

]
dP[ΨW∪∂W |ΦW ], (1)

where b(xo, r) denotes the disc of centre xo and radius r.

The proof is rather straightforward as (i) for a cluster process we know the conditional intensity

given the realisation of parent points, (ii) the parent process is Poisson and (iii) knowing the

offspring points in W is not informative on parent points in b(xo, r)\(W ∪ ∂W ).
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The conditional intensity (1) depends on the distribution of the parent process in W ∪ ∂W given

the offspring in W . By Campbell’s theorem this equation can be rewritten

λ(xo|ΦW ) =

∫
W∪∂W

µp(xo)k(y − xo)ρ(y|ΦW ) dy

+ µκ

∫
b(xo,r)\(W∪∂W )

p(xo)k(y − xo) dy, (2)

where ρ(y|ΦW ) is the intensity of parent points in W ∪∂W given the offspring points in W . Baudin

(1983) derived the following formula for such a conditional intensity of parent points for Neyman-

Scott processes:

ρ(y|ΦW ) = κG (1− F (Wy)) +

2n−1∑
j=1

∑
b∈B

b(aj)

2n−1∏
i=1

S(Φ,W, ai)
b(ai)

×

[
κG|aj | (1− F (Wy))

∏n
`=1 k(y` − xo)aj`

S(Φ,W, aj)

]b(aj) [∑
b∈B

2n−1∏
i=1

S(Φ,W, ai)
b(a)

]
, (3)

where

• G is the probability generating function of the number of points in a cluster,

• F ( dx) is the probability distribution function of offspring points, with density k,

• {x1, . . . , xn} = ΦW ,

• Wy = −y +W ,

• a1 = (0, . . . , 0, 1), a2 = (0, . . . , 0, 1, 0), . . . , a2n−1 = (1, . . . , 1): vectors of length n,

• B is the set of all functions b : {a1, . . . , a2n−1} → {0, 1} such that
∑2n−1

i=1 b(ai)ai = (1, . . . , 1),

ai = (ai1, . . . , ain), |ai| = ai1 + · · ·+ ain,

• S(Φ,W, ai) = κ
∫
G|ai|(1− F (Wy))

∏n
`=1 k(xl − y) dy.

However, this conditional intensity is based on combinations and is just too complicated in practice.

van Lieshout and Baddeley (1995) interpreted the problem of identifying parent points as a statistical

estimation problem with a Bayesian inference based on MCMC methods; see also Lawson and

Denison (2002) for similar approaches.

Here we propose to approximate it as follows,

ρ(y|ΦW ) =
c(y)

µp(y)

∑
x∈ΦW

k(x− y) + κ exp

(
−µ
∫
W
p(z)k(y − z) dz

)
(4)

where c(y) ensures that E [ρ(y|ΦW )] = κ. The first term of Equation (4) is related to observed

offspring points in W and the second term to offspring points that have not been observed (due to

thinning or their proximity to the boundary of W ).
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3 Validation procedure

In this section, we aim at quantifying the difference between the distribution of parent points given

the offspring points provided in (4) and the observed distribution of the conditional parent process.

We thus use complementary statistics to test the interactions (i) between parent points, (ii) between

parent and offspring points and (iii) between parent points and the inner (or outer) boundary of

W . Let Φ(A) (resp. Φ(B)) be the number of points of Φ in a Borel set A (resp. of Ψ in B). We

denote ΨS the observed parent points in S and ν(B) the Lebesgue measure of B. Then,

(i) Interaction statistic between parent points

Let Ĥ(d) be the empirical cumulative distribution function between observed parent points ΨS

and H(d) the theoretical one:

Ĥ(d) =
1

Ψ(S)

6=∑
y1,y2∈ΨS

I{‖y1−y2‖≤d},

H(d) =
1∫

S ρ(y|ΦW ) dy

∫
S

∫
b(z,d)∩S

ρ(y|ΦW )ρ(z|ΦW ) dy dz.

(ii) Interaction statistic between parent and offspring points

Let Ê(d) be the empirical cumulative distribution function between observed parent points ΨS

and observed offspring points ΦW and E(d) the theoretical one:

Ê(d) =
1

Φ(W )

∑
x∈ΦW

∑
y∈ΨS

I{‖x−y‖≤d},

E(d) =
1

Φ(W )

∑
x∈ΦW

∫
b(z,d)∩S

ρ(z|ΦW ) dz.

(iii) Interaction statistic between parent points and the boundary bW of W

Let B̂(d) be the empirical cumulative distribution function between observed parent points ΨS

and the inner boundary (Binner) or outer boundary (Bouter) of W , and B(d) the theoretical one:

B̂(d) =
1

ν(bW )

∑
`∈bW

∑
y∈ΨS

I{‖`−y‖≤d}

=
1

ν(bW )

∑
y∈ΨS

ν(bW ∩ b(y, d)),

B(d) =
1

ν(bW )

∫
bW

∫
b(`,d)∩S

ρ(z|ΦW ) dz d`.

We illustrate the results for a thinned Matérn cluster process Φ. For this process, k is the
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uniform distribution on the disc of radius r and the conditional intensity is

λ(xo|ΦW ) =
µp(xo)

πR2

∫
b(xo,r)∩(W∪∂W )

ρ(y|ΦW ) dy + κµp(xo)ν (b(xo, r)\(W ∪ ∂W )) , (5)

with

ρ(y|ΦW ) =
1

µp(y)πR2

∑
x∈ΦW

Ib(x,r)(y) + κ exp

(
− µ

πr2

∫
b(y,r)∩W

p(z) dz

)
.

The non-stationary Matérn Cluster process Φ depends on four parameters: the thinning probability

p(x), the intensity of parents κ, the mean number of points per parent µ and the radius of dispersion

of the offspring around the parent points r. Here we fix κ = 50 and µ = 40 and we consider:

- two thinning probabilities: p1(x) = p1(x1, x2) = α1I{x1≤v} + α2I{x1>v}, setting α1 = 0.8, α2 = 0.2

and v = 0.5, and p2(x) = p2(x1, x2) = 1− x1.

- the unit square as study region S. The observation window is W = S\Wh, where Wh = [0.35, 0.65]2

when using p1(x) and Wh = [0.05, 0.95]× [0.36, 0.64] when using p2(x).

- r ∈ {0.05, 0.09, 0.13}.
For each pair of parameters (p(x), r) we simulate N = 250 realisations of the non-stationary Matérn

Cluster process and compute all the previous interaction statistics. Because all the theoretical

statistics only provide a trend, for each of the N simulations, we generate n = 100 simulations of

parent points from a Poisson process with intensity ρ(y|ΦW ) and compute the related empirical

cumulative distribution functions, that we denote by Ĥsim(d), Êsim(d) and B̂sim(d). Figure 2

illustrate the 95% envelopes of the empirical cumulative distribution functions computed from the

N observed parent points (red hatching) and from the N×n simulated parent points (blue hatching).

The grey envelopes correspond to the theoretical trend. In this figure p(x) = p1(x) and r = 0.09.

Results for all pairs of parameters are very similar. All overlapping envelopes indicate that the em-

pirical cumulative distribution functions between parent points and other parent points / offspring

points and the boundary of the observation window W are similar for the observed parent points

ΨS and for simulated parent points, which further correspond to the theoretical distribution. This

is true at any distances and shows that the main characteristics of the approximated distribution

of parent points in S given the offspring points in W provided in (4) include those of the original

distribution of parent points in S.

For each type of interaction, we computed the global coverage rates between the envelopes obtained

from the observed distribution of parent points and the enveloped obtained from the approximated

distribution of parent points. E.g., denoting by E the envelopes, the coverage rates for the interaction

statistic between parent points are

τ1(H) = ν
(
E(Ĥ) ∩ E(Ĥsim)

)
/ν
(
E(Ĥ)

)
and

τ2(H) = ν
(
E(Ĥ) ∩ E(Ĥsim)

)
/ν
(
E(Ĥsim)

)
.
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(a) Interactions between parent points.

(b) Interactions between parent and offspring points.

(c) Interactions between parent points and the inner
boundary of W .

(d) Interactions between parent points and the outer
boundary of W .

Figure 2: 95% envelopes of the cumulative distribution functions calculated for N realisations of the thinned
Matérn cluster process (empirical is in red hatching and theoretical is in grey) and for simulated parent points
(blue hatching). The curves represent the cover rates τ1 (solid) and τ2 (dashed).

Results for all combination of parameters (p(x), r) are reported in Table 1. The coverage rates

are also computed according to the distance and plotted in Figure 2 (τ1 in solid line and τ2 in

dashed line). These results show that for any configuration and interaction range the approximation

procedure of the conditional intensity of parent points in W ∪ ∂W given the offspring points in W

is conservative.

6



r 0.05 0.09 0.13

p1(x)

τ1(H) 88.04 93.48 98.73
τ2(H) 53.66 64.82 69.81

τ1(E) 97.30 97.40 99.91
τ2(E) 67.75 71.43 74.68

τ1(Binner) 100.00 99.86 100.00
τ2(Binner) 87.75 78.21 81.69

τ1(Bouter) 100.00 100.00 100.00
τ2(Bouter) 81.63 72.37 74.30

p2(x)

τ1(H) 90.07 96.83 99.37
τ2(H) 58.31 68.22 77.97

τ1(E) 97.72 96.24 90.65
τ2(E) 70.11 69.63 79.14

τ1(Binner) 100.00 100.00 100.00
τ2(Binner) 84.36 88.02 85.92

τ1(Bouter) 100.00 100.00 98.57
τ2(Bouter) 78.94 70.43 69.06

Table 1: Coverage rate between the envelopes of the interaction statistics computed from the observed
parent points and from the simulated parent points.

4 Conclusion

In order to quantify discrepancies between true conditional intensities and estimated ones (as in

Gabriel et al. (2021)), we have to both know the conditional intensity and to get fast computations

to browse the space of conditioning realisations. Because existing methods are computationally

intensive, not allowing many simulations, instead of simulating the conditional intensity we proposed

to consider an approximating process, whose deviation to the true process can be controlled. We

thus propose this approximation if one needs a fast procedure, even if conservative.
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