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Some percolations involving the Gaussian free fields

Nathalie Eisenbaum

Abstract : Consider an infinite, connected, locally finite graph with vertex set V .
Intuitively a simple point process on V with attractive properties, should percolate
more easily than a Bernoulli point process with the same marginales. Although it
seems wrong to imagine that it could be true in general, we confirm this intuition on
several examples involving Gaussian free fields and permanental free fields.
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1 Introduction

Consider a non-oriented, infinite, connected, locally finite, graph G, with vertex set
V and edge set E. Given a family of Bernoulli variables (Yx, x ∈ V), one may ask
whether the random subgraph of G with vertex set {x ∈ V : Yx = 1} and edge set
{[x, y] ∈ E : Yx = 1 and Yy = 1}, contains an infinite connected component. In short
does {x ∈ V : Yx = 1} percolate?
There is a general answer to this question in the case when the variables Yx, x ∈ V
are i.i.d. One sets: p = IP [Yx = 1]. There exists a critical probability psitec (G) in
[0, 1], such that for p > psitec (G), {x ∈ V : Yx = 1} percolates and for p < psitec (G),
{x ∈ V : Yx = 1} does not.
For G = Zd, one knows that psitec (Z2) > 1/2 (see [14]) and that for d ≥ 3: psitec (Zd) <
1/2 (see [7]).
When the Bernoulli variables are not independent, it is much more difficult to solve
this question. As an example of dependent Bernoulli variables, take: Yx = 1{ηx>h},
x ∈ Zd, where h is a fixed real level and (ηx, x ∈ Zd) is a centered Gaussian process.
One particular case has been intensively studied: the case when η is the Gaussian free
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field on Zd for d ≥ 3, which means that η is a centered Gaussian process with the
following covariance:

IE[ηxηy] = IEx[
∞∑
n=0

1{Un=y}]

where (Un)n≥0 is a simple random walk on Zd. By definition, this covariance is the
Green function of (Un)n≥0.
There exists a critical level h∗ such that

- for h < h∗, the set {x ∈ Zd : ηx > h} a.s. has an infinite connected component.
- for h > h∗, the set {x ∈ Zd : ηx > h} a.s. has only finite connected component.

It has been shown by Bricmont, Lebowitz and Maes [5], that h∗ ≥ 0 and that moreover
in dimension 3: h∗ <∞. Then Rodriguez and Sznitman [20] have shown that h∗ <∞
in any dimension and that h∗ > 0 in high dimension. Finally Drewitz, Prévost and
Rodriguez [8] have shown that in any dimension h∗ > 0 (i.e. IP (η0 > h∗) < 1/2).
In [8], the authors suggest that their result could be the consequence of the following
conjecture:

IP (η0 > h∗) < psitec (Zd), (1.1)

based on the intuition that positive correlation should help in forming clusters and
hence an infinite cluster. Indeed the Gaussian free field η is positively correlated in
the sense that its covariance is positive. But thanks to Pitt [19], this fact implies the
much stronger following property called “positive association”:

IE[F (η)H(η)] ≥ IE[F (η)]IE[H(η)] (1.2)

for any couple (F,H) of increasing functionals on functions from V into IR (increasing
with respect to each coordinate). For example, one has for every x1,..,xn in Zd:

IP [ηx1 > h, .., ηxn > h] ≥ IP [ηx1 > h]..IP [ηxn > h],

which legitimates (1.1).

We test this intuition on another positively associated process: (|ηx|, x ∈ Zd). We know
that (|ηx|, x ∈ Zd) is positively associated because (η2

x, x ∈ Zd) is infinitely divisible
(see [11]) and is hence positively associated in the sense of (1.2) thanks to [6].
Rodriguez [21] has proved that there exists hc < ∞ such that for h > hc a.s. the set
{x ∈ Zd : |ηx| > h} does not percolate. One obviously has: h∗ ≤ hc. Consequently:
0 < hc <∞. In view of the above intuition, one would expect that:
IP [|η0| > hc] < psitec (Zd). We have the following result:

IP [|η0| > hc

√
IE[η2

0]] ≤ psitec (Zd),

which gives the following lower bound.
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Theorem 1.1 For d ≥ 3, one has

ho ≤ hc <∞

where for No real standard Gaussian variable, ho satisfies: IP [|No| > ho] = psitec (Zd).

Since one has: IE[η2
0] ≥ 1, the above result is weaker than its intuition. But as shown

in section 2 (Theorem 2.1), this result is “universal” in the sense that it is available
for every centered Gaussian process associated to a symmetric transient homogenous
Markov chain on any infinite connected graph. In Theorem 2.1 the jumps of the Markov
chain are not limited to the closest neighbors.

One can extend Theorem 2.1 from absolute value of Gaussian free fields to permanental
free fields. This extension consists in relaxing the assumption of symmetry for the
associated Markov chain. We remind that the permanental free fields are also positively
associated [12]. The result is presented in section 2 (Theorem 2.2).

Finally, in section 3, we extend the result of Bricmont, Lebowitz and Maes [5] to tran-
sient simple symmetric random walks on any regular graph. This extension has been
already noticed by Abächerli and Sznitman (Proposition A2 in [1]). In [9], Drewitz,
Prévost and Rodriguez go further by showing that h∗ > 0 for a large class of graphs.
The interest of our proof is located in the use of a basic Dynkin isomorphism type
theorem.

2 Extension to all Gaussian and Permanental free

fields

For G non-oriented, locally finite, infinite connected graph determined by (V , E), let
U = (Un)n≥0 be a transient homogenous Markov chain on V , with transition matrix
P = (P (x, y))(x,y)∈V×V . The Markov chain U is allowed to have jumps from x to y with
[x, y] outside E. The paths of (Un)n≥0 are not necessarily subgraphs of G. Actually U
lives on the graph G(U) with edge set E(U) = {[x, y] ∈ V ×V : P (x, y) +P (y, x) > 0}.
We draw attention on a result of Benjamini and Hermon (Theorem 2 in [4]) according
to which if U is irreducible, transient and E(U) = E (i.e. G(U) = G) then the simple
random walk on G might not be transient. More precisely, if U has the additional
property to cover G with positive probability, then the simple random walk on G is
recurrent.
Since we are dealing only with homogenous Markov chain, we will omit the term
homogenous.
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Theorem 2.1 Let G be an infinite connected graph with a locally finite vertex set V
and edge set E. Let hG be the nonnegative number such that:

IP [|No| > hG] = psitec (G)

where No is a standard Gaussian real variable.
Then for every h < hG, for every centered Gaussian field (ηx)x∈V with covariance the
Green function of a transient symmetric Markov chain on V, the subgraph of G with
edge set {[x, y] ∈ E : |ηx| > h and |ηy| > h} has a.s. an infinite connected component.

In case G is such that psitec (G) = 1, Theorem 2.1 does not bring any information on
the percolation properties of the absolute value of the Gaussian free fields.

One can extend Theorem 2.1 from absolute value of Gaussian free fields to permanental
free fields. This extension consists in relaxing the assumption of symmetry for the
associated Markov chain.
We first recall that a permanental process (ϕ(x), x ∈ V) with index β > 0 and a kernel
k = (k(x, y), (x, y) ∈ V × V) is a nonnegative process with finite dimensional Laplace
transforms satisfying, for every x1, x2,..,xn in V :

E[exp{−1

2

n∑
i=1

αiϕ(xi)}] = det(I + αK)−β

where α is the diagonal matrix with diagonal entries (αi)1≤i≤n, I is the n× n-identity
matrix and K is the matrix (k(xi, xj))1≤i,j≤n.

Note that the kernel of a permanental process is not unique.

In case β = 1/2 and k is symmetric positive semi-definite, (ϕx, x ∈ V) equals in law
(η2
x, x ∈ V) where (ηx, x ∈ V) is a centered Gaussian process with covariance k.

Consider a Markov chain with state space V and finite Green function (g(x, y), (x, y) ∈
V × V). For every β > 0, there exists a permanental process with index β and kernel
(g(x, y), (x, y) ∈ V × V) (see [12]). The permanental processes obtained that way, can
be called, by analogy with the Gaussian free fields, permanental free fields. Note that
the permanental free fields are infinitely divisible and hence positively associated (by
using again [6]).

Theorem 2.2 Let G be an infinite connected graph with a locally finite vertex set V
and edge set E. Let hG be the nonnegative number such that:

IP [|No| > hG] = psitec (G)

where No is a standard Gaussian real variable.
Then for every h < h2

G, for every permanental field (ϕx)x∈V with index 1/2 admitting
for kernel the Green function of a transient Markov chain on V, the sub-graph {[x, y] ∈
E : ϕx > h and ϕy > h} has a.s. an infinite connected component.
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Proof of Theorem 2.1 Let (ηx, x ∈ V) be a centered Gaussian process with cova-
riance the Green function of a transient symmetric Markov chain on G, U = (Un)n≥0.
The law of U is characterized by its transition matrix P = (P (x, y))(x,y)∈V2 . By as-
sumption: P (x, y) = P (y, x), ∀x, y ∈ V . Denote by g = (g(x, y), (x, y) ∈ V2) its Green
function i.e.

g(x, y) =
∞∑
n=0

IPx[Un = y].

Note that for every x in V : g(x, x) ≥ 1.
As usual, one can associate to U a time continuous Markov chain X = (Xt)t≥0 by
spending at each site of V an exponential time with parameter 1, independently of the
jumps that are then performed according to P to leave the site. Then X is a transient
symmetric Markov process with the same Green function as U and admitting a local
time process (Lxt , x ∈ V , t ≥ 0).
Fix a finite subset J = {x1, x2, .., xn} of V and set: G = (g(xi, xj))1≤i,j≤n. We now
compute an alternative expression of G. To do so we reproduce an argument used in a
particular case in [11] (proof of Theorem 2.1).
Set σ = inf{t ≥ 0 : Xt ∈ {x1, x2, .., xn} \ {X0}}.
The time σ may be infinite in that case the value of Xσ is a cemetery point. Set:
bij = IExi(L

xj
σ ) and qij = IPxi [Xσ = xj]. Note that: bij = 0 for i 6= j, qii = 0 and∑n

j=1 qij = 1− IPxi [σ =∞]. Thanks to the Markov property we have:

g(xi, xj) = IExi [L
xj
∞] = IExi [L

xj
σ ] + IExi [σ <∞; IEXσ [Lxj∞]]

= bij +
n∑
k=1

qik g(xk, xi).

Let B and Q be the matrices defined by: B = (bij)1≤i,j≤n and Q = (qij)1≤i,j≤n. The
above computation shows that: G = B +QG, equivalently: B = (I −Q)G.
Since X spends an exponential time with parameter 1 at each site before leaving it,
we have: bii ≥ 1, for every i = 1, .., n. Consequently B is invertible and hence so are
(I −Q) and G. One obtains:

G = (I −Q)−1B. (2.1)

For λ1, ..λn in IR+, denote by λ the diagonal matrix with entries λ1, .., λn. Note that

det(I + λG) = det(I + λ(I −Q)−1B) = det(I + λB1/2(I −Q)−1B1/2),

where B1/2 is the diagonal matrix with entries
√
b11, ..,

√
bnn.

Consequently: (|ηxi |)1≤i≤n
(law)
= (|φxi |)1≤i≤n, where (φxi)1≤i≤n is a centered Gaussian vec-

tor with covariance B1/2(I −Q)−1B1/2.

The centered Gaussian vector (
φxi√
bii

)1≤i≤n has (I −Q)−1 for covariance.

Since: (I − Q) ≤ I, one deduces, thanks to Theorem 2.3 in the paper of Karlin and
Rinott [16], that:

(|Nxi |)1≤i≤n ≺ (
|φxi |√
bii

)1≤i≤n,

5



where (Nx)x∈V is a family of i.i.d. standard Gaussian variables and the symbol “≺”
denotes a relation of stochastic domination.

Remember that for every i = 1, .., n: bii ≥ 1, to conclude that

(|Nxi |)1≤i≤n ≺ (|φxi |)1≤i≤n,

which can also be written:
(|Nx|)x∈J ≺ (|ηx|)x∈J .

Since the above stochastic domination is true for every finite subset J , by a simple
limiting argument, one obtains:

(|Nx|)x∈V ≺ (|ηx|)x∈V . (2.2)

Consequently by Strassen Theorem, there exists a coupling (|η̃|, |Ñ |) of |η| and |N |
such that for every x in V : |η̃x| ≥ |Ñx|. One hence has for every h ≥ 0
{x ∈ V : |Ñx| > h} ⊂ {x ∈ V : |η̃x| > h}.
Let a be an element of V . If IP [|Ña| > h] > psitec (G), then a.s. {x ∈ V : |Ñx| > h}
has an infinite connected component and hence {x ∈ V : |η̃x| > h} has also an infinite
connected component. �

Proof of Theorem 2.2 Let (ϕx, x ∈ V) be a permanental process with index 1/2
and kernel (g(x, y), (x, y) ∈ V2), the Green function of a transient random walk on V .
This random walk is not assumed to be symmetric.
Fix a finite subset J = {x1, x2, .., xn} of V and set: G = (g(xi, xj))1≤i,j≤n. The argument
developed in the proof of Theorem 2.1 to establish (2.1) does not require symmetry.
Keeping the same notation, one has: G = (I −Q)−1B, which leads to:
det(I + λG) = det(I + λB1/2(I −Q)−1B1/2).
One obtains that way that (ϕxi)1≤i≤n admits for kernel the matrix B1/2(I −Q)−1B1/2.
Consequently the permanental vector (

ϕxi
bii

)1≤i≤n admits for kernel (I −Q)−1.
We use now an extension of the result of Karlin and Rinott (Theorem 2.1 in [16]) to
permanental vectors established by Marcus and Rosen [17]. They call it the permanen-
tal inequality. For simplicity, we enunciate it in the particular case we are interested
in.

Permanental inequality Let φ be a permanental vector with index 1/2 admitting
for kernel a non-singular matrix K = (Kij)1≤i,j≤n. Assume that K−1 = I − Q with
Qii = 0 for every i = 1, .., n. Then :

(N2
i )1≤i≤n ≺ (φi)1≤i≤n,

where the variables Ni, i = 1, .., n, are i.i.d. centered real standard Gaussian variables.
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One obtains:
(N2

xi
)1≤i≤n ≺ (

ϕxi
bii

)1≤i≤n,

where (Nx)x∈V is a family of i.i.d. standard Gaussian variables.
Since for every i = 1, .., n: bii ≥ 1, one has

(N2
xi

)1≤i≤n ≺ (ϕxi)1≤i≤n,

which leads to
(N2

x)x∈V ≺ (ϕx)x∈V ,

and hence to the conclusion. �

Remark 2.3 Actually Theorem 2.2 holds for any index β > 0. More precisely, define
hG,β as the number such that: IP [Γβ > hG,β] = psitec (G), where Γβ is a gamma random

variable with shape parameter β and scale parameter 1 (i.e. with density xβ−1e−x

Γ(β)
1x≥0).

Then for every h < hG,β, and every permanental process (ϕx, x ∈ V) with index β
admitting for kernel the Green function of a transient random walk on G: {x ∈ V :
ϕx > h} has a.s. an infinite connected component. This is obtained similarly thanks
to the general version of Marcus and Rosen’s permanental inequality [17].

3 Critical level sets for the Gaussian free fields

The graphs that we are considering are always non-oriented, locally bounded, infinite
and connected. We assume that they are subsets of IRd for some d ≥ 1. The next
proposition extends the result of Bricmont et al [5] from the simple symmetric random
walk on Zd to any transient simple random walk on an infinite graph. By simple
random symmetric walk on a graph G = (V , E), one means a homogenous Markov
chain such that its transition matrix P = (P (x, y))(x,y)∈V2 satisfies: P (x, y) = P (y, x),
P (x, y) > 0 if [x, y] ∈ E and P (x, y′) = P (x, y′′) for any y′, y′′ such that [x, y′], [x, y′′]
are in E. The existence of such a process on G implies that G is regular in the sense
that the vertices all have the same degree. One can hence assume without changing the
matrix P that the edges all have the same length. Such a graph is said to be transient
when the simple symmetric random walk on G is transient.

Given a graph G = (V , E) and a real valued process (ηx, x ∈ V), to mean that the
subgraph of G with vertex set {x ∈ V : ηx > h} and edge set {[x, y] ∈ E : ηx >
h and ηy > h} contains an infinite connected subset of G, we just write: {η > h}
percolates.
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Proposition 3.1 Let G be a transient, regular, locally finite, infinite connected graph.
Let (ηx)x∈V be a centered Gaussian field with covariance the Green function of the
simple symmetric random walk on G. Set

h∗(G) = sup{h ∈ IR : IP [{η > h} percolates ] > 0}

then one has:
h∗(G) ≥ 0.

Proof Denote by (g(x, y), (x, y) ∈ V2) the Green function of the simple random walk
on G. Let (ηx, x ∈ V) be a centered Gaussian field with covariance (g(x, y), (x, y) ∈ V2).
We extend (ηx, x ∈ V) to the whole graph G. To do so we make use of B, Brownian
motion on the graph G. We refer to Varopoulos [23], Chacon and Baxter [3], Barlow,
Pitman and Yor [2] or Enriquez and Kifer [13], for various ways to construct B. This
process can be roughly described as follows.
Starting from a point in the interior of an edge of G, B moves along this edge as a
real Brownian motion until it reaches one of its end points, call it xo. At this time
B chooses uniformly an edge coming out of xo, independently of the past, and moves
like a real valued Brownian motion on the chosen edge until it reaches one of its end
points.
Since the simple symmetric random walk on G is transient, B is transient. Denote by
g̃ = (g̃(x, y), (x, y) ∈ G) the Green function of B. The restriction of g̃ to V×V coincides
with g. Then define the extension (η̃x, x ∈ G) of (ηx, x ∈ V) to G, by IE[η̃xη̃y] = g̃(x, y),
for x, y in G. One chooses η̃ independent of B.
One defines a distance d on G by using the Lebesgue distance, inside any given edge
and by defining the distance between two vertices of V as the minimal sum of length
of edges necessary to connect one to the other.
The process B admits a local time process (Lxt , x ∈ G, t ≥ 0) which is continuous with
respect to d×Leb(IR+). Indeed, the local time process is obviously continuous at each
point of G \ V . What about continuity at a point of V ? Since it is a local question,
it is equivalent to study the continuity at 0 of the local time process of a Brownian
motion on a graph with one single vertex 0 and n infinite edges coming out of 0, with
equal probability to be chosen starting from 0. According to Theorem 2.1 (2.18) in
[15], the local time process at 0 of this process is continuous. Consequently the local
time process of B is continuous on G. By Theorem 1 in [18], we hence know that
(η̃x, x ∈ G) is continuous with respect to d.

Fix an element a of V . Condition on (B0 = a), the laws of (Lx∞, x ∈ G) and (η̃x, x ∈ G)
can be connected thanks to a so-called isomorphism theorem established in [10], as
follows:

(Lx∞ +
1

2
(η̃x + r)2, x ∈ G)

(law)
= (

1

2
(η̃x + r)2, x ∈ G) under IE[

η̃a + r

r
; .] (3.1)

for every non-zero real number r.
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The set {x ∈ G : Lx∞ > 0} is a.s. an infinite connected subset of G. It is the support
of B. Consequently, thanks to (3.1), one has for every r 6= 0:

1 = IE[
η̃a + r

r
; {x ∈ G : (η̃x + r)2 > 0} has an infinite connected component]

which implies:

IP [{x ∈ G : (η̃x + r)2 > 0} has an infinite connected component] > 0. (3.2)

Let C be an infinite connected subset of G such that : |η̃x + r| > 0, ∀x ∈ C. Then,
because of the continuity of η̃, either : η̃x < −r, ∀x ∈ C; either: η̃x > −r, ∀x ∈ C.
Using (3.2) one obtains:

IP [{x ∈ G : η̃x > −r} has an infinite connected component]

+ IP [{x ∈ G : η̃x < −r} has an infinite connected component] > 0.

and equivalently:

IP [{x ∈ G : η̃x > −r} has an infinite connected component]

+ IP [{x ∈ G : η̃x > r} has an infinite connected component] > 0,

which leads to: 2IP [{x ∈ G : η̃x > −|r|} has an infinite connected component] > 0,
for every r 6= 0. We finally obtain:
IP [{x ∈ V : ηx > −|r|} has an infinite connected component] > 0 for every r 6= 0. �

To show Proposition 3.1 one could have used Sznitman’s interlacement isomorphism
Theorem [22] instead of (3.1). The interest of (3.1) lies on the fact that it involves
more elementary notions.
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