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The multilayered composite structure has been utilized frequently in the literature of periodic homogenization as a test case for developing new methodologies for linear and nonlinear composite media. The manuscript demonstrates that these composites can also be used for validating mean-field micromechanics techniques. It is shown the the Mori-Tanaka method combined with the Transformation Field Analysis provides the same solution with the periodic homogenization for nonlinear multilayered composites.

Introduction

Composite materials are complicated media whose microstructure contains two or more different material phases. Their study is performed using the so-called multiscale modeling approaches, which rely on the concept of scale separation. According to these methods, the behavior of the overall Email address: georges.chatzigeorgiou@ensam.eu (George Chatzigeorgiou)
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structure is identified through splitting it into several scales. Specially designed average techniques allow to study at first the finer scales and identify "homogenized properties" that pass to the next (higher) scale.

The mechanical behavior of highly heterogeneous, nonlinear composite materials has been the subject of many researchers in the last 30 years.

Several multiscale methods have been developed for identifying the overall response of viscoelastic, elastoplastic, viscoplastic, or damaged composite materials [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics[END_REF][START_REF] Ponte-Castañeda | The effective mechanical properties of nonlinear isotropic composites[END_REF][START_REF] Terada | A class of general algorithms for multi-scale analyses of heterogeneous media[END_REF][START_REF] Desrumaux | Generalised Mori-Tanaka Scheme to Model Anisotropic Damage Using Numerical Eshelby Tensor[END_REF][START_REF] Meraghni | Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures[END_REF][START_REF] Yu | Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem[END_REF][START_REF] Aboudi | Higher-order theory for periodic multiphase materials with inelastic phases[END_REF][START_REF] Aboudi | Micromechanics-based thermoviscoelastic constitutive equations for rubber-like matrix composites at finite strains[END_REF][START_REF] Chaboche | On the capabilities of mean field approaches for the description of plasticity in metal matrix composites[END_REF][START_REF] Love | Determination of effective thermomechanical parameters of a mixture of two elastothermoviscoplastic constituents[END_REF][START_REF] Asada | Fully implicit formulation of elastoplastic homogenization problem for two-scale analysis[END_REF][START_REF] Jendli | Multi-scales modelling of dynamic behaviour for discontinuous fibre SMC composites[END_REF][START_REF] Mercier | Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes[END_REF][START_REF] Khatam | Plasticity-triggered architectural effects in periodic multilayers with wavy microstructures[END_REF][START_REF] Cavalcante | Transient thermomechanical analysis of a layered cylinder by the finitevolume theory[END_REF][START_REF] Kruch | Multi -scale analysis in elasto -viscoplasticity coupled with damage[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF][START_REF] Tu | Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite-Volume Homogenization[END_REF][START_REF] Cavalcante | Generalized FVDAM theory for elastic-plastic periodic materials[END_REF][START_REF] Tikarrouchine | Three-dimensional FE 2 method for the simulation of non-linear, rate-dependent response of composite structures[END_REF][START_REF] Praud | Fully integrated multiscale modelling of damage and time-dependency in thermoplastic-based woven composites[END_REF]. Review papers discussing the existing techniques have been written by [START_REF] Pindera | Micromechanics of spatially uniform heterogeneous media: A critical review and emerging approaches[END_REF]; [START_REF] Charalambakis | Homogenization Techniques and Micromechanics. A Survey and Perspectives[END_REF]; [START_REF] Mercier | Comparison of different homogenization approaches for elastic-viscoplastic materials[END_REF]; [START_REF] Charalambakis | Mathematical homogenization of inelastic dissipative materials: A survey and recent progress[END_REF].

The periodic homogenization approach, applicable for composite media with periodic microstructure, has been theoretically established by [START_REF] Bensoussan | Asymptotic methods for periodic structures[END_REF]; [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF]; [START_REF] Murat | H-convergence, in Topics in the mathematical modelling of composite materials[END_REF], and nowadays it is considered classical and among the most accurate homogenization theories. This method has been also adopted for inelastic, periodic heterogeneous media [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics[END_REF][START_REF] Fish | Computational plasticity for composite structures based on mathematical homogenization: Theory and practice[END_REF][START_REF] Herzog | From a shape memory alloys model implementation to a composite behavior[END_REF].

Recent developments of the theory permit to account for gradient phenomena, complex nonlinear responses and multiphysics mechanisms. The most common example for validating the classical periodic homogenization and its extensions is the study of mutilayered periodic composites [START_REF] Kalamkarov | Analysis, design and optimization of composite structures[END_REF][START_REF] Fish | Higher-order homogenization of initial/boundaryvalue problem[END_REF][START_REF] Yu | Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem[END_REF][START_REF] Otero | Dynamical behavior of a layered piezocomposite using the asymptotic homogenization method[END_REF][START_REF] Chatzigeorgiou | Computational micro to macro transitions for shape memory alloy composites using periodic homogenization[END_REF][START_REF] Chatzigeorgiou | Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials[END_REF]. The advantage of these heterogeneous media is that all the equations at the unit cell level are reduced to one dimensional (in terms of spatial coordinates), transforming the equilibrium from partial differential to ordinary differential equations problem. Such simplification permits to obtain analytical or semi-analytical solution for the macroscopic properties and fields. The periodically multilayered structure, to the best of the author's knowledge, is not examined in the mean-field micromechanics community.

The scope of the current manuscript is to demonstrate that mean-field approaches can also predict the response of the multilayered composites. It is shown that the Mori-Tanaka method [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Benveniste | A new approach to the application of Mori-Tanaka's theory in composite materials[END_REF][START_REF] Buryachenko | Micromechanics of Heterogeneous Materials[END_REF][START_REF] Dvorak | Micromechanics of Composite Materials[END_REF], combined with the Transformation Field Analysis (TFA) approach [START_REF] Dvorak | On transformation strains and uniform fields in multiphase elastic media[END_REF], provides the same solution with the periodic homogenization independently of the anisotropic level of the layers.

The structure of the manuscript is as follows: Several mathematical formulas, helpful for the study of the unit cell problem (or representative volume element, in case of the mean-field method), are given in section 2. Section 3 presents the unit cell solution of the multilayered medium, according to the periodic homogenization theory. The Mori-Tanaka/TFA approach for the same composite is presented in section 4. A numerical example, illustrating the efficiency of the mean-field technique, is provided in section 5 and the main text finishes with the conclusions of the work. The Hill polarization tensor for a disk-like inclusion in an infinite anisotropic medium is given in an appendix at the end of the article.

Mathematical preliminaries

In the computations of the multilayered composite's unit cell, it is useful to write the normal and tangential parts (with respect to the axis x 1 ) of the second order tensors separately. For a strain tensor ε, and a stress tensor σ,

written in Voigt notation 1 as ε " » - - - - - - - - - - - - - ε 11 ε 22 ε 33 2ε 12 2ε 13 2ε 23 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , σ " » - - - - - - - - - - - - - σ 11 σ 22 σ 33 σ 12 σ 13 σ 23 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , (1) 
respectively, the normal and tangential parts are expressed through the 3ˆ1 vectors

ε n " » - - - - ε 11 2ε 12 2ε 13 fi ffi ffi ffi fl , ε t " » - - - - ε 22 ε 33 2ε 23 fi ffi ffi ffi fl , σ n " » - - - - σ 11 σ 12 σ 13 fi ffi ffi ffi fl , σ t " » - - - - σ 22 σ 33 σ 23 fi ffi ffi ffi fl . ( 2 
)
1 The Voigt notation presented here considers as fourth element the shear term 12 and as sixth element the shear term 23. This small deviation from the classical Voigt representation does not alter the results.

A fourth order tensor D that presents minor symmetries (D ijkl " D jikl " 

D ijlk ) is written in the Voigt form D " » - - - - - - - - - - - - - D 
through the matrix-type expression

D " I n • D nn • I T n `In • D nt • I T t `It • D tn • I T n `It • D tt • I T t , (5) 
in which the superscipt T denotes the usual transpose operation, while the 6ˆ3 matrices I n and I t are given by

I n " » - - - - - - - - - - - - - 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , I t " » - - - - - - - - - - - - - 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl . ( 6 
)
Let's assume that the tensor D connects two symmetric second order tensors a and b (strain or stress type). The relation in indicial (Einstein's) notation

a ij " D ijkl b kl ,
can be represented, using the normal and tangential parts, in the matrix forms

a n " D nn • b n `Dnt • b t , a t " D tn • b n `Dtt • b t .
When D possesses major symmetries (D ijkl " D klij ), then

D nn " D T nn , D tn " D T nt , D tt " D T tt .
Important properties of the matrices I n and I t are the following:

I n • I • I T n `It • I • I T t " I,
where

I " » - - - - - - - - - - - - -
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 1 fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , I " » - - - - 1 0 0 0 1 0 0 0 1 fi ffi ffi ffi fl , I T n • ε " ε n , I T t • ε " ε t , I T n • I t " I T t • I n " 0, I T n • I n " I T t • I t " I.
The general stress-strain relation of an inelastic material is expressed in indicial (Einstein's) notation as

σ ij " L ijkl ε kl `σp ij , (7) 
where L ijkl is the elasticity tensor (fourth order with minor and major symmetries) and σ p ij denotes the inelastic part of the stress. When the material experiences damage mechanism, the tensor L ijkl depends on the damage state. The discussed framework in this work can accomodate damage conditions. In such cases, L ijkl is referred to as secant modulus. Equation ( 7) can be expressed in terms on normal and tangential parts (with respect to the axis x 1 ) in the matrix forms

σ n " L nn • ε n `Lnt • ε t `σp n , σ t " L T nt • ε n `Ltt • ε t `σp t . (8) 

Periodic homogenization for multilayered composite structures

As already mentioned in the introduction, the periodic homogenization framework is well established in the literature. When dealing with nonlinear composites, incremental/iterational schemes are required. It is usually more convenient for FE computations to utilize a tangential type of approach [START_REF] Terada | A class of general algorithms for multi-scale analyses of heterogeneous media[END_REF][START_REF] Asada | Fully implicit formulation of elastoplastic homogenization problem for two-scale analysis[END_REF][START_REF] Chatzigeorgiou | Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials[END_REF][START_REF] Chatzigeorgiou | Thermomechanical Behavior of Dissipative Composite Materials[END_REF], in which the elasticity tensor is substituted by the statedependent tangent modulus. Here, for comparison reasons with the Mori-Tanaka/Transformation Field Analysis method, the stress is represented by the general relation ( 7). Let's consider a multilayered composite structure, whose unit cell is shown in Figure 1. This unit cell consists of N distinct, possibly anisotropic, layers, each one having its own volume fraction (c k for the k th layer).

The stress in an arbitrary r th layer of the unit cell is given by

σ prq ij " L prq ijkl ε prq kl `σpprq ij , r ě 1, @x P ˜r´1 ÿ q"0 c q , r ÿ q"0 c q ¸. (9) 
Fo convenience in the above and the following expressions, c 0 is considered equal to 0. According to the periodic homogenization theory of first order, the microscopic displacement and strain at the r th layer can be written as

u prq i " ε ij x j `u r prq i , ε prq ij " ε prq ij `1 2 Bu r prq i Bx j `1 2 Bu r prq j Bx i , r ě 1, @x P ˜r´1 ÿ q"0 c q , r ÿ q"0 c q ¸. ( 10 
)
ε corresponds to the macroscopic total strain. In the sequel, a bar above a symbol will denote a macroscopic quantity. The displacement field u r is periodic.

The equilibrium equations per layer, as well as the traction and displacement continuity conditions between the layers read

Bσ prq ij Bx j " 0, r ě 1, @x P ˜r´1 ÿ q"0 c q , r ÿ q"0 c q ¸, σ pr´1q i1 " σ prq i1 at x " r´1 ÿ q"1 c q , r ě 2, u r pr´1q i " u r prq i at x " r´1 ÿ q"1 c q , r ě 2. ( 11 
)
In the multilayered unit cell, derivatives with respect to x 2 and x 3 vanish.

For simplification in the computations, the vector and matrix representations of section 2 are introduced. Since only the derivatives with respect to x 1 remain, one obtains

ε prq n " ε n `du r prq dx 1 , u r prq " » - - - - u r prq 1 u r prq 2 u r prq 3 fi ffi ffi ffi fl , ε prq t " ε t , (12) 
for the strains and

σ prq n " L prq nn • « ε n `du r prq dx 1 ff `Lprq nt • ε t `σpprq n , σ prq t " " L prq nt ı T • « ε n `du r prq dx 1 ff `Lprq tt • ε t `σpprq t . (13) 
for the stresses. Moreover, the equilibrium per layer is written

dσ prq n dx 1 " 0 ñ σ prq n " σ n . ( 14 
)
The last relation indicates that the normal stress part, σ prq n , of any layer is equal to its macroscopic counterpart σ n . From the equilibrium, the derivative of u r is obtained as

du r prq dx 1 " " L prq nn ‰ ´1 • σ n ´ε p prq n , (15) 
where

ε p prq n " ε n `"L prq nn ‰ ´1 • " σ pprq n `Lprq nt • ε t ı . ( 16 
)
Integrating with respect to x 1 yields u r prq px 1 q "

" " L prq nn ‰ ´1 • σ n ´ε p prq n ı x 1 `ωprq , (17) 
where ω prq are constant vectors. The periodicity conditions on the displacement fields give u r p1q p0q " u r pN q p1q ñ ω p1q ´ωpNq "

" L pN q nn ‰ ´1 • σ n ´ε p pN q n . ( 18 
)
The displacement continuity at the interfaces yields the relations

" " L p1q nn ‰ ´1 • σ n ´ε p p1q n ı c 1 `ωp1q " " " L p2q nn ‰ ´1 • σ n ´ε p p2q n ı c 1 `ωp2q , " " L p2q nn ‰ ´1 • σ n ´ε p p2q n ı 2 ÿ q"1 c q `ωp2q " " " L p3q nn ‰ ´1 • σ n ´ε p p3q n ı 2 ÿ q"1 c q `ωp3q , . . . " " L pkq nn ‰ ´1 • σ n ´ε p pkq n ı k ÿ q"1 c q `ωpkq " " " L pk`1q nn ‰ ´1 • σ n ´ε p pk`1q n ı k ÿ q"1 c q `ωpk`1q , . . . " " L pN ´1q nn ‰ ´1 • σ n ´ε p pN ´1q n ı N ´1 ÿ q"1 c q `ωpN´1q " " " L pN q nn ‰ ´1 • σ n ´ε p pN q n ı N ´1 ÿ q"1 c q `ωpNq .
Adding all the above expressions and taking into account the boundary condition (18) leads to the expression

N ÿ r"1 c r " " L prq nn ‰ ´1 • σ n ´ε p prq n ı " 0, or σ n " M nn • ε n `Mnn • M nt • ε t `Mnn • m p n , (19) 
with

M nn " « N ÿ r"1 c r " L prq nn ‰ ´1ff ´1 , M nt " N ÿ r"1 c r " L prq nn ‰ ´1 L prq nt , m p n " N ÿ r"1 c r " L prq nn ‰ ´1 σ pprq n . ( 20 
)
Returning to equations ( 12) one has

ε prq n " " L prq nn ‰ ´1 • M nn • ε n `"L prq nn ‰ ´1 • " M nn • M nt ´Lprq nt ı • ε t `"L prq nn ‰ ´1 • " M nn • m p n ´σpprq n ‰ , ε prq t " ε t . (21) 
Algebraic manipulations give

ε prq n " " L prq nn ‰ ´1 • M nn • ε n `"L prq nn ‰ ´1 • M nn • " M nt ´M ´1 nn • L prq nt ı • ε t `"L prq nn ‰ ´1 • M nn • " m p n ´M ´1 nn • σ pprq n ‰ ,
or, in summary,

ε prq n " A prq nn • ε n `Aprq nt • ε t `N ÿ q"1 c q A ppqrq nn • " σ ppqq n ´σpprq n ‰ , ε prq t " ε t , A prq nn " " L prq nn ‰ ´1 • « N ÿ q"1 c q " L pqq nn ‰ ´1ff ´1 , A prq nt " A prq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 " L pqq nt ´Lprq nt ı , A ppqrq nn " A prq nn • " L pqq nn ‰ ´1 . (22) 
Equations ( 22) state that the strain fields (and consequently the stress fields)

take different values at the various layers, but they remain uniform inside a single layer. A prq correspond to the well-known strain concentration tensors.

Mori-Tanaka/TFA method for multilayered composites

Homogenization techniques based on the Eshelby problems (for instance Mori-Tanaka or self consistent), have been proven to be very efficient for elastic composites [START_REF] Mura | Micromechanics of Defects in Solids[END_REF][START_REF] Benveniste | A new approach to the application of Mori-Tanaka's theory in composite materials[END_REF][START_REF] Qu | Fundamentals of Micromechanics of Solids[END_REF].

However, when nonlinear components are present, these methods usually lead to stiff response and certain modifications are required [START_REF] Doghri | Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms[END_REF][START_REF] Chaboche | On the capabilities of mean field approaches for the description of plasticity in metal matrix composites[END_REF][START_REF] Lahellec | On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles[END_REF][START_REF] Brassart | Homogenization of elasto-(visco) plastic composites based on an incremental variational principle[END_REF][START_REF] Barral | Homogenization modified Mori-Tanaka and TFA framework for elastoplasticviscoelastic-viscoplastic composites: Theory and numerical validation[END_REF][START_REF] Chen | Extended Mean-Field Homogenization of Viscoelastic-Viscoplastic Polymer Composites Undergoing Hybrid Progressive Degradation Induced by Interface Debonding and Matrix Ductile Damage[END_REF]. This is due to the underlying hypothesis that each material phase is described by a single set of internal variables (for instance inelastic strains or damage). Such assumption is not valid in the majority of the composite materials where a matrix phase is present. In the multilayered composites though, the assumption is valid. According to the unit cell solution provided by periodic homogenization illustrates (see previous section), the mechanical fields are uniform inside a single layer, which also means that the response of a layer is described by a single set of internal variables.

The Mori-Tanaka method is very popular among the existing micromechanics methods, but has certain limitations. Its most important problem is related to the loss of symmetry of the elasticity tensor when mutiple types of heterogeneities (i.e. different types of ellipsoids) appear in the composite [START_REF] Benveniste | On diagonal and elastic symmetry of the approximate effective stiffness tensor oh heterogeneous media[END_REF]. More advanced micromechanics techniques, like the Ponte-Castañeda and Willis (1995) or the Effective Field Method [START_REF] Buryachenko | Micromechanics of Heterogeneous Materials[END_REF], may provide better overall response estimate. In the composite examined here, where only one type of aligned inclusions is considered, both the Ponte-Castañeda and Willis approach and the Effective Field Method lead to the same macroscopic response as the Mori-Tanaka.

To apply the Mori-Tanaka approach, the presence of a reference material in the representative volume element is required. In particulate or fiber reinforced media, the reference material is the matrix phase. In multilayered composites the notion of reference material is arbitrary, thus any one of the unit cell layers can play this role. In this work the layer 1 is chosen to represent the "matrix" phase.

In the mean-field, Eshelby based methodologies, two fourth order tensors are introduced: the Hill polarization tensor and the dilute strain concentration tensor.

The Hill polarization tensor, P , for a disk-like inclusion (x 1 dimension much much smaller than the other two) embedded in a medium with elasticity tensor L p1q is given by

P " I 1 • " L p1q nn ‰ ´1 • I T 1 . ( 23 
)
The proof of this expression is given in the appendix A.

The dilute strain concentration tensor, T prq , is an important operator that connects the strains between the r th phase and the reference material.

The inverse of T prq is given in indicial notation by

" T prq ijkl ı ´1 " I ijkl `Pijmn " L prq mnkl ´Lp1q mnkl ı . (24) 
In matrix notation this gives

" T prq ‰ ´1 " I `P • " L prq ´Lp1q ‰ " I n • I • I T n `It • I • I T t `In • " L p1q nn ‰ ´1 • " L prq nn ´Lp1q nn ‰ • I T n `In • " L p1q nn ‰ ´1 • " L prq nt ´Lp1q nt ı • I T t " I n • " L p1q nn ‰ ´1 • L prq nn • I T n `It • I • I T t `In • " L p1q nn ‰ ´1 • " L prq nt ´Lp1q nt ı • I T t . (25) 
Let's assume that the dilute strain concentration tensor has similar form, i.e.

T prq "

I n • K 1 • I T n `In • K 2 • I T t `It • K 3 • I T t . ( 26 
)
where K 1 , K 2 and K 3 are 3ˆ3 matrices. Due to the uniqueness of T prq , if the hypothesis is correct, then the computations will provide a unique solution for the tensor. From the relation I " " T prq ‰ ´1 • T prq one has

I n • I • I T n `It • I • I T t " I n • " L p1q nn ‰ ´1 • L prq nn • K 1 • I T n `It • K 3 • I T t `In • " " L p1q nn ‰ ´1 • L prq nn • K 2 `"L p1q nn ‰ ´1 • " L prq nt ´Lp1q nt ı • K 3 ı • I T t , (27) 
which leads to the three equations

I " " L p1q nn ‰ ´1 • L prq nn • K 1 , I " K 3 , 0 " " L p1q nn ‰ ´1 • L prq nn • K 2 `"L p1q nn ‰ ´1 • " L prq nt ´Lp1q nt ı • K 3 . ( 28 
)
These equations provide the unique solution

K 1 " " L prq nn ‰ ´1 • L p1q nn , K 3 " I, K 2 " ´"L prq nn ‰ ´1 • " L prq nt ´Lp1q nt ı . (29) 
Thus, the dilute strain concentration tensor is expressed as

T prq " I n • " L prq nn ‰ ´1 • L p1q nn • I T n `It • I • I T t ´In • " L prq nn ‰ ´1 • " L prq nt ´Lp1q nt ı • I T t . (30) 
According to the Mori-Tanaka approach, the strain on the r th phase and the strain in the infinite medium, when both are subjected to uniform inelastic stresses, are connected through the formulas [START_REF] Dvorak | On transformation strains and uniform fields in multiphase elastic media[END_REF])

ε prq ij " T prq ijkl ε p1q kl `T prq ijmn P mnkl " σ pp1q kl ´σpprq kl ı . ( 31 
)
Using the matrix representation and the formulas ( 23) and (30) yields

ε prq " I n • " L prq nn ‰ ´1 • L p1q nn • ε p1q n `It • ε p1q t ´In • " L prq nn ‰ ´1 • " L prq nt ´Lp1q nt ı • ε p1q t `In • " L prq nn ‰ ´1 • " σ pp1q n ´σpprq n ‰ . (32) 
Thus,

ε prq n " I T n • ε prq " " L prq nn ‰ ´1 • L p1q nn • ε p1q n ´"L prq nn ‰ ´1 • " L prq nt ´Lp1q nt ı • ε p1q t `"L prq nn ‰ ´1 • " σ pp1q n ´σpprq n ‰ , ε prq t " I T t • ε prq " ε p1q t . ( 33 
)
The macroscopic strain can be expressed as

ε n " N ÿ q"1 c q ε pqq n " N ÿ q"1 c q " L pqq nn ‰ ´1 • L p1q nn • ε p1q n ´N ÿ q"1 c q " L pqq nn ‰ ´1 • " L pqq nt ´Lp1q nt ı • ε p1q t `N ÿ q"1 c q " L pqq nn ‰ ´1 • " σ pp1q n ´σppqq n ‰ , ε t " N ÿ q"1 c q ε pqq t " ε p1q t . (34) 
In the above relation it has been used that

c 1 ε p1q n " c 1 " L p1q nn ‰ ´1 • L p1q nn • ε p1q n `c1 " L p1q nn ‰ ´1 • " L p1q nt ´Lp1q nt ı • ε p1q t `c1 " L p1q nn ‰ ´1 • " σ pp1q n ´σpp1q n ‰ . ( 35 
)
As a conclusion of ( 34), one has

ε p1q n " A p1q nn • ε n `Ap1q nt • ε t `N ÿ q"1 c q A ppq1q nn • " σ ppqq n ´σpp1q n ‰ , ε p1q t " ε t , (36) 
where

A p1q nn " " L p1q nn ‰ ´1 • « N ÿ q"1 c q " L pqq nn ‰ ´1ff ´1 , A p1q nt " A p1q nn • N ÿ q"1 c q " L pqq nn ‰ ´1 " L pqq nt ´Lp1q nt ı , A ppq1q nn " A p1q nn • " L pqq nn ‰ ´1 . ( 37 
)
Returning back to (33) yields

ε prq n " A prq nn • ε n `Aprq nt • ε t `K, ε prq t " ε t , (38) 
with

A prq nn " " L prq nn ‰ ´1 • L p1q nn • A p1q nn " " L prq nn ‰ ´1 • « N ÿ q"1 c q " L pqq nn ‰ ´1ff ´1 , A prq nt " " L prq nn ‰ ´1 • L p1q nn • A p1q nt ´"L prq nn ‰ ´1 • " L prq nt ´Lp1q nt ı " A prq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 " L pqq nt ´Lp1q nt ı ´Aprq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 " L prq nt ´Lp1q nt ı " A prq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 " L pqq nt ´Lprq nt ı , K " " L prq nn ‰ ´1 • L p1q nn • A p1q nn • N ÿ q"1 c q " L pqq nn ‰ ´1 • " σ ppqq n ´σpp1q n ‰ `"L prq nn ‰ ´1 • " σ pp1q n ´σpprq n ‰ " A prq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 • " σ ppqq n ´σpp1q n ‰ `Aprq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 • " σ pp1q n ´σpprq n ‰ " A prq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 • " σ ppqq n ´σpprq n ‰ .
To summarize, for all layers the obtained relations are

ε prq n " A prq nn • ε n `Aprq nt • ε t `N ÿ q"1 c q A ppqrq nn • " σ ppqq n ´σpprq n ‰ , ε prq t " ε t , A prq nn " " L prq nn ‰ ´1 • « N ÿ q"1 c q " L pqq nn ‰ ´1ff ´1 , A prq nt " A prq nn • N ÿ q"1 c q " L pqq nn ‰ ´1 " L pqq nt ´Lprq nt ı , A ppqrq nn " A prq nn • " L pqq nn ‰ ´1 . ( 39 
)
The formulas ( 39) and ( 22) are identical.

The rest of the microscopic and macroscopic fields for both the periodic homogenization and the Mori-Tanaka mean-field method are derived in a similar manner. The microscopic stress at each layer is given by the expression ( 9) or (8):

σ prq n " L prq nn • ε prq n `Lprq nt • ε prq t `σpprq n " L prq nn • A prq nn • ε n `"L prq nn • A prq nt `Lprq nt ı • ε t `N ÿ q"1 c q L prq nn • A ppqrq nn • " σ ppqq n ´σpprq n ‰ `σpprq n , σ prq t " " L prq nt ı T • ε prq n `Lprq tt • ε prq t `σpprq t " " L prq nt ı T • A prq nn • ε n `"" L prq nt ı T • A prq nt `Lprq tt  • ε t `N ÿ q"1 c q " L prq nt ı T • A ppqrq nn • " σ ppqq n ´σpprq n ‰ `σpprq t . (40) 
The macroscopic stress is obtained by volume averaging the stresses of all layers, i.e.

σ n " N ÿ r"1 c r σ prq n , σ t " N ÿ r"1 c r σ prq t . (41) 
Combining ( 40) and (41) yields the macroscopic constitutive law

σ n " L nn • ε n `Lnt • ε t `σp n , σ t " " L nt ‰ T • ε n `Ltt • ε t `σp t , (42) 
In the above expression, R is the hardening function, p is the accumulated plastic strain variable and H, m are the hardening parameter and hardening exponent, respectively. The material parameters of the two layers are summarized in Table 1. A rectangular structure of dimensions 1 mmˆ1 mmˆ0.08 mm is made of the multilayered composite and it is subjected to displacement boundary conditions, which are illustrated in Figure 2. At the boundary surface normal to x 1 direction (positive side), the structure is subjected to a displacement field, which first increases linearly up to 0.002 mm and then decreases linearly until it becomes 0.

parameter
The finite element computations have been performed using the FE commercial software ABAQUS/Standard. At the first numerical analysis, no homogenization has been performed. Instead, the structure is simulated considering the different layers. This simulation is the reference solution since it considers all the microstructural details without scale separation. To have a representative structure compatible with the homogenization theory (i.e. unit cell much smaller than the macroscopic scale), 50 layers have been considered (25 of each material). The von Mises stress at the end of the loading in shown in Figure 3. As expected, the stress distribution os highly non-uniform due to the strong heterogeneity.

At the second numerical analysis, the Mori-Tanaka/TFA homogenization approach is considered. The equations of section (4) are implemented in ( [START_REF] Simo | Computational Inelasticity[END_REF][START_REF] Chatzigeorgiou | Thermomechanical Behavior of Dissipative Composite Materials[END_REF] and is not presented here. The algorithm of Figure 4 is developed in the form of a FORTRAN coded Meta-UMAT and is integrated into the ABAQUS software. Due to the homogenized nature of the medium, the mesh of the structure is not required to be fine. The von Mises stress at the end of the loading in shown in Figure 5. Since there is only one material (the homogenized), the stress is uniform at the whole structure.

Comparison of the macroscopic response (i.e. average stress-strain curve)

for the two analyses is given in Figure 6. As it can be seen, the homogeniza- analysis, validating the accuracy of the mean-field methodology.

As an additional validation of the proposed method, the structure of Fig-

ure 3 is analyzed using classical FE type homogenization approach with periodic boundary conditions. The unit cell of Figure 7 represents the periodic microstructure. Due to the simple nature of the loading, one can consider the constraint driver technique [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour[END_REF]. In this technique, the macroscopic conditions (given normal macroscopic strain at the direction x 1 , zero macroscopic stresses at the rest of normal and shear directions) are applied at "dummy nodes" which are connected through periodicity conditions with the boundaries of the unit cell.

Figure 8 demonstrates the results obtained from the FE analysis on the unti cell and from the proposed mean-field approach. Both curves are in excellent agreement. While the FE type periodic homogenization provides equivalent results with the Mori-Tanaka/TFA method, the latter has the advantage of significantly reduced computational cost. In complex multilayered structures with non-proportional and non-uniform boundary conditions, one has to adopt a FE 2 type of approach [START_REF] Feyel | FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[END_REF], i.e. standard constitutive law (UMAT in the terminology of ABAQUS), which leads to fast calculations.

Conclusions

As it has been demonstrated in this article, the Mori-Tanaka approach combined with the Transformation Field Analysis yields exactly the same solution with the periodic homogenization method for the multilayered composites. These structures are quite simple for performing finite element computations and provide the capability to validate the results of homogenization.

Such validation is important when developing micromechanics techniques for complex and/or non-typical material responses, including multiphysics phenomena.

It is worth mentioning that the proposed approach can be applied, under certain conditions, for the study of laminate composites, i.e. layers of longfiber reinforced media stacked at different orientations. However, one needs to be aware of the method limitations. The multilayered composite presented here is assumed to have theoretically infinite repetitions of unit cells.

The main reason for this requirement is that the periodic homogenization methodology considers that the external boundary conditions do not affect the unit cell periodicity conditions. In practice, the method has shown to work relatively well even for moderate number of unit cell repetitions. The laminate composites usually contain a few number of layers, whose stacking sequence not necessarily periodic. For reduced number of layers, the boundary effects may be very important at the level of the unit cell, leading to wrong homogenization approach predictions. These effects can be accounted for more accurately by higher order homogenization theories, or plate-type homogenization strategies [START_REF] Kalamkarov | Analysis, design and optimization of composite structures[END_REF][START_REF] Xia | A unified periodical boundary conditions for representative volume elements of composites and applications[END_REF] which exceed the capabilities of the classical Mori-Tanaka method.

A. Disk-like inclusion in infinite anisotropic medium ε ij " ´Pijkl σ kl , σ ij " ´Lijkl ε kl .

(A.

2)

The constitutive law for the middle layer is written

σ ij " L ijkl ε kl `σi j " L ijkl Bu k Bx l `σi j . (A.3)
Due to the form of the structure, all fields vary spatially only in the x 1 direction, transforming the equilibrium into an 1-D problem. For the simplicity of the subsequent expressions, the elasticity tensor is decomposed with the help of the section 2 representations. Since all fields depend only on x 1 , the equilibrium equations are reduced for the middle layer to d dx 1 ˆLnn • du dx 1 `σn ˙" 0, (A.4) 
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Figure 1 :

 1 Figure 1: Unit cell of multilayered composite with N layers.

Figure 2 :

 2 Figure 2: Rectangular structured made of the multilayered composite. The displacement is fixed in three phases (normal to x 1 , x 2 , x 3 , negative sides), two phases (normal to x 2 , x 3 , positive sides) are traction free and the last phase (normal to x 1 , positive side) is subjected to varying displacement field.

Figure 3 :Figure 4 :

 34 Figure 3: Multilayered composite structure without scale separation. Spatial distribution of von Mises stress at the end of loading.

Figure 5 :

 5 Figure 5: Multilayered composite structure with homogenized response. Spatial distribution of von Mises stress at the end of loading.

Figure 6 :

 6 Figure 6: Macroscopic stress 11 vs macroscopic strain 11. Comparison between the layered structure (reference solution) and the homogenization approach.

Figure 7 :

 7 Figure 7: Unit cell of the multilayered composite. Periodicity conditions are applied and the macroscopic loading is imposed through the constraint driver technique. Layer 1 is at the left side and layer 2 at the righr side.

Figure 8 :

 8 Figure 8: Macroscopic stress 11 vs macroscopic strain 11. Comparison between FE type periodic homogenization (PH) and the proposed method.

Figure 9

 9 Figure 9 illustrates a disk-like inclusion in infinite medium. The term inclusion refers to a material zone in which a known homogeneous eigenstrain

Figure 9 :"

 9 Figure9: Three-layers structure with small disk-like inclusion at the middle.

Table 1 :

 1 Material properties of multilayered composite's layers.

	layer 1 layer 2

where

and

Numerical example

Let's consider a periodically multilayered composite structure, whose unit cell consists of two layers with equal volume fraction (50% each). The first layer is an elastic material, while the second is made of an elastoplastic, J 2 type material with isotropic hardening of power law:

Rppq " Hp m .

(45)