
HAL Id: hal-03400759
https://hal.science/hal-03400759

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning Based Approach for Virtualized
Face Detection at the Edge

Makhlouf Hadji, Selma Khebbache, Mohammed Khalidi Idrissi

To cite this version:
Makhlouf Hadji, Selma Khebbache, Mohammed Khalidi Idrissi. Reinforcement Learning Based Ap-
proach for Virtualized Face Detection at the Edge. IEEE HPSR, Jun 2021, Paris, France. �hal-
03400759�

https://hal.science/hal-03400759
https://hal.archives-ouvertes.fr

Reinforcement Learning Based Approach for
Virtualized Face Detection at the Edge

Selma Khebbache˚, Makhlouf Hadji˚, Mohamed-Idriss Khaledi ˚
˚Institut de Recherche Technologique SystemX, Saclay, France

Emails: {selma.khebbache, makhlouf.hadji, mohamed-idriss.khaledi}@irt-systemx.fr

Abstract—Real-time requirements in video streaming and pro-
cessing are increasing and represent one of the major issues in
industry 4.0 domains. In particular, Face Detection (FD) use-case
has attracted the interest of industrial and academia researchers
for various applications such as cyber-physical security, fault
detection, predictive maintenance, etc. To ensure applications
with real time performance, Edge Computing is a good approach
which consists in bringing resources and intelligence closer to
connected devices and hence, it can be used to cope with strong
latency and throughput expectations. In this paper, we consider
optimal routing, placement and scaling of virtualized face de-
tection services at the edge. We propose an edge networking
approach based on Integer Linear formulation to cope with small
problem instances. A reinforcement learning solution is proposed
to address larger problem sizes and scalability issues. We assess
the performance of our proposed approaches through simulations
and show advantages of the reinforcement learning approach to
converge towards near-optimal solutions in negligible time.

Index Terms—Face Detection, Optimization, Q-Learning, Edge
Networking

I. INTRODUCTION

Industry 4.0 sites’ deployment is growing and necessitates
new needs and strong expectations in terms of performance,
ultra low latency, security, etc. In addition, with a massive
deployment of Industrial IoTs (IIoTs) in Industry 4.0, a par-
ticular issue on video streaming and processing has attracted
the interest of industrial and academia researchers to cope
with intrusion detection in cyber physical systems (CPS), fault
detection in large industrial systems, predictive maintenance
in complex production systems, etc. Indeed, industrial players
require cost-efficient deployment solutions for interconnected
cameras and video analysis systems to reduce their total
(CAPEX and OPEX) costs, minimize human interventions
using zero-touch solutions. Hence, and to reach these ob-
jectives, virtualized techniques are being privileged for this
purpose, where both the networking functions are virtualized,
using Virtualized Networks Functions (VNF), and application
functions are flexibly developed for being deployed on edge
nodes.

To attend the previous cited objectives and performance in
industry 4.0, we need new orchestration solutions to distribute
computing resources, storage, network connectivity, data an-
alytics through interconnected nodes called Edge clouds. In-
deed, edge computing and networking can be used to bring the
necessary resources closer to connected devices and IoTs. This
may strongly reduce the latency when improving the analytics

performance through intelligent and distributed computing and
algorithms.

In industry 4.0, there exist relevant and challenging use-
cases which attracted the intention and interests of industrial
players looking for augmented and intelligent cyber-security
solutions, adaptive and rapid approaches for fault detection
or predictive maintenance, etc. In this work, we focus on a
particular use-case based on Face Detection represented by
virtualized functions that will be detailed in the sequel. In fact,
deploying a virtualized face detection solution in a critical
industrial site which necessitates accuracy of the analytics,
and real time decision making, is relevant for the safety and
security of this site.

We consider virtualized face detection use-case which
is composed by virtualized functions in a given service
chain. These virtualized functions should be deployed in a
distributed manner to optimize the limited network resources
and compute resources on the edge nodes. These nodes
are equipped with limited processing capabilities, and are
interconnected with different communications techniques such
as Ethernet, Bluetooth, Wifi, Lora, etc. This heterogeneity
of the processing capabilities and communications solutions
makes the orchestration and management of the deployed
network services harder. We need to investigate efficient
optimization of these resources in near real time to attend
face detection solutions with good performance (convergence
time, reduced CAPEX and OPEX cost, etc.).

Our contribution in this paper consists to address deeply
the aforementioned research challenges by proposing mathe-
matical modeling and formulations. These approaches can be
summarized as follows:
‚ An exact approach based on integer linear programming :

this method is based on the description of the convex hull
of the addressed virtualized face detection optimization
problem in edge infrastructures.

‚ To cope with scalability issues, we propose an approxi-
mation approach based on Reinforcement Learning.

Note that the novelty of our approaches will be clearly ad-
dressed in next sections and their efficiency will be highlighted
and compared to the state of the art addressing close research
challenges.

The remainder of this paper is organized as follows: next
section (Section II) addresses the related work on face detec-
tion research challenges, edge computing and networking and978-1-6654-4005-9/21/$31.00 ©2021 IEEE European Union

optimization. Section III describes the details of the consid-
ered optimization problem, provides hints on the problem’s
complexity and formalizes two new mathematical approaches
based on ILP and RL. Our approaches will be evaluated using
simulations in Section IV. We conclude the paper in Section
V.

II. RELATED WORK

Reference [1] is one of the closest work to our paper.
it addresses a joint optimization of power consumption of
the CPU and the Wireless Network Interface Card (WNIC)
of mobile devices while streaming high quality videos. We
recall that the two major energy consuming components in
mobile video streaming services are the CPU (that supports
video data decoding) and the network interface (that supports
data communication). Hence, authors of this paper proposed
a joint optimization scheme for improved energy efficiency
supporting mobile video streaming services . This is based
on the adjustment of the number of video chunks to be
downloaded and decoded in each packet. However, they only
considered joint optimization of CPU and energy consumption
for one mobile device. In our work, we consider a joint
optimization of CPU and bandwidth in a IoT network with
multiple physical objects and where the number of paths
between each couple of nodes can be exponential.

Authors of paper [2] discussed the problem of real time
video analytics in an edge computing environment. Recall
that real-time video analysis is used nowadays in several
domains (traffic control, surveillance and security, retail store
monitoring..) and because of the high data volumes, compute
demands and latency requirements, cameras represent the most
challenging of ”things” in IoT, and large-scale video analytics
may well represent the killer application for edge computing.
The authors proposed a real-time video analytics system with
low resource cost to produce outputs with high accuracy. The
proposed approach can be used in several application such as
self-driving and smart cars, etc. Nevertheless, the proposed
approach do not consider a joint optimization for different
resources such as CPU and bandwidth when satisfying latency
expectations.

Paper [3] proposes a mathematical optimization approach
over virtual network services for better scaling, placement
and routing on a physical substrate. Network services (video
streaming, online gaming) are placed and deployed in the
network based on fixed predefined descriptors. With the large
number of degrees of freedom for finding the best adaptation,
deciding scaling, placement, and routing can result in sub-
optimal decisions for the network and for the running ser-
vices. They proposed JASPER (Joint optimization of scaling,
placement and routing) in which, each network service is
described by a service template containing information on
the component network services, their interconnection, and
resources requirements. Hence, the solutions of reference [3]
are applied using IETF use-cases and examples for an embed-
ding of virtual networks on physical substrates. In our work,
we consider limited IoT nodes in terms of available resources,

which makes the problem harder and finding feasible solutions
more complicated.

Another reference dealing with CPU and bandwidth opti-
mization is given by [4]. Authors of this paper proposed a
technique to manage computation offloading in a local IoT net-
work under bandwidth constraints. They proposed approaches
to separately optimizing CPU and Bandwidth resources, which
can lead to sub-optimal solutions of the problem. We propose a
joint optimization of the two mentioned limited resources and
discuss the scalability of our approaches for large instances.

In the context of VNF orchestration, the Stratos project
[5] proposed a detailed architecture to orchestrate VNFs out-
sourced to a remote cloud taking considering traffic engineer-
ing, VNFs scaling, etc. Nevertheless, this project has addressed
only VNF placement solution based only on workloads, and
then, chaining constraints are not considered.

References [6] and [7] propose mathematical models for
the VNF chains placement with routing constraints. The pro-
posed models, however, describe a limited number of linear
constraints and can only characterize a small portion of the
problem convex hull. The proposed exact solutions do not
scale for large problem instances. We need deeper modeling
that can characterize better (completely) the convex hull of the
VNF placement and chaining problem to find near optimal
solutions in few seconds and scale with problem size. We
propose a competitive graph theory approach with the desired
properties of converging quickly to near optimal solutions even
for large problem instances.

In our paper, we propose to investigate machine learning
techniques based on Reinforcement Learning to reach near
optimal solutions of the virtualized face detection optimization
problem in edge infrastructures. Our objective is to train RL
models to improve the quality of the solutions compared to the
results of the first paper addressing this problem (see reference
[8]).

III. MATHEMATICAL FORMULATION

Before going through the mathematical details of the prob-
lem description, we propose to describe the system model and
set up the different parameters of our approaches.

A. System model description

We consider an industrial site or a restricted area with
various cameras collecting data for monitoring and analytics
purposes. These cameras are differently interconnected using
wifi, ethernet, etc. and hence are forming a heterogeneous
network with limited amounts of bandwidth and processing
capabilities (represented by CPU cores in our work). The
virtualized face detection service is composed of a chain of
4 virtual functions (denoted by f1 ÝÑ f2 ÝÑ f2 ÝÑ f4)
equivalent to Service Function Chains as described by [9].
In the virtualized face detection use-case, the four mentioned
virtual functions are given as follows:

1) f1 (Face Detection): detects and extracts in frames all
faces in the restricted area.

2

2) f2 (Face compression): It characterizes each face by
limited number of features

3) f3 (Face recognition): compare the extracted features
to a given database

4) f4 (Database enhancement): for an Face recognition
with a high reliability, the new corresponding features
are added to the database to improve the quality of future
identification

Figure 1 represents our system model for a virtualized
face detection use-case represented by a chain (green graph
in Figure 1). The physical graph (blue graph) represents a
network of interconnected cameras to capture videos and
images and may be equipped by a processing node. Cameras
are interconnected and the edge network also incorporates
processing servers.

f1

c1

f2
f3 f4

s1

CPU1

s2
s3

s4

s6

s5

s7

Physical Substrate

Virtual Graph

Mbps

Fig. 1: Virtualized Face Detection system model: a graph-based
representation

B. Problem description and modeling
Using the graph representation of Figure 1, the virtualized

face detection problem in an edge network with restricted
compute and networking resources, is equivalent to find an
optimal mapping of the virtual graph (see green graph of
Figure 1) on the physical graph (blue graph of Figure 1)
when optimizing the aforementioned resources, to reach higher
performances.

Let G “ pV ,E q be the physical graph representing the
edge nodes substrate (interconnected cameras/sensors and
processing nodes), where |V | and |E | represent the network
sizes in terms of number of nodes and edges, respectively.
Let Gv “ pVv,Evq be the virtual request graph composed by
4 chained VNFs.

Each physical edge node j1 has a limited CPU processing
noted by Cj1 . Each physical edge (or link) pj1, j2q has a
limited amount of bandwidth noted by Bj1,j2 . If there is
no edge between j1 and j2, then the amount of available
bandwidth between these two nodes is represented by the
smallest available bandwidth on the path between j1 and
j2. Each virtual arc pi, i1q has a request of bii1 of necessary
bandwidth.

We investigate new algorithms to reach optimal trade-offs
between the two criteria of processing and bandwidth with
respect to latency requirements.

C. Problem complexity

The addressed problem of virtualized face detection opti-
mization and mapping is NP-Complete. More details on the
proof can be found in [8].

D. Integer Linear Programming (Exact) approach

We consider minj1,j2,k as the minimum bandwidth avail-
able in the kth path between physical nodes j1 and j2.
Moreover, for the sake of clarity, we introduce Ppj1, iq as the
set of all physical nodes j2 such that there exists a shortest
path between nodes j1 and j2 in which the minimum available
bandwidth (on its arcs) is at least equal to the required amount
of bandwidth (in the virtual graph). We define bi,i`1 as the
bandwidth needed on the arc pi, i` 1q of the virtual graph.

We propose a short description of the decision variables
used in our optimization:
‚ xi,j1 is a binary variable, equals to 1 if the virtual

node/function fi is deployed on a physical node j1, and
0 otherwise.

‚ ypi,i`1q;pj1,j2,kq is a binary variable equals to 1 if a virtual
arc pi, i ` 1q is hosted on a physical path k joining two
physical nodes j1 and j2, and 0 otherwise.

‚ Hj1 is a binary variable equals to 1 if the physical node
j1 hosts at least one virtual function, and 0 otherwise.

The objective function of our optimization consists in find-
ing a trade-off between the total CPU consumption and the
allocated bandwidth resources:

max F “
ÿ

j1PV

˜

Cj1Hj1 ´
ÿ

iPVv

cixi,j1

¸

` (1)

ÿ

iPVv

ÿ

j1PV

ÿ

j2PP

ÿ

kPK

ˆ

min
ij1j2k

´bpi,i`1q

˙

ypi,i`1qpj1,j2,kq

We propose a constrained optimization to reach the optimal
value of (1):

ÿ

j1PV

xi,j1 “ 1,@i P V (2)

Constraint (2) guarantees that each virtual node, i.e., a function
f , is deployed on exactly one physical or edge node.

ÿ

iPVv

cixi,j1 ď Cj1Hj1 ,@j1 P V (3)

Constraints (3) guarantee the non violation of available CPU
resources at edge nodes.

ÿ

iPVv

xi,j1 ě Hj1 ,@j1 P V (4)

3

Constraints (4) minimizes the total number of edge nodes to
be solicited in the final solution.

xi,j1 ď
ÿ

j2PPpj1,iq

xi`1,j2 ,@i P t1, 2, 3u,@j1 P V (5)

Constraints (5) are guaranteeing the necessary chaining of the
virtual graph.

ÿ

j1PPp,q

ÿ

kPK pj1,j2,iq

ypi,i`1qpj1,j2,kq “ xi`1,j2 ,@i P t1, 2, 3u,@j2 P V

(6)

ÿ

j2PPpj1,iq

ÿ

kPK pj1,j2,iq

ypi,i`1qpj1,j2,kq “ xi,j1 ,@i P t1, 2, 3u,@j1 P V

(7)
Constraints (6) and (7) are used to guarantee that if a virtual
node i is deployed on a physical node j1, i.e. xi,j1 “ 1, and
the virtual node i ` 1 is hosted by a physical node j2, i.e.
xi`1,j2 “ 1, then the virtual arc pi, i` 1q should be deployed
on the kth physical path starting from node j1 to node j2, i.e.
ypi,i`1q;pj1,j2,kq “ 1.

ÿ

j1PV

ÿ

j2PPpj1,iq

ÿ

kPK pj1,j2,iq

ypi,i`1qpj1,j2,kq “ 1,@i P t1, 2, 3u

(8)
Constraints (8) guarantee that each virtual arc pi, i ` 1q is
deployed on exactly one physical path.

ÿ

iP1,2,3

`

ypi,i`1qpj1,j2,kq ` ypi,i`1qpj2,j1,kq

˘

bpi,i`1q ď minj1j2k

@l P t1, 2, 3u,@j1 P V ,@j2 P Ppj1, lq,@k P K pj1, j2, lq
(9)

Constraints (9) impose that the bandwidth of a feasible
physical path between nodes j1 and j2 must exceed the sum
of all hosted bi,i`1 on that path.

Table I summarizes optimization parameters and variables
used in our mathematical formulation.

E. Reinforcement Learning based Approach

a) Problem formulation with Markov Decision Process
(MDP): In the following we propose a new approach based
on Reinforcement Learning to cope with scalability issues
and will be benchmarked by the exact approach given by
the ILP algorithm. We formulated the problem as a Markov
Decision Process (MDP). In an MDP, a decision-maker noted
by agent is interacting with the environment represented by
the described physical infrastructure (blue graph of Figure
1). These interactions occur sequentially over time. At each
time step, the agent will obtain some representation of the
environment’s state. Given this representation, it selects an
action to be considered. The environment is then transitioned
into a new state, and the agent receives a reward according

TABLE I: Mathematical formulations’ parameters

Parameters Definition
xij1 binary variables indicating if fi is hosted in

j1
yi,i1;j1,j2 a binary variable indicating if the virtual

arc pi, i1q is hosted on the physical path
between j1, j2

Hj1 a binary variable indicating if node j1 is
solicited

ci the requested CPU amount by V NFi

Cj1 The available CPU amount in node j1
Kpj1,j2,iq a set of all available and feasible (a path

with the minimum bandwidth on all its
edges is higher than the requested band-
width for the arc pi, i ` 1q) paths between
nodes j1 and j2 for the virtual arc pi, i`1q

mini,j1,j2,k Minimum available bandwidth on the kth

feasible path between physical nodes j1 and
j2 for the virtual arc pi, i` 1q

to its previous action.

The process of selecting an action from a given state,
transitioning to a new state, and receiving a reward is
occurring iteratively and creates a trajectory showing the
sequence of states, actions, and rewards. Throughout this
process, the agent maximizes the total amount of rewards it
receives. In other words, the agent maximizes the cumulative
rewards it receives over time. Figure 2 illustrates this
mechanism.

Fig. 2: The agent-environment interaction in an MDP (source: [10])

To mathematically model the above mentioned description,
we consider a set of states S, a set of actions A, and a set
of rewards R. These sets have a finite number of elements
described as follows:

1) States: a state St P S represents a physical node in our
infrastructure and precisely the node where the agent is
placed in at time step t. We claim that the agent is in
state j at time step t referred as Sjt , if it is placed on
physical node j at time step t.

2) Actions: an action At P A represents the next physical
node starting from the state St.

3) Rewards: a reward Rt is obtained at time step t after
selecting the next physical node j and it consists of

4

the remaining CPU value of node j plus the remaining
bandwidth value on the selected path.

4) Transition Probability: Since the sets S and R are
finite, random variables St and Rt have well-defined
probability distributions. These distributions depend on
the preceding state and action that occurred in the pre-
vious time step t´ 1. However, these are not easy to be
obtained in a real network. Alternatively, RL comes as a
solution because it can learn from previous experiences
in a trial-and-error fashion, and choose the appropriate
actions without explicit state transition probability.

b) Q-Learning algorithm: In the following, we describe
our Q-Learning algorithm modified and adapted to our
problem. For each episode, we deploy the virtual function f1
on the physical node that has the maximum CPU capacity.
Then, we iteratively go through three time steps. The first
one is to deploy f2 on the physical graph, the second one is
to deploy f3, and the third is to deploy f4. To describe the
process at every episode, and after selecting the corespondent
physical node (the best in terms of CPU) that will host
f1, the agent receives for every time step t “ 1, 2, 3 some
representation of the environment’s state St P S which
represents the physical node where the agent is placed in
at time t with updated CPU and bandwidth. Based on this
state, the agent selects an action At P A that represents the
next node to consider from St. This provides the state-action
pair (St, At) and we can define QpSt, Atq as the state-action
value function which represents the reward when starting in
state St and selecting action At at time step t.
The decision of choosing an action in a certain state at time
step t is characterized by a policy πpStq = At. Our goal is
to find an optimal policy that maximizes the value of the
state-action function.

πoptpStq “AtPA QpSt, Atq,@t P t1, 2, 3u (10)

c) Description of Q-Learning function: Note that, given
a step, a state, and an action, the Q-function provides the
expected reward from taking the given action in the given
state following the given policy at time step t. At each
episode, our Q-Learning algorithm iteratively updates the
Q-values of our three-dimensional Q-table until it converges
to the optimal one. This Q-table is composed of three tables:
the first contains the Q-values that correspond to the action
of hosting f2, the second is for hosting f3 and the third is
for hosting f4. These Q-values are updated at each time step
as follows:

QpSt, Atq
loooomoooon

New
Q-Value

“ QpSt, Atq
loooomoooon

Current
Q-Value

`α
”

RpSt, Atq
loooomoooon

Reward

(11)

`γ

Maximum predicted reward, given
new state and all possible actions

hkkkkkkkkikkkkkkkkj

max
At

Q1pS1t, A
1
tq ´QpSt, Atq

ı

@t P t1, 2, 3u

d) Exploration and Exploitation steps:: In our Q-
Learning approach, Exploration step is the operation of
exploring the environment to find out information about it
and Exploitation represents the operation of exploiting the
information that is already known about the environment in
order to maximize the return.

Hence, if the agent is able to explore the environment, it will
have the opportunity to find the group of physical nodes that
would maximize the remaining CPU and bandwidth capacities
in our physical graph. Nevertheless, if it only explores the
environment with no exploitation, then it will miss out on
making use of known information that could help to maximize
the cumulative reward. Therefore, we need a balance of both
exploitation and exploration, which should be simultaneously
performed. To reach this objective, we use the epsilon greedy
strategy defined below.

e) Epsilon-greedy strategy:: To attend the exploitation
and exploration trade-off, we use the epsilon greedy strategy.
We define an exploration rate ε that we initially set to 1.
This exploration rate is the probability that the agent will
explore the environment rather than exploiting it. With
ε “ 1, it is 100% certain that it will start out by exploring the
environment. As the agent learns more about our environment,
at the end of each new episode, ε will decay by some rate
that we set, so that the likelihood of exploration becomes
less and less probable as the agent learns more and more
about the environment. At the end, this agent will become
“greedy” in terms of exploiting the environment once it has
the opportunity to explore and learn more about it. The main
procedure of our Q-Learning algorithm is represented as
follows (see Algorithm 1).

Algorithm 1 Q-Learning Algorithm
1: QpSt, Atq Ð 0 @St P S , @At P A , @t P t1, 2, 3u;
2: Set up Q-Learning hyperparameters;
3: while episode ď numberOfEpisods do
4: Choose the best node in terms of CPU capacity to host f1 and update

the physical graph;
5: while t ď 3 do
6: if Exploration then
7: Select randomly the next node able to host the next virtual

function ft`1;
8: end if Choose At = AtQpSt, Atq;
9: Perform At and get the reward and the new state;

10: Update QpSt, Atq according to equation (III-E0c);
11: Update CPU and Bandwidth on the physical graph;
12: end while
13: Do the exploration rate decay according to epsilon-greedy strategy;
14: end while

IV. NUMERICAL RESULTS

Our proposed approaches are evaluated through a Python
implementation using CPLEX [11] solver for the exact ap-
proach. We use a laptop with 8Gb of RAM and 2.7Ghz of
CPU. The following metrics are used to quantify the efficiency
of the two proposed approaches (exact and Q-Learning):

1) Gap between the objective functions of the proposed
approaches: this metric is provided to measure the

5

efficiency of the RL algorithm benchmarked by the exact
method. It is given as follows:

Gapp%q “
ILPSol ´RLSol

ILPSol
ˆ 100

2) Convergence time: The necessary time to converge to
a (near) optimal solution

3) Scalability: The ability of the algorithms to scale and
provide a solution within an acceptable convergence
time.

4) Rejection rate: it represents the capacity of our pro-
posed approaches to process virtual requests in given
time window.

To assess the performance of our proposed approaches,
we run various scenarios corresponding to the generation of
multiple physical graphs and virtual requests. We propose
a dynamic simulator addressing requests arrivals according
to a Poisson process. For each scenario in our simulations,
we represent each point by the average value of 50 runs of
different collected metrics of the two proposed approaches.
Simulation settings will be detailed in the sequel.

A. Simulation settings

In the following, we address simulations with dynamic
setting where demands for virtualized face detection chains
arrive according to a Poisson process with inter-arrival times
(noted by λ´1) and departures are represented by exponential
distribution with a parameter (lifetimes) represented by µ´1,
also noted by service rate. This dynamic setting allows to
compute the system capacity, in terms of rejection rate. Hence,
we introduce ρ “ λ

µ to assess these performances. Note that
the event of request rejection occurs when a new request
arrives while the system still processing a large number of
previous requests. This is modeled in our case by a buffer for
requests of limited size (10 in the numerical results). When this
buffer is full, new arriving requests are rejected. This rejection
is thus related to the algorithm’s necessary convergence time:
The faster the convergence, the lowest is the probability of
buffer overflow.

B. Numerical analysis

Figure 3 depicts the rejection rate evolution for different
values of system load. We selected physical graphs with 15,
30 and 50 nodes for this simulation. As the convergence time
for the exact (ILP) approach increases exponentially with the
graph size, the rejection rate is important for larger graph sizes
(close to 80% in the worst case). When the load increases (i.e.
the average number of new requests increases), the rejection
rate also increases. Note that for the RL approach, the rejection
rate is close to zero. This is due to the negligible necessary
time to converge to near optimal solution using the Q-Learning
approach (close to 0 in all considered scenarios).

To enlarge the grasp of the performance assessment of
our approaches, Table III represents the results of a com-
parison between the Reinforcement Learning based approach
and the exact approach using different metrics. Simulations

Fig. 3: Algorithms’ Rejection rates for different graph sizes

correspond to graphs with a number of nodes in the r5; 80s
range. The exact algorithm still outperforms RL in terms
of objective function metric (see columns 3 and 4 in Table
III). Nevertheless we notice that the gap between the Exact
and RL approaches has decreased for small and medium-
size networks. Figure 4 confirms this result. However, for
dense physical networks, RL approach needs more time in
the training phase of the learning process, before converging
to near optimal solutions. This is confirmed in Table III
illustrating the worst case for larger graphs with a Gap close to
10%. To improve this weakness of the RL algorithm, we may
estimate the Q-Values using Deep Reinforcement Learning
(DQN)” (see [?], for instance).

TABLE II: Exact vs RL Algorithms Performance

nodes # links Exa.Obj RL.Obj Exa.Time(ms) RL.Time(ms) Train Time RL(s) Gap%
7 18.35 17.11 14.72 0.921 1.61 6.79
16 22.5 21.06 72.64 7.33 11.48 6.4
25 24.42 22.59 171.72 26.18 17.07 7.49
34 23.91 22.23 379.74 31.96 48.09 7.01
43 24.77 22.92 632.81 54.02 93.99 7.44
52 25.49 23.51 937.66 56.1 98.42 7.8
70 25.96 23.6 14607.15 77.82 139.16 9.06
88 26.17 23.67 26110.11 102.23 182.47 9.55

124 26.4 23.75 58235.02 152.73 296.81 10.05
142 26.81 24.12 91514.16 180.04 378.63 10

TABLE III: Exact vs RL Algorithms Performance

nodes # links Exa.Obj RL.Obj Exa.Time(ms) RL.Time(ms) Gap%
7 18.35 17.11 14.72 0.921 6.79
16 22.5 21.06 72.64 7.33 6.4
25 24.42 22.59 171.72 26.18 7.49
34 23.91 22.23 379.74 31.96 7.01
43 24.77 22.92 632.81 54.02 7.44
52 25.49 23.51 937.66 56.1 7.8
70 25.96 23.6 14607.15 77.82 9.06
88 26.17 23.67 26110.11 102.23 9.55

124 26.4 23.75 58235.02 152.73 10.05
142 26.81 24.12 91514.16 180.04 10

6

Fig. 4: RL-approach’s gap evolution

V. CONCLUSION AND FUTURE WORK

We addressed in this paper the virtualized face detection
optimization problem when considering edge computing and
networking architectures. Edge networking is able to bring
the resources and intelligence close to connected devices. We
focused on the mapping of virtual graphs representing face de-
tection in Industry 4.0 on edge networks represented by graphs
with limited resources. The considered optimization problem
is a notary NP-Hard problem. Hence, we proposed an ILP
approach to cope with small and medium problem instances,
and a Reinforcement Learning solution is then proposed and
deeply discussed to address scalability issues. We highlighted
the efficiency of our approaches through simulations, using
different graph requests and instances.

We showed the performance of our proposed solutions and
illustrated their use-fullness in different scenarios considering
face detection, and, we strongly believe their applications
in other relevant Industry 4.0 use cases such as predictive
maintenance and Fault detection.

For a future work, we propose to investigate new learning
and distributed solutions based on Federated Learning (FL),
which is a Machine Learning technique that enables us to
train an algorithm across multiple decentralized edge devices
or servers holding local data (see [12]). Our objective is
to distribute the exact approach on smaller interconnected
cameras/sensors and then use FL techniques to improve the
scalability and the quality of the results.

REFERENCES

[1] S. Jo and J. Chung, “Joint optimized cpu and networking control scheme
for improved energy efficiency in video streaming on mobile devices,”
Mobile Information Systems, vol. 2017, 2017.

[2] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[3] S. Dräxler, H. Karl, and Z. Mann, “Jasper: Joint optimization of scaling,
placement, and routing of virtual network services,” IEEE Transactions
on Network and Service Management, vol. 15, no. 3, pp. 946–960, 2018.

[4] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,
“Computation offloading and resource allocation for low-power iot edge
devices,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-
IoT), 2016, pp. 7–12.

[5] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[6] H. Moens and F. D. Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM) and Workshop, 2014, pp.
418–423.

[7] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in 2015 IEEE Conference on
Computer Communications (INFOCOM), 2015, pp. 1346–1354.

[8] M.-I. Khaledi, M. Hadji, S.-E. El-Ayoubi, and D. Niyato, “Optimization
of function chaining on the edge for iot applications,” IEEE WCNC,
Beijing, China, 2021.

[9] “https://www.etsi.org/technologies/689-network-functions-
virtualisation,” 2021.

[10] A. Ruiz-Garcia, V. Palade, I. Almakky, and M. Elshaw, “Deep q-
learning for illumination and rotation invariant face detection,” in 2019
International Joint Conference on Neural Networks (IJCNN), 2019, pp.
1–8.

[11] “https://www.ibm.com/fr-fr/analytics/cplex-optimizer,” 2021.
[12] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,

V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” CoRR, vol. abs/1902.01046,
2019. [Online]. Available: http://arxiv.org/abs/1902.01046

7

