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1 | INTRODUCTION

Stefania Lo Feudo? |

Nicolo Vaiana' | Jean-Luc Dion?

Abstract

This paper investigates the rocking behavior of rigid bodies seismically protected
by means of lead rubber bearings and high damping rubber bearings, which are
the most popular kinds of elastomeric isolators in the market. The complex non-
linear force-displacement relationship displayed by such devices is predicted by
a phenomenological model based on a small set of parameters having a clear
mechanical meaning. The algebraic nature of the proposed hysteretic model
makes it suitable for a design procedure, using an energy-based approach, that
allows one to obtain the hysteretic model parameters on the basis of the mass and
the isolation period. Overturning spectra are evaluated and discussed to illustrate
the effect of the isolation devices on the rigid bodies’ rocking behavior. Further-
more, nonlinear time history analyses associated with six real earthquakes are
carried out on six of Michelangelo’s sculptures, located in the Galleria dei Prigioni
at the Accademia Gallery of Florence, in order to examine their actual behavior
under real strong ground motions.

Probably, the first research on the protection of museum
objects from earthquake damage is that of Agbabian et al.

Over the past years, new concepts and techniques have
been developed for protecting structures from earthquakes
and severe winds (Gutierrez Soto & Adeli, 2017; Naeim &
Kelly, 1999) on the basis of approaches exploiting passive
(Andersson et al., 2015; Lin et al., 2010), semi-active, and
active (Aldemir et al., 2012; Bitaraf et al., 2012; El-Khoury
& Adeli, 2013; Gutierrez Soto & Adeli, 2018, 2019) control.
Though conceived mainly for buildings and bridges
(Adeli & Kim, 2009; Ghaedi et al., 2017), such strategies
have been also applied to the protection of the artwork col-
lections against seismic events (Erdik et al., 2010).

(1990, 1991). The authors proposed to classify art objects
and their supports, according to their shape and seismic
behavior. Augusti et al. (1992) provided a few rules for
the safeguard of art objects, such as allowing the slid-
ing motion between the object and its support in order
to reduce the inertia forces, lowering the object’s center
of mass to increase its stability, and provide the object
with a base isolation system. From these studies, it appears
that freestanding objects such as statues and amphorae are
the most exposed elements. Indeed, when these objects
are subjected to an earthquake, they can rock and conse-
quently overturn.
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After these preliminary studies, several further analyses
have been conducted in the past decades on the rocking
response of rigid bodies (Aslam et al., 1978; Housner, 1963;
Ishiyama, 1982; Taniguchi, 2002; Yim et al., 1980; Zhang &
Makris, 2001; Zuccaro et al., 2017). Although this is a well-
known topic in the scientific literature, there have been
many recent and significant developments, such as the
derivation of closed-form solutions (Kounadis, 2015), the
investigation on the role of the friction coefficient (Gesu-
aldo et al., 2016; Gesualdo, Iannuzzo, Minutolo, & Monaco,
2018; Gesualdo, Iannuzzo, Monaco, & Penta, 2018), the
influence of heavy masses on the rocking behavior (Gesu-
aldo, Iannuzzo, & Monaco, 2018), the assessment of the
existing protocols for shake table testing of freestanding
objects (D’Angela et al., 2021), and the study of the seis-
mic response of storage racks (Malhotra, 2009). From the
experimental point of view, recent researches aim at deter-
mining the friction coefficients between the rigid body and
the base (Monaco et al., 2014) and the minimum horizon-
tal acceleration required to activate rocking (Berto et al.,
2021).

In the field of vibrations passive control, many papers
focused on the study of the seismic protection of rigid bod-
ies by means of a base isolation system modeled as a lin-
ear viscoelastic element (Calio & Marletta, 2003; Contento
& Di Egidio, 2009; Di Egidio & Contento, 2009; Roussis
& Odysseos, 2014; Roussis et al., 2008). The use of mass-
damper dynamic absorbers (Di Egidio et al., 2019), as well
as rate-dependent or rate-independent hysteretic energy
dissipation devices (Makris & Aghagholizadeh, 2019), were
also studied. Other studies have been dedicated to active
(Di Egidio, Contento, Olivieri, & de Leo, 2020; Simoneschi
et al., 2018; Venanzi et al., 2018) and semi-active (Ceravolo
et al., 2016, 2017) control systems to prevent the rocking of
rigid bodies.

Contento and Di Egidio (2014) investigated the seismic
protection of freestanding rigid bodies placed on a multi-
floor with the base isolation modeled as a linear viscoelas-
tic element. Kavvadias et al. (2019) focused on the seismic
mitigation of a statue, modeled as a rigid body, placed on
the top floor of a two-story reinforced concrete frame build-
ing. The authors considered two cases of base isolation,
both with the friction pendulum sliding bearings as iso-
lation devices. In the former case, the base isolation was
applied to the building, whereas in the latter, the base iso-
lation was implemented on the base of the statue.

Sorace and Terenzi (2015) and Sorace et al. (2016) focused
on museums with floor isolation systems. The double-
friction pendulum isolators were used for the base-isolated
floor, whereas the museum contents were modeled with
a finite element approach. Siami et al. (2018) investigated
the effect of coupling two inerters to the isolation system
of Michelangelo’s Pieta Rondanini. The base isolation was
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i)
made by rubber bearings and friction slides and was real-
ized to protect the famous statue during a relocation in
another museum and to preserve it from earthquakes and
environmental vibrations. The isolation acts in both hori-
zontal and vertical directions. Furthermore, the dynamical
characteristics of typical statue-pedestal systems have been
studied by Wittich and Hutchinson (2016).

In the previous studies, much attention was given to the
friction pendulum sliding bearings, with a single or double
concave surface (Baggio et al., 2015, 2018; Berto et al., 2013;
Kavvadias et al., 2017; Roussis & Odysseos, 2017; Vassil-
iou & Makris, 2012), whereas the elastomeric isolators did
not receive the same attention, although it represents one
of the most popular isolation systems. For example, these
devices are used for the protection of some statues, such
as the Greek bronze statue of the Dancing Satyr, made in
the Hellenistic period and on display at the Dancing Satyr
Museum (Mazara del Vallo, Italy), and the Roman bronze
statue of the Emperor Germanico made in the 1st century
AD and exposed at the archaeological Museum Edilberto
Rosa (Amelia, Italy; Calio & Marletta, 2004). Vestroni and
Cinto (2000) proposed to endow the statues with lami-
nated rubber bearings. The statue was modeled as a single-
degree-of-freedom system although the rocking behavior
was not explored.

Concerning the design of the base isolation systems, a
typical procedure is the selection from the seismic design
spectra of a target period for the isolated structure lead-
ing to an admissible base shear or peak response (Ahmad
etal., 2020; Eltahawy et al., 2018). On the other hand, in the
case of a freestanding statue, the main objective of the iso-
lation system is to prevent overturning and rocking. There-
fore, the performance of an isolation system can be esti-
mated by means of the overturning spectra, which depicts
the amplitude of an impulsive excitation leading to the
body overturning versus its circular frequency. It has been
shown by Ther and Kollar (2018) that overturning induced
by seismic events can be accurately predicted under an
impulsive excitation with proper duration and peak accel-
eration. Notably, the variation of the maximum rocking
angle with respect to a geometrical property of the block
under seismic excitation can be displayed by the rocking
maps (Di Egidio, Contento, de Leo, & Gardoni, 2020). The
seismic risk assessment of a rigid body endowed with an
isolation system can be also estimated by computing the
fragility functions for a given engineering demand param-
eter (Jaimes & Candia, 2020; Thiers-Moggia & Malaga-
Chuquitaype, 2019).

This paper focuses on the rocking behavior of rigid bod-
ies and seismic protection of statues standing on an iso-
lation base made by: (a) lead rubber bearings (LRBs) and
(b) high damping rubber bearings (HDRBs), which are
the main categories of elastomeric isolators. The hysteretic
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response of the isolation system is modeled by means of
an accurate uniaxial phenomenological model belonging
to a class formulated by Vaiana et al. (2018), thus greatly
improving the accuracy of the dynamic response of this
highly nonlinear coupled system. The parameters of the
proposed hysteretic model have a mechanical meaning
clearer than those characterizing the differential model
used in some of the above-mentioned works (Makris &
Aghagholizadeh, 2019; Roussis & Odysseos, 2017; Vassil-
iou & Makris, 2012; Vestroni & Cinto, 2000). In addi-
tion, we propose a new design process using an energy-
based approach regarding the above-mentioned hysteretic
model. Especially, we exploit the hysteretic model’s alge-
braic nature to derive a formula that computes the energy
dissipated per cycle by a closed-form expression. This can
be particularly useful from a technical point of view. The
design procedure consists of evaluating the small number
of models parameters by a constrained optimization prob-
lem, equating the energies dissipated by a linear viscous
system and an elastomeric isolator. In this way, the model
parameters have been established on the basis of specific
and clear criteria, in contrast to the majority of further hys-
teretic models, mostly the Bouc-Wen one, in which they
are directly provided without justifying their values and
the procedure used to obtain them.

In the analyses, we consider two collapse conditions
that could occur, namely, overturning of the rigid body
and the failure of isolation devices when the horizontal
displacement reaches the admissible displacement of the
elastomeric isolator. The last condition sheds light on an
important issue: If we decide to isolate a rocking object, it
could collapse from the failure of the isolation device if the
value of the impulse-to-rigid body angular frequency ratio
is conveniently high.

The paper is organized as follows. The system under
investigation, namely, the base-isolated rigid body is pre-
sented in Section 2, outlining its geometrical properties,
its kinematics, the equations of motion, and the formu-
lation of the collisions. The main characteristics of two
kinds of elastomeric isolators, namely, the LRBs and the
HDRBEs, are briefly presented in Section 3 with particular
emphasis on the description of their hysteretic behavior.
In Section 4, the general class of hysteretic models formu-
lated by Vaiana et al. (2018) and the uniaxial phenomeno-
logical model able to reproduce the behavior of the elas-
tomeric bearings (Vaiana et al., 20192) is summarized. In
Section 5, we present the design procedure able to pre-
dict the mechanical characteristics of the isolators using an
energy-based approach. In Section 6, the performances of
the elastomeric bearings-based isolation under impulsive
excitation are assessed with the aid of overturning spectra.
Finally, the results obtained from the analyses applied to
the six of Michelangelo’s sculptures located in the Galleria
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dei Prigioni at the Accademia Gallery of Florence subjected
to six different earthquakes are shown and discussed. The
conclusions of the research are drawn in Section 7.

2 | MODEL SETTING

The system here studied is composed of a rigid body simply
supported on an isolation base. The following assumptions
have been made: The rigid body is symmetric with respect
to the vertical axis and has uniform density; accordingly,
the center of mass is on the vertical axis of symmetry. Fur-
thermore, as usual in the specialized literature, a 2D model
has been assumed. The sliding motion is prevented (Dim-
itrakopoulos & Paraskeva, 2015; Linde et al., 2020; Petrone
et al., 2017) either by assuming that the kinetic friction
between the rigid body and the isolation base is sufficiently
high or supposing that there are some constraints able to
prevent the relative horizontal displacement between the
rigid body and the isolation base. This model has already
been explored in the scientific literature (e.g., see Vassiliou
& Makris, 2012).

The rigid body has mass m and polar inertia about rota-
tion axis through its center of mass I.,. Denoting as O
and O’, the centers of rotation, that is, the two bottom
corners of the rigid body, the horizontal and vertical dis-
tances between O [O’] and the center of mass are b and
h, respectively (see Figure 1). Consequently, the radial dis-
tance between the center of rotation and the center of mass
is equal to R = V/b? + h2, and the polar inertia about the
rotation axis through one of the two centers of rotation is
Ip = I, + m R?. When the rigid body is at rest, the radial
distance R forms an angle o« = tan~1(b /h) with the verti-
cal axis, this is a measure of the body slenderness.

The isolation base has mass m;, and it is connected to the
support through elastomeric isolators. The isolators’ verti-
cal stiffness was considered far greater than the horizontal
one. Consequently, rotation and curvilinear translation of
the base are neglected.

2.1 | Kinematics and equations of motion
Based on the previous assumptions, the system has two
degrees of freedom: one relative to the rocking motion
of the rigid body, and the other corresponds to the rela-
tive translation motion of the isolation base. Nevertheless,
depending on the behavior of the system, the two degrees
of freedom are not both activated. Notably, there are two
phases of motion: (a) full-contact motion in which the
rigid body is in contact with the isolation base; (b) rock-
ing motion in which the rigid body rocks around one of
the two centers of rotation while the isolation base moves
horizontally.
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FIGURE 1

Geometrical properties of the seismically
base-isolated rigid body

The Lagrangian parameters that describe the two above-
mentioned kinds of motions are the relative displacement
between the isolation base and the ground u(t) and tilt-
ing of the rigid body 6(t). According to Newton’s notation,
their first and second derivatives with respect to the time
are denoted as u(t), 6(t) and ii(t), 6(t), respectively.

The horizontal component of the base acceleration act-
ing on the fixed support is denoted as iiy(t). Unless oth-
erwise specified, the dependence on time will be omitted
hereafter.

An xy coordinate system has been defined to estab-
lish the positive directions of displacements, velocities, and
accelerations (see Figure 1). The positive direction of x due
right and that of y is upward; finally, we assume that clock-
wise rotations around the reference frame’s origin turn
have a positive magnitude.

The equations of motion change according to the kind
of motion that the rigid body undergoes. Consequently, in
the next subsections, we outline the starting condition as
well as the equations of motion for each phase.

2.2 | Full-contact

In the full-contact phase, the rigid body has one degree
of freedom described by the Lagrangian parameter u.
This phase occurs when both initial conditions in
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terms of angular displacement and velocity are null
(6, = 0 and 8, = 0) and when the starting condition of the
rocking phase is unsatisfied. The latter will be detailed in
the next section.

The equation of motion that describes the full-contact
phase can be obtained by applying Newton’s second law of
linear motion and balancing all forces acting on the body
in the horizontal direction (see Figure 2a)

(m + my) (iig + i) + ngf =0 6)

where n; denotes the number of elastomeric isolators, and
f represents the elastomeric device restoring force.

The full-contact phase stops when the rocking phase
starts.
2.3 | Rocking
Both Lagrangian parameters, namely, u and 6, are acti-
vated in the rocking phase. Since the rigid body is sym-
metric, it is possible to take into account the change of the
sign in 6, that is, when the body changes the center of rota-
tion, by means of the signum function sgn(-). Accordingly,
the starting condition, as well as the equations of motion,
are valid when rigid body rocks either around the left or
around the right corner.

The rocking phase can start when the overturning
moment due to the inertial forces is greater than the resist-
ing moment due to the gravity acceleration g, namely,
|iig +ii| > g b/h, or for 6, # 0, and/or éo +0.

The equations of motion can be obtained by applying
Newton’s second law of both linear and angular motion
and balancing all horizontal forces and moments acting on
the body (see Figure 2b):

m (iig + il + iig) + my (ilg + i) + ngf =0 (2a)

Io8 +m (iig +ii) R cos(sgn(6)a —6)

=-m gR sin(sgn(®)a —6) (2b)

where iig is the second derivative with respect to the time
of the horizontal displacement uy of the center of mass of
the rigid body with respect to the isolation base.

The rocking phase ends when the angular velocity van-
ishes after a collision, that is, |6] = 0.
2.4 | Collisions
When the angular displacement 6 approaches zero, the
rigid body collides with the isolation base, with a sudden
change in its motion. For inelastic collisions, the kinetic
energy of the system and the body velocity decrease.
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FIGURE 2

Being the statue a slender body, we assume that after the
collision, the body can only re-uplift by changing the center
of rotation, that is, there is no bouncing of the body on the
corner in contact (Calio & Marletta, 2003).

To obtain the initial condition immediately after the col-
lision, the law of conservation of linear [angular] momen-
tum is used. In fact, although the kinetic energy decreases,
the linear [angular] momentum remains unchanged. The
subscript (-); will denote the pre-collision quantities,
whereas the subscript (-); will identify the post-collision
quantities.

Conservation of angular momentum on bottom corner
O gives

I, éi —2mbRsin () éi + mR cos(a)u; = Ioéf + mRcos(a) iy

3)
and the conservation of linear momentum of the entire sys-
tem along the horizontal direction gives:

(m+my) u; +m ug, = (m+my) L'tf+mil9f 4)

Taking the derivative of uy with respect to the time and
replacing it in Equation (4), we obtain

(m + my) 1, + mRcos(a) 6, = (m+m,) iy + mRcos (a) Qf

©)

In conclusion, the angular and linear velocities after the
collision can be obtained by solving Equations (3) and (5)
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(b)

Instances of the motion that can occur: (a) full-contact, (b) rocking

for the variables 8 ¢ and 1. Accordingly

. 2b*m :

Or=(1+ ———7 )6 6

4 < +h2mn7z—lo> : ©
and

S 2b2hmm

A Ty ?

where i = m/(m + my).
Provided that the rocking phase ceases after a collision,
Equations (6) and (7) are written as follows:

6r=0 (8a)

iy =1; +mRcos(a) 6; (8b)

in which the Equation (8b) trivially follows from Equa-
tion (5) with 6 r=0.

3 | ELASTOMERIC ISOLATORS

Elastomeric isolators are one of the most popular types of
isolation devices used for seismic protection. They have a
circular or square cross-section and are made of alternat-
ing layers of rubber and thin steel plates that are bonded
together by a specific manufacturing process. The reinforc-
ing elements prevent the lateral expansion of the elastomer
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due to the axial compressive load, whereas the elastomer
material provides energy dissipation and flexibility.

The main categories of elastomeric bearings for seismic
isolation applications are the low damping rubber bear-
ings, HDRBs, and LRBs (Losanno, Hadad, & Serino, 2019;
Losanno, Spizzuoco, & Calabrese, 2019; Losanno et al.,
2020; Naeim & Kelly, 1999). The formers are typically used
in coupling with other kinds of isolators (e.g., flat slid-
ers, steel yielding devices, and viscous dampers) due to
their limited damping capacity. Consequently, in this sec-
tion, we analyze the differences only between HDRBs and
LRBs, with a particular emphasis on the force-transverse
displacement (f — u) relationship.

31 | LRBs

The LRBs are generally characterized by one lead cylin-
der inserted in a vertical hole into the rubber bearings. The
lead cylinder increases the horizontal stiffness in order to
limit the horizontal displacements produced by the non-
seismic horizontal loads, as well as the energy dissipation
capacity. Therefore, the initial tangent stiffness of these
devices is approximately 10 times the post-elastic tangent
stiffness, and the equivalent viscous damping factor can
reach a value up to £ = 15— 35% (Naeim & Kelly, 1999).
Several dynamic tests conducted on these kinds of devices
show that at strains approaching 200%, there is no stiff-
ening behavior so that the force-displacement hysteretic
loop is bounded between two parallel straight lines (Tyler
& Robinson, 1984; see Figure 3a).

3.2 | HDRBs

The HDRBs allow one to reach an equivalent viscous
damping factor of £ = 10—20% at a shear strain of
y = 100%. The shape of the HDRB’s force-displacement
relationship depends on the value of the applied shear
strain. Notably, the shear modulus at low levels of shear
strain (y < 100%) can be five times greater than the one at
shear strain levels of y ~ 100 — 150% (Constantinou et al.,
2007). For relatively small values of shear strain, namely,
y <100 — 150%, the hysteretic loop is bounded between
two parallel straight lines. As the shear strain increases
(y > 100 — 150%), a stiffening behavior is shown (Fujita
et al., 1990), and consequently the HDBR’s hysteretic loop
is bounded between two parallel curves (see Figure 3b).

4 | HYSTERETIC MODEL

To reproduce the complex nonlinear behavior typical of
most seismic isolators, it is important to use an accurate

PELLECCHIA ET AL.
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FIGURE 3 Typical hysteretic loops displayed by the main

categories of elastomeric bearings for seismic isolation applications:
(a) lead rubber bearings (LRBs); (b) high damping rubber bearings
(HDRBs)

model. To this end, the Bouc-Wen model (Bouc, 1971; Wen,
1976) is the most popular hysteretic model and is used to
simulate several types of hysteretic phenomena (Ikhouane
et al., 2007; Ismail et al., 2009). This model is of differen-
tial nature, that is, the equation that allows one to evalu-
ate the output state variable is a nonlinear ordinary differ-
ential equation. Unfortunately, this differential equation
could need some iterative techniques for each time step of
the nonlinear time history analysis by increasing the com-
putational costs. To overcome the limits of the differential
models, we use a computationally efficient model belong-
ing to a class developed by Vaiana et al. (2018). This model
is of algebraic nature so that it is possible to evaluate the
output variable in closed form. Consequently, the compu-
tation time for geometrically and mechanically nonlinear
dynamics analyses can be reduced. Moreover, this model
can be used in a design procedure using an energy-based
approach (described in Section 5) since it is possible to eval-
uate the dissipated energy analytically.
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(b)

FIGURE 4
lines (a) or curves (b)

Hysteresis loop bounded by two straight parallel

4.1 | Assumptions of the class of
hysteretic models

First of all, the class of hysteretic models is able to repro-
duce a symmetric loop bounded between two parallel
straight lines (Figure 4a) or curves (Figure 4b). Addition-
ally, it assumes that the general loop is defined by four sep-
arate curves:

* the upper and the lower limiting curves, denoted as c,
and ¢;, respectively, and represented by the blue color in
Figure 4;

* the loading and unloading limiting curves, denoted
as ¢t and ¢, respectively, and represented in red in
Figure 4.

As shown in Figure 4, the model assumes that the dis-
tance between the upper and the lower limiting curves is
constant and equal to 2 f, in which f [—f] represents the
point of intersection between the upper [lower] limiting
curve with the axis of ordinate. This assumption implies
that the distance between the starting and the ending point
on the upper [lower] limiting curves ¢, [¢;], denoted as u;

59 WILEY-

and u;, respectively, is assumed to be constant and equal to
2 u, (see Figure 4). Accordingly, utilizing the superscript
+ [—] to denote the generic loading [unloading] curve, one
obtains u;” = uj+ —2up [u; =u; +2u). Note that if the
restoring force is equal for positive and negative excita-
tions, the displacements u;r [uF] and u; [u7] can be the
same in absolute value.

Consequently, in the generic loading case, that is to say,
when the horizontal velocity is positive (& > 0), the gener-
alized force f is computed as

ct (u,ufr) ifue uJ.r—Zuo,uJ.r]
f(wut)= 4 ! (9
¢, () ifue uj,oo)

Conversely, for a generic unloading case (it < 0), the
generalized force f can be computed in the following way

f (u,uj.‘) _ c- (u,ujf) ifue [u}.‘,u}.‘ + 2u0] 10)

¢ (u) ifue (—oo,uj_]

4.2 | Elastomeric bearings formulation
The model described in Vaiana et al. (2019a) to simulate
the behavior of the LRBs and HDRBs has been adopted
in this paper. Consequently, the reader is asked to refer
to the above-mentioned reference for a more comprehen-
sive description and further details. The expressions of the
upper (lower) and the loading (unloading) limiting curves
for elastomeric isolators are

=P+ +kyu+ f (112)
a=pud+pu+kyu—f (11b)
and
ct=p W +puw+kyu+f
-2
(1+u_u.++zu0) (-2) (12a)
_ j _ (1+2u0)
+ (kg — kp) 1-1 1-1
cc=p W+ +kyu—f
-2
(1—u+uj’+2u0) 3 (1+2up) ™ (12b)

+ (ka - kb)

-1 -1

where u represents the longitudinal displacement and k,,
ky, 4, 81, and 8, are the model parameters. In particular,
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k, is the tangent stiffness of curve ¢t [¢7], at u = ul.+
[u =u; |, kp is the tangent stiffness of curve ¢t [c™] at
u =ut [u = uj_ ], and the dimensionless parameter 1
defines the rate of change of the tangent stiffness from k,
to ky, for both curves ¢t and ¢™. Finally, the parameters 3,
and f3, define the curvatures of the upper and lower lim-
iting curves. From a mathematical point of view, k, > kp,
ky>0,1>0,1#1>,uy>0,and Sy, 5, € R.

The internal model parameters u, and f can be evalu-
ated as follows:

1

1| (ke —kp\7
uo—z <5—k> -1 (13)

kg =k (@ +2u)" P -1
f= ( e (14)

in which & is the difference between the two values

assumed by the tangent stiffness at u;.r [u] ] and it may be
set equal to 10720 as explained in Vaiana et al. (2019a).

5 | THE ENERGY-BASED DESIGN
PROCESS FOR THE DEFINITION OF THE
HYSTERETIC MODEL PARAMETERS

The above-mentioned model parameters (k,, kp, 4, 1,
B>) can be calibrated from experimental testing by an
inverse identification strategy as shown in Sessa et al.
(2020). However, this approach could be a hard task for
the designer since the experimental data of elastomeric
isolators are not available on the manufacturers’ catalogs.
Hence, the choice of the mechanical characteristics of
the elastomeric isolators, and consequently the isolator’s
type and size, could require some iterations in the design
process.

This section provides a design procedure able to pre-
dict the parameters of the algebraic hysteretic model
described in Section 4 that is strictly related to the mechan-
ical characteristics of the elastomeric isolators. This pro-
cedure is based on equating the area of the hystere-
sis loop with the shape of an ellipse, which represents
the energy dissipated through the equivalent linear rate-
dependent hysteretic model and the area of the hystere-
sis loop displayed by an elastomeric isolator. In this way,
the hysteretic model parameters can be evaluated from
data easily available to the designer, namely, the iso-
lated system’s mass and period, the admissible displace-
ment of the elastomeric device, and the viscous damping
factor.
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EiEp

5.1 | Evaluation of the energy dissipated
per cycle

The force—displacement relationship is an ellipse when the
damping is strictly viscous. The area of the ellipse repre-
sents the energy dissipated and it is computed as follows:

E,=27m keff urznax g (15)

where k¢ is the effective secant stiffness of the peak-to-
peak values in the hysteresis loop, i, is the maximum
displacement, and & is the viscous damping factor.

The energy dissipated by the hysteresis loop in one cycle,
simulated through the algebraic hysteretic model, can be
evaluated in closed form, owing to the fact that each curve
of the hysteresis loop is defined by analytical expressions.
Indeed, the energy dissipated on the interval [—uax, Umax ]
is the difference between the area below the top and the
bottom curve of the loop, that is:

—Umax +2Ug Umax
E,=E|, - E}) = ct du + / ¢, du
—Umax —Umax +2Ug
umax_zuo Umax
— / ¢ du + ¢~ du (16)
—Umax umax_zuo

so that replacing Equations (11a,11b) and (12a,12b) in the
previous equation, one obtains

a+2 uO)_A

T A=) (-1 [2 (kg — kp) (L 42uy) (1 +2u, (A —-1))

=20+ 2u)’ (ky =k =2 ity 2 =2) A= 1)
7)

We infer from Equation (17), that the dissipated energy
Ej, does not depend on the model parameters 3; and 3,. In
fact, the hysteresis loop is symmetric, that is, it is charac-
terized by an odd function with respect to the origin of the
reference frame; consequently, the variation of curvature
of the limiting curves ¢, and c; does not affect the area of
the hysteresis loop.

The initial tangent stiffness k, can be expressed as a mul-
tiple of the post yield tangent stiffness k;,

k, =nkp (18)

where 7 is the initial-to-post yield tangent stiffness ratio
(Naeim & Kelly, 1999; Skinner et al., 1993). Naeim and
Kelly (1999) recommended n ~ 3 — 6 for the HDBRs and
7 &~ 10 — 21 for the LRBs.
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Replacing Equations (13), (14), and (18) in Equation (17),
we get

2

Ep = T-DG-D kp (7 = 1) (Umax (4 —2) = 1)

ko (n—1D)\ 3 ko (n— D)\ 7
+1<—/1 >(/1—1)(—/1 >

- (/1 - 2) (umax + 1) (19)

5.2 | Evaluation of the hysteretic model
parameters

The algebraic hysteretic model’s area depends on just two
parameters, namely, k;, and A, once the initial-to-post yield
tangent stiffness ratio 7 and the admissible displacement of
the elastomeric isolator u,,,, have been established. These
mechanical characteristics can be estimated by means of
a constrained optimization problem obtained by equat-
ing the energy dissipated by the hysteresis loop simulated
through the algebraic hysteretic model E;, and the equiva-
lent viscous one E,,.

In this way, the effective secant stiffness k.rs in Equa-
tion (15) can be evaluated from the properties of the seis-
mically base-isolated rigid body, that is,

2
etr = <§—:> (m + my) (20)

1

in which T}; and m + m,, are the isolation period and the
total mass, respectively.

Let us define the objective function to be optimized
€ as the relative error between the energy dissipated by
the equivalent viscous model and the algebraic hysteretic
model,

_ |EU - Eh|

€ = W (21)

The constrained optimization problem consists of mini-
mizing the function € with respect to the variables k; and
A and in the presence of constraints on those variables.
Accordingly, the problem can be expressed in the follow-
ing form

min e(ky, 1) subjectto kj = kees — (22)
kpe R+\{0} Umax

A€ R+\{0,1}
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wherein the constraint k, = kerf — f/Umax is nonlinear
given the dependence of f on the unknowns k; and 1 (see
Equation 14).

The problem (22) has to be solved numerically. In this
study, we used the interior point technique (for a more
extensive description, see Waltz et al., 2006).

In order to provide the best estimate of the optimal solu-
tion, it is necessary to define the initial points kg and A,.
A general criterion for a correct choice of kg and A, does
not exist. However, the extensive numerical tests that have
been carried out by the authors, starting with randomly
generated initial points, have proved that the values

Kegf (-1
e eff5(7i ))

lo; (
0 _ 0 _ k
kb = keff and A" = 102(142 tipay)

(23)

provide a good lower local minimum objective function
value. The order of magnitude of the relevant value at solu-
tion is equal to 10719,

The expression of A° has been obtained by inverting
Equation (13) and setting kg = korr and ug = Upay-

6 | NUMERICAL EXPERIMENTS

In this section, we show the results of some numerical
analyses performed on rigid bodies seismically isolated by
means of the two kinds of elastomeric isolators described
in Section 3. The strongly nonlinear force-displacement
relationship displayed by the elastomeric isolators has
been simulated through the algebraic hysteretic model
described in Section 4. The parameters of the hysteretic
model have been computed by the energy-based design
procedure described in Section 5. The analyses consider
two collapse conditions that could occur, namely, over-
turning of the rigid body when tilt angle reaches 90 degrees
|6] = m/2 (Di Egidio & Contento, 2009; Ishiyama, 1982),
and the failure of isolation devices when the horizontal
displacement reaches the admissible displacement of the
elastomeric isolator |u| = .-

6.1 | Overturning spectra generated by
impulsive excitation

First of all, the overturning spectra (Di Egidio et al., 2019;
Vassiliou & Makris, 2012; Zhang & Makris, 2001) have been
evaluated in order to establish the performance of the two
kinds of elastomeric isolators in the protection of a rigid
body subjected to an impulsive excitation. These spectra
are obtained for rigid bodies having the geometrical and
dynamical properties presented in Table 1, where a, m, and
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TABLE 1 Properties of the rigid body used for generating the
overturning spectra

o (deg) m (kg) m, (kg) w, (rads™)

15 5000 286.20 Var.
TABLE 2 Properties of the elastomeric isolators

£ (%) 7 ()
ng Tpi(8) Upx(m) LRB HDRB LRB HDRB
4 2 0.30 15 15 10 5

my, are detailed in Section 2, whereas w, = \/m gR/I,
is the fundamental angular rocking frequency of the rigid
body.

The system is subjected to an impulsive signal with a
shape of a full sine cycle i, = Aﬁg sin(cougt) where Au'g is
the magnitude, supposed to be a variable, and w;; is the
angular frequency, supposed to be equal to 2 77/0.5rad s.

The evaluation of the algebraic model parameters for
simulating the elastomeric isolators’ hysteresis loops by
means of the design procedure defined in Section 5
requires the definition of the following properties: the
number of the elastomeric isolators, the isolation period,
the elastomeric device’s admissible displacement, the
equivalent viscous damping factor, and the initial-to-post
yield stiffness ratio. The selected values of properties for
generating the overturning spectra are given in Table 2.

The algebraic model parameters for three types of elas-
tomeric isolators, one LRB and two HDRBs, have been
obtained by the design procedure and are reported in
Table 3. Since the parameters 3; and 8, cannot be obtained
from the design process, we assigned a value that pro-
vides stiffening behavior at a relatively large value of shear
strain.

The overturning spectra in Figure 5 are shown by report-
ing on the abscissa the impulse-to-rigid body angular fre-
quency ratio Wi, /w,, whereas there is the impulse mag-
nitude normalized with the static value of the minimum
overturning acceleration Aﬁg /(g tan(a)) on the ordinate
axis. Consequently, the filled contour maps are obtained by
varying the impulse magnitude Au'g and the fundamental
angular rocking frequency w, of the rigid body supported
on: (a) no isolation system, (b) LRB, (c) HDRB;, and (d)
HDRB, isolation systems.

Color maps depict the maximum absolute value of the
tilt angle |6,,.x| showing:

* the safe area—represented by the dark blue color—that
is, the area in which the rigid body does not rock;

* the overturning area—represented by the red color—
namely, the area where the rigid body overturns;
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* the rocking area—represented by the colors between the
dark blue and red color—that is, the area in which the
rigid body rocks without overturning.

In addition, the spectra also consider the failure con-
dition of the elastomeric isolators, represented by the 45
degrees parallel lines hatch pattern, that is, the area in
which the elastomeric isolators fail due to the fact that the
maximum horizontal displacement of the system exceeds
the device’s admissible displacement.

The comparison of the above-mentioned spectra high-
lights the performance of the elastomeric isolators. In fact,
we can see that both kinds of base isolation increase the
safe area, increasing as well the static value of the mini-
mum overturning acceleration, in comparison to the spec-
trum of the non-isolated rigid bodies. However, we can also
see that if the value of the impulse-to-rigid body angular
frequency ratio Wiz, /@, is conveniently high, what typically
happens for big-size bodies or high frequencies pulses,
the collapse condition of the device will reduce the base-
isolated rigid body’s safe area in comparison to the non-
isolated rigid body one.

The comparison between the spectra of the LRB and
the HDRBs isolation systems shows significant differences.
The safe area of the LRB isolation system’s spectrum is
wider than the ones related to the two HDRBs isolation sys-
tems. The increases of the minimum overturning acceler-
ation of the two HDRBs isolation systems’ spectra are less
than those characterizing the LRB isolation system. Fur-
thermore, the rocking area is prone to increase as the ratio
Wi, /w, increases when the rigid body is isolated by the
HDRB; as well as HDRB, isolation systems.

From Figure 5c,d, we can compare the two HDRBs
isolation systems. Figure 5c refers to an algebraic model in
which the parameters 8, and 3, are equal to §; = 50 X 103
N m~3 and 8; = 50 x 10° N m~>, whereas in Figure 5d,
the parameters 3; and 3, have been doubled, that is, §; =
100 X 10> N m~ and 8; = 100 x 103> N m~>. This means
that in the latter case, the stiffening behavior provides a
restoring force of the device greater (in absolute value)
than the former case, under the same displacement. Fig-
ure 5d shows that raising of the parameters §; and 8, has
the effect to reduce the safe area, given that the minimum
overturning acceleration decreases, and in addition, the
rocking area for high values of the ratio Wi, /@, increases.

As regards the failure of the devices, it can be seen
that for small values of the ratio Wi, /w,, the HDRBs
devices reach displacements smaller than the LRB one.
In addition, such displacements are prone to decrease
with increasing values of 3; and (3,. In order to estab-
lish a numerical quantification of the device failure
condition, we denote with Arrp, Appgp,, and Appgg,,
the areas in which the LRB, HDRB;, and HDRB,
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TABLE 3 The algebraic model parameters obtained by the energy-based design procedure
k, Nm™)
Lead rubber bearing (LRB) 1.15 x 10*
High damping rubber bearing 1 (HDRB;) 1.14 x 10*
High damping rubber bearing 2 (HDRB,) 1.14 x 10*

wi, o [1

(¢) HDRB,; isolation system

FIGURE 5

A() B (Nm™) B, (Nm™)
109.37 0 0
46.70 50 x 103 50 x 103
46.70 100 x 10° 100 x 103
3
R
3
g
S
K
3
g
Sy

wi, /o []

(d) HDRB; isolation system

The overturning spectra for rigid bodies: without base isolation (a), isolated by the LRB (b), HDRB, (c), HDRB, (d) isolation

systems defined in Table 3 and subjected to the full sine cycle. Dark blue color = safe area; red color = overturning area; further colors
indicate rocking area; 45 degrees parallel lines hatch pattern indicates collapse area for elastomeric bearing

devices fail, respectively. Therefore, the ratios between
the above-mentioned quantities are: A;rg/Apprp, ~ 1.05,
Arrp/Amprs, ® 1.12, and Agprp, /Auprs, ~ 1.06. Con-
sequently, the HDRB’s collapse area tends to decrease as
the stiffening behavior increases, which happens if the 8
parameters are increased. Notably, the HDRB,’s collapse
area decreases by approximately 6% when doubling the 8
parameters.

6.2 | Application to sculptures subjected
to seismic excitation

In this section, we examine the seismic response of six of
Michelangelo’s sculptures located in the Galleria dei Pri-
gioni at the Accademia Gallery of Florence.

The geometrical properties of such statues, listed in
Table 4, have been taken from Berto et al. (2012) who

TABLE 4 The geometrical properties (see Figure 1) of the
equivalent blocks of the six of Michelangelo’s sculptures located in
the Galleria dei Prigioni at the Accademia Gallery of Florence (Berto
et al., 2012)

b (m) h (m) m (kg)
San Matteo 0.30 1.36 3287
Pieta da Palestrina 0.39 1.26 7 084
Prigione che si Sveglia 0.32 1.41 5644
Prigione il Giovane 0.36 1.28 4005
Prigione Barbuto 0.37 1.29 4655
Prigione Atlante 0.45 1.39 7 691
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Rocking response of the Michelangelo’s sculptures located in the Galleria dei Prigioni at the Accademia Gallery of Florence

subjected to the horizontal ground acceleration recorded during the Northridge earthquake (1994)

performed the study of seismic assessment of art objects
in museums supposing that the statues were equivalent
to a prismatic block, named equivalent block. Although
the symmetric model was quite reasonable for most of
the statues, the above-mentioned authors concluded that
the equivalent block model overestimates the stability
capacity of the artifacts, compared to a more realistic
model accounting for the eccentricities of the center of
mass with respect to the centers of rotations (asymmetric
model).

The masses listed in Table 4 are obtained supposing that
the density of each statue was 2 650 kg m~3.

Nonlinear time-history analyses have been conducted
supposing that the mass of the isolated base my,, is the
one shown in Table 1 and assuming the following seismic
inputs:

* the strike parallel direction of the horizontal ground
acceleration recorded at the Jensen Filter Plant station
during the Northridge earthquake of January 17, 1994;

 the 000 component of the horizontal ground accelera-
tion recorded at the Gilroy Array #1 station during the
Loma Prieta earthquake of October 18, 1989;

* the 180 component of the horizontal ground acceleration
recorded at the Geotech. Investig. Center station during
the San Salvador earthquake of October 10, 1986;

* the East-West component of the horizontal ground
acceleration recorded at the Gemona station during the
Friuli earthquake of September 15, 1976;

* the North-South component of the horizontal ground
acceleration recorded at the Mire station during the
Emila earthquake of May 5, 2012.

* the North-South component of the horizontal ground
acceleration recorded at the Domo station during the
Central Italy earthquake of October 6, 2016.

First of all, we investigated the rocking behavior of the
statues without the base isolation. Figure 6 displays the
rocking angle 6 normalized with respect to the angle o
versus the time of each statue subjected to the Northridge
earthquake. All statues rock and two of these, namely, San
Matteo and Prigione che si Sveglia, overturn. The same con-
clusions are derived from the Central Italy earthquake.
All statues rock without overturning when they are sub-
jected to the Loma Prieta as well as the San Salvador earth-
quakes. Only San Matteo overturns due to the Friuli earth-
quake, while the remaining sculptures rock. The Emilia
earthquake does not cause the overturning of the sculp-
tures, even though the San Matteo and Prigione che si Sveg-
lia statues rock. For completeness, we show in Figure 7
the results obtained for the San Matteo statue subjected to
the above-mentioned seismic inputs. In any case, in addi-
tion to overturning, rocking is an unsatisfactory behavior
because of the possible damages that the collisions cause
with the pedestal (Di Sarno et al., 2015; Fragiadakis & Dia-
mantopoulos, 2020; Konstantinidis & Makris, 2009). Con-
sequently, all the statues need to be protected from seismic
excitations.
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FIGURE 7

to the: (a) Northridge, (b) Loma Prieta, (c) San Salvador, (d) Friuli, (e) Emilia, and (f) Central Italy seismic excitations

Rocking response of the San Matteo statue located in the Galleria dei Prigioni at the Accademia Gallery of Florence subjected

0.6 T TABLE 6 The algebraic model parameters obtained from the
—o— Northridge =~ ——— Friuli LRBs’ properties listed in Table 5 by means of the energy-based
0.5F —&— Loma Prieta —#— Emilia . design procedure
—x—— San Salvador —%— Central Italy k, (Nm) 10
£} 04 San Matteo 2.26 X 10° 109.37
—03 Pieta da Palestrina 4.67x10° 109.37
3
£ Prigione che si Sveglia 3.76 X 103 109.37
- 0.2 Prigione il Giovane 272 x 10 109.37
Prigione Barbuto 313 x10° 109.37
0.1 Prigione Atlante 5.05 x 10° 109.37
08

Ty [s]

FIGURE 8 Full-contact spectra referring to the seismically
base-isolated rigid body with four LRBs whose admissible
displacement, viscous damping factor, and initial-to-post yield
stiffness ratio are listed in Table 5

TABLE 5
model parameters for the isolation of Michelangelo’s sculptures
with the LRBs

ng Tbi (S) Umax (m) g (%) n (_)
4 3.7 0.30 15 10

The properties considered to evaluate the algebraic

Figure 8 shows the full-contact spectra regarding the
seismically base-isolated rigid body with four LRBs, whose
properties are listed in Table 5, and subjected to the six seis-
mic excitations. The spectra are referred to one value of the

viscous damping factor £, namely, 15% and depict the evo-
lution of |uy,, | with respect to the isolation period T'p;. The
other properties of the LRBs, that is, the admissible dis-
placement, and the initial-to-post yield stiffness ratio are
reported in Table 2. We can see that lower values of the
horizontal displacement are reached by choosing a value of
the isolation period ranging from approximately 2.5 to 5.3
s. We chose T}; = 3.7 s for further analyses (see Table 5).
The hysteretic model parameters have been obtained for
each statue according to the above detailed design proce-
dure and are reported in Table 6 where the parameters 3,
and 3, have been omitted since they are null for the LRBs
isolation system. The numerical results show that both col-
lapse conditions, namely, the overturning of the statues
and failure of the devices, are never attained. Moreover, all
statues never rock and this avoids the possibility of dam-
age due to impacts. For brevity, in Figure 9, we reported
just the time-displacement relationships concerning the
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FIGURE 9 The displacement time histories of the seismically base-isolated rigid body with the LRBs isolation system, whose properties
are listed in Table 5, subjected to the: (a) Northridge, (b) Loma Prieta, (c) San Salvador, (d) Friuli, (¢) Emilia, and (f) Central Italy seismic

excitations

TABLE 7 The properties considered to evaluate the algebraic
model parameters for the isolation of the Michelangelo’s sculptures
with the HDRBs

ng Tbi (S) Umax (m) g (%) n (_)
4 3.7 0.35 15 5

TABLE 8 The algebraic model parameters obtained from the
HDRBs’ properties listed in Table 7 by means of the energy-based
design procedure

ky Nm™) 2 (=) B Nm™) g, (Nm™)

San Matteo 225x10°  40.16 1x10* 1x10*
Pieta da Palestrina  4.64 x10°  40.16 1 x 10* 1x10*
Prigione che si Sveglia 3.73 x 10> 40.16 1 x 10* 1x10*
Prigione il Giovane  2.70 X 10>  40.16 1 x 10* 1x10*
Prigione Barbuto 311x10°  40.16 1x 10* 1x10*
Prigione Atlante 5.02x10° 4016 1x 10* 1x 104

six seismic excitations considered since the time-rocking
angle relationships are always null for every statue.

The same analyses have been carried out considering the
HDRBs devices as an isolation system. Table 7 presents the
devices’ properties providing the same results, in terms of
the time-rocking angle relationship, of the LRB isolation.
The related hysteretic model parameters obtained by the
design procedure are listed in Table 8. For the sake of sim-
plicity, we chose the same 3, and 3, parameters for all stat-
ues, although an ad hoc calibration for each statue would

be needed in order to have stiffening behavior at a rela-
tively large values of shear strain.

7 | CONCLUSION

In this work, the performance of the elastomeric bearings-
base isolation in the protection of freestanding rigid bodies
has been studied in depth. Particular emphasis was ded-
icated to the protection of art objects and, in particular,
statues that require many stringent requirements for their
protection. The paper examines the rocking behavior when
the base isolation is supported on the main kinds of elas-
tomeric isolators, that is, the LRBs and HDRBs. The com-
plex hysteretic behavior displayed by such devices has been
modeled by a uniaxial phenomenological model that offers
many advantages. The model’s validation and its accuracy
have been proven in several papers (Vaiana et al., 2018,
20192, 2019b). The model is based on a small set of parame-
ters, directly associated with the mechanical properties of
the device’s hysteretic behavior to simulate. The model’s
algebraic nature and the mechanical meaning of the model
parameters made it possible to define a new design proce-
dure that allows one to obtain the hysteretic model param-
eters starting with some easily available properties, that is,
the mass and the period of the system to isolate, the num-
ber, admissible displacement, viscous damping factor, and
the initial-to-post yield tangent stiffness ratio of the elas-
tomeric isolator. This design process exploits an energetic
approach based on an equivalent viscous system.
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The extensive numerical applications carried out show
that the elastomeric bearings-base isolation increases
the safe area in the overturning spectrum, that is, the
area where the rigid body never rocks. The comparison
between the LRB’s overturning spectrum and the HDRB
one shows that the former provides a safe area greater than
the latter. Moreover, if the value of the impulse-to-rigid
body angular frequency ratio is conveniently high, which
typically happens for big-size bodies or high frequencies
pulses, the collapse condition of the device reduces the
base-isolated rigid body’s safe area in comparison to
the non-isolated rigid body one. Consequently, if we
decide to isolate a rocking object, it could collapse for the
failure of the isolation device. In addition, we compared
the collapse area for both the LRB and the two HDRBs
isolators.

The work presents also the results obtained with
reference to six of Michelangelo’s sculptures located in
the Galleria dei Prigioni at the Accademia Gallery of
Florence subjected to six earthquakes with pulse-like
behavior. The full-contact spectrum of the isolated system
under seismic excitations was computed to choose the
isolation period, admissible displacement, and equiva-
lent viscous damping of the devices. In this way, it has
been possible to apply the design procedure in order to
obtain the mechanical properties of the devices for each
statue.

Both the LRB and the HDRB satisfied the assumed ulti-
mate limit states, that is, no overturning, no breaking of
the devices, and no rocking. Especially, the HDRB devices
adopted to isolate the statues turned out to be less damped
and more deformable than the LRB.

ACKNOWLEDGMENTS

The financial support of the Italian Ministry for University
and Research - PON 2014-2020 (CUP: E66C18000940007,
Code: DOT1318294), Fondo Sociale Europeo Azione 1.1
“Dottorati Innovativi con caratterizzazione Industriale”;
Project title: Technologies and applications for the conser-
vation, management, and enhancement of cultural, artis-
tic and landscape heritage, University of Naples Federico
IT Research Unit - is gratefully acknowledged.

ORCID

Davide Pellecchia ‘® https://orcid.org/0000-0003-2900-

661X

Stefania Lo Feudo ‘® https://orcid.org/0000-0001-9158-

5144

Nicold Vaiana ‘@ https://orcid.org/0000-0001-9890-3731
Jean-Luc Dion © https://orcid.org/0000-0002-0124-9030
Luciano Rosati® https://orcid.org/0000-0001-5072-9922

59 WILEY -2
REFERENCES

Adeli, H., & Kim, H. (2009). Wavelet-based vibration control of smart
buildings and bridges. CRC Press.

Agbabian, M. S., Ginell, W., Masri, S. F., & Nigbor, R. (1991). Evalua-
tion of earthquake damage mitigation methods for museum con-
tents. Studies in Conservation, 36, 111-120.

Agbabian, M. S., Masri, S. F., Nigbor, R. L., & Getty Conservation
Institute. (1990). Evaluation of seismic mitigation measures for art
objects Getty seismic adobe project. J. Paul Getty Trust.

Ahmad, N., Shakeel, H., & Masoudi, M. (2020). Design and develop-
ment of low-cost HDRBs seismic isolation of structures. Bulletin
of Earthquake Engineering, 18, 1107-1138.

Aldemir, U., Yanik, A., & Bakioglu, M. (2012). Control of structural
response under earthquake excitation. Computer-Aided Civil and
Infrastructure Engineering, 27(8), 620-638.

Andersson, A., O’Connor, A., & Karoumi, R. (2015). Passive and
adaptive damping systems for vibration mitigation and increased
fatigue service life of a tied arch railway bridge. Computer-Aided
Civil and Infrastructure Engineering, 30(9), 748-757.

Aslam, M., Godden, W. G., & Scalise, D. T. (1978). Earthquake rocking
response of rigid bodies (Tech. Rep. No. EERC 2003-07). Prepared
for the Department of Energy under Contract W-7405-ENG-48.

Augusti, G., Ciampoli, M., & Airoldi, L. (1992). Mitigation of seismic
risk for museum contents an introductory investigation. Proceed-
ings of 10th World Conference on Earthquake Engineering, Madrid
Spain (pp. 5995-6000).

Baggio, S., Berto, L., Favaretto, T., Saetta, A., & Vitaliani, R. (2015).
Seismic isolation technique of marble sculptures at the Accademia
Gallery in Florence: numerical calibration and simulation mod-
elling. Bulletin of Earthquake Engineering, 13(9), 2719-2744.

Baggio, S., Berto, L., Rocca, 1., & Saetta, A. (2018). Vulnerabil-
ity assessment and seismic mitigation intervention for artistic
assets: from theory to practice. Engineering Structures, 167, 272
286.

Berto, L., Favaretto, T., & Saetta, A. (2013). Seismic risk mitigation
technique for art objects: experimental evaluation and numeri-
cal modelling of double concave curved surface sliders. Bulletin
of Earthquake Engineering, 11(5), 1817-1840.

Berto, L., Favaretto, T., Saetta, A., Antonelli, F., & Lazzarini, L. (2012).
Assessment of seismic vulnerability of art objects: The Galleria dei
Prigioni sculptures at the Accademia Gallery in Florence. Journal
of Cultural Heritage, 13(1), 7-21.

Berto, L., Meroi, E., Rocca, L., & Saetta, A. (2021). Rocking activation
of free standing elements in real conditions: A safe experimentally-
based acceleration limit. Engineering Structures, 226(2),
111331.

Bitaraf, M., Hurlebaus, S., & Barroso, L. R. (2012). Active and semi-
active adaptive control for undamaged and damaged building
structures under seismic load. Computer-Aided Civil and Infras-
tructure Engineering, 27(1), 48-64.

Bouc, R. (1971). Modéle mathématique d’hystérésis. Acustica, 24(1),
16-25.

Calio, I., & Marletta, M. (2003). Passive control of the seismic rocking
response of art objects. Engineering Structures, 25(8), 1009-1018.

Calio, I., & Marletta, M. (2004). On the mitigation of the seismic risk
of art objects: case-studies. Proceedings of 13th World Conference on
Earthquake Engineering, British Columbia, Canada.


https://orcid.org/0000-0003-2900-661X
https://orcid.org/0000-0003-2900-661X
https://orcid.org/0000-0003-2900-661X
https://orcid.org/0000-0001-9158-5144
https://orcid.org/0000-0001-9158-5144
https://orcid.org/0000-0001-9158-5144
https://orcid.org/0000-0001-9890-3731
https://orcid.org/0000-0001-9890-3731
https://orcid.org/0000-0002-0124-9030
https://orcid.org/0000-0002-0124-9030
https://orcid.org/0000-0001-5072-9922
https://orcid.org/0000-0001-5072-9922

“ | WILEY

Ceravolo, R., Pecorelli, M. L., & Zanotti Fragonara, L. (2016). Semi-
active control of the rocking motion of monolithic art objects. Jour-
nal of Sound and Vibration, 374, 1-16.

Ceravolo, R., Pecorelli, M. L., & Zanotti Fragonara, L. (2017). Com-
parison of semi-active control strategies for rocking objects under
pulse and harmonic excitations. Mechanical Systems and Signal
Processing, 90, 175-188.

Constantinou, M. C., Whittaker, A. S., Kalpakidis, Y., Fenz, D. M.,
& Warn, G. P. (2007). Performance of seismic isolation hardware
under service and seismic loading (Technical Report No MCEER-
07-0012). Multidisciplinary Center for Earthquake Engineering
Research.

Contento, A., & Di Egidio, A. (2009). Investigations into the
benefits of base isolation for non-symmetric rigid blocks.
Earthquake Engineering & Structural Dynamics, 38(7), 849-
866.

Contento, A., & Di Egidio, A. (2014). On the use of base isolation for
the protection of rigid bodies placed on a multi-storey frame under
seismic excitation. Engineering Structures, 62-63, 1-10.

D’Angela, D., Magliulo, G., & Cosenza, E. (2021). Towards a reliable
seismic assessment of rocking components. Engineering Struc-
tures, 230, 111673.

Di Egidio, A., Alaggio, R., Aloisio, A., de Leo, A. M., Contento, A.,
& Tursini, M. (2019). Analytical and experimental investigation
into the effectiveness of a pendulum dynamic absorber to protect
rigid blocks from overturning. International Journal of Non-Linear
Mechanics, 115, 1-10.

Di Egidio, A., & Contento, A. (2009). Base isolation of slide-rocking
non-symmetric rigid blocks under impulsive and seismic excita-
tions. Engineering Structures, 31(11), 2723-2734.

Di Egidio, A., Contento, A., de Leo, A. M., & Gardoni, P. (2020).
Dynamic and seismic protection of rigid-block-like elements and
structures on deformable ground with mass-damper dynamic
absorbers. Journal of Engineering Mechanics, 146(6), 04020046.

Di Egidio, A., Contento, A., Olivieri, C., & de Leo, A. M. (2020). Pro-
tection from overturning of rigid block-like objects with linear
quadratic regulator active control. Structural Control and Health
Monitoring, 27(10), €2598.

Di Sarno, L., Magliulo, G., D’Angela, D., & Cosenza, E. (2019). Exper-
imental assessment of the seismic performance of hospital cab-
inets using shake table testing. Earthquake Engineering & Struc-
tural Dynamics, 48(1), 103-123.

Dimitrakopoulos, E. G., & Paraskeva, T. S. (2015). Dimensionless
fragility curves for rocking response to near-fault excitations.
Earthquake Engineering & Structural Dynamics, 44(12), 2015-
2033.

El-Khoury, O., & Adeli, H. (2013). Recent advances on vibration con-
trol of structures under dynamic loading. Archives of Computa-
tional Methods in Engineering, 20(4), 353-360.

Eltahawy, W., Ryan, K. L., Cesmeci, S., & Gordaninejad, F. (2018).
Parameters affecting dynamics of threedimensional seismic isola-
tion. Journal of Earthquake Engineering, 25(4), 730-755.

Erdik, M., Durukal, E., Ertiirk, N., & Sungay, B. (2010). Earthquake
risk mitigation in istanbul museums. Natural Hazards, 53(1), 97-
108.

Fragiadakis, M., & Diamantopoulos, S. (2020). Fragility and risk
assessment of freestanding building contents. Earthquake Engi-
neering & Structural Dynamics, 49(10), 1028-1048.

PELLECCHIA ET AL.

EiEp

Fujita, T., Suzuki, S., & Fujita, S. (1990). High damping rubber
bearings for seismic isolation of buildings (Ist report. Hysteretic
restoring force characteristics and analytical models). Transac-
tions of the Japan Society of Mechanical Engineers Series C, 56, 658—
666.

Gesualdo, A., Iannuzzo, A., Guadagnuolo, M., Guerriero, A.,
Monaco, M., Savino, M., & Guadagnuolo, M. (2016). Numerical
analysis of rigid body behaviour. Applied Mechanics and Materi-
als, 847, 240-247.

Gesualdo, A., Iannuzzo, A., Minutolo, V., & Monaco, M. (2018). Rock-
ing of freestanding objects: Theoretical and experimental compar-
isons. Journal of Theoretical and Applied Mechanics (Poland), 56,
977-991.

Gesualdo, A., ITannuzzo, A., & Monaco, M. (2018). Rocking behaviour
of freestanding objects. Journal of Physics: Conference Series, 1141,
012091.

Gesualdo, A., Iannuzzo, A., Monaco, M., & Penta, F. (2018). Rocking
of a rigid block freestanding on a flat pedestal. Journal of Zhejiang
University-SCIENCE A, 19(5), 331-345.

Ghaedi, K., Ibrahim, Z., Adeli, H., & Javanmardi, A. (2017). Recent
developments in vibration control of building and bridge struc-
tures. Journal of Vibroengineering (Invited Review), 19(5), 3564—
3580.

Gutierrez Soto, M., & Adeli, H. (2017). Recent advances in control
algorithms for smart structures and machines. Expert Systems,
34(2), €12205.

Gutierrez Soto, M., & Adeli, H. (2018). Vibration control of smart
base-isolated irregular buildings using neural dynamic optimiza-
tion model and replicator dynamics. Engineering Structures, 156,
322-336.

Gutierrez Soto, M., & Adeli, H. (2019). Semi-active vibration con-
trol of smart isolated highway bridge structures using replicator
dynamics. Engineering Structures, 186, 536-552.

Housner, G. W. (1963). The behavior of inverted pendulum structures
during earthquakes. Bulletin of the Seismological Society of Amer-
ica, 53(2), 403-417.

Ikhouane, F., Mafiosa, V., & Rodellar, J. (2007). Dynamic properties
of the hysteretic Bouc-Wen model. Systems & Control Letters, 56(3),
197-205.

Ishiyama, Y. (1982). Motions of rigid bodies and criteria for overturn-
ing by earthquake excitations. Earthquake Engineering & Struc-
tural Dynamics, 10(5), 635-650.

Ismail, M., Ikhouane, F., & Rodellar, J. (2009). The hysteresis Bouc-
‘Wen model, a survey. Archives of Computational Methods in Engi-
neering, 16(2), 161-188.

Jaimes, M. A., & Candia, G. (2020). Seismic risk of sliding
ground-mounted rigid equipment. Engineering Structures, 204,
110066.

Kavvadias, 1., Bibo, H., & Vasiliadis, L. (2017). Numerical study on
the dynamic response of classical column standing free on an iso-
lated base. Proceedings of 6th ECCOMAS Thematic Conference On
Computational Methods in Structural Dynamics and Earthquake
Engineering, Rhodes Island, Greece.

Kavvadias, 1., Vasiliadis, L., Elenas, A., & Koutsoupakis, K. (2019).
Fragility assessment of base isolated free standing museum arti-
facts. Proceedings of 6th Conference on Computational Methods in
Structural Dynamics and Earthquake Engineering, Limenas Cher-
sonisou, Greece.




PELLECCHIA ET AL.

Konstantinidis, D., & Makris, N. (2009). Experimental and analytical
studies on the response of freestanding laboratory equipment to
earthquake shaking. Earthquake Engineering & Structural Dynam-
ics, 38(6), 827-848.

Kounadis, A. N. (2015). On the rocking sliding instability of rigid
blocks under ground excitation: Some new findings. Soil Dynam-
ics and Earthquake Engineering, 75, 246-258.

Lin, C. -C., Chen, C. -L., & Wang, J. -F. (2010). Vibration control of
structures with initially accelerated passive tuned mass dampers
under near-fault earthquake excitation. Computer-Aided Civil and
Infrastructure Engineering, 25(1), 69-75.

Linde, S. A., Konstantinidis, D., & Tait, M. J. (2020). Rocking response
of unanchored building contents considering horizontal and verti-
cal excitation. Journal of Structural Engineering, 146(9), 04020175.

Losanno, D., Hadad, H., & Serino, G. (2019). Design charts for
eurocode-based design of elastomeric seismic isolation systems.
Soil Dynamics and Earthquake Engineering, 119, 488-498.

Losanno, D., Madera Sierra, 1. E., Spizzuoco, M., Marulanda, J.,
& Thomson, P. (2020). Experimental performance of unbonded
polyester and carbon fiber reinforced elastomeric isolators under
bidirectional seismic excitation. Engineering Structures, 209,
110003.

Losanno, D., Spizzuoco, M., & Calabrese, A. (2019). Bidirectional
shaking-table tests of unbonded recycled-rubber fiber-reinforced
bearings (rr-frbs). Structural Control and Health Monitoring, 26(9),
€2386.

Makris, N., & Aghagholizadeh, M. (2019). Effect of supplemental hys-
teretic and viscous damping on rocking response of free-standing
columns. Journal of Engineering Mechanics, 145(5), 04019028.

Malhotra, P. K. (2009). Seismic analysis of structures and equipment.
Springer International.

Monaco, M., Guadagnuolo, M., & Gesualdo, A. (2014). The role of
friction in the seismic risk mitigation of freestanding art objects.
Natural Hazards, 73(2), 389-402.

Naeim, F., & Kelly, J. M. (1999). Design of seismic isolated structures:
From theory to practice. Wiley.

Petrone, C., Di Sarno, L., Magliulo, G., & Cosenza, E. (2017). Numer-
ical modelling and fragility assessment of typical freestanding
building contents. Bulletin of Earthquake Engineering, 15(4), 1609
1633.

Roussis, P., & Odysseos, S. (2014). Slide-rocking response of
seismically-isolated rigid structures subjected to horizontal
ground excitation. Proceedings of 2nd European Conference on
Earthquake Engineering and Seismology, Istanbul, Turkey.

Roussis, P., & Odysseos, S. (2017). Rocking response of seismically-
isolated rigid blocks under simple acceleration pulses and earth-
quake excitations. The Open Construction and Building Technology
Journal, 11, 217-236.

Roussis, P., Pavlou, E., & Pisiara, E. (2008). Base-isolation technology
for earthquake protection of art objects. Proceedings of 14th World
Conference on Earthquake Engineering, Beijing, China.

Sessa, S., Vaiana, N., Paradiso, M., & Rosati, L. (2020). An inverse
identification strategy for the mechanical parameters of a phe-
nomenological hysteretic constitutive model. Mechanical Systems
and Signal Processing, 139, 106622.

Siami, A., Karimi, H. R., Cigada, A., Zappa, E., & Sabbioni, E. (2018).
Parameter optimization of an inerter-based isolator for passive
vibration control of Michelangelos Rondanini Pietd. Mechanical
Systems and Signal Processing, 98, 667-683.

59 WILEY-"

Simoneschi, G., Olivieri, C., de Leo, A. M., & Di Egidio, A. (2018). Pole
placement method to control the rocking motion of rigid blocks.
Engineering Structures, 167, 39-47.

Skinner, R. L., Robinson, W. H., & McVerry, G. (1993). An introduction
to seismic isolation.. Wiley.

Sorace, S., & Terenzi, G. (2015). Seismic performance assessment
and base-isolated floor protection of statues exhibited in museum
halls. Bulletin of Earthquake Engineering, 13(6), 1873-1892.

Sorace, S., Terenzi, G., Bitossi, C., & Mori, E. (2016). Mutual seismic
assessment and isolation of different art objects. Soil Dynamics and
Earthquake Engineering, 85, 91-102.

Taniguchi, T. (2002). Non-linear response analyses of rectangular
rigid bodies subjected to horizontal and vertical ground motion.
Earthquake Engineering & Structural Dynamics, 31(8), 1481-1500.

Ther, T., & Kollar, L. P. (2018). Overturning of rigid blocks for earth-
quake excitation. Bulletin of Earthquake Engineering, 16, 1607-
1631.

Thiers-Moggia, R., & Mdalaga-Chuquitaype, C. (2019). Seismic protec-
tion of rocking structures with inerters. Earthquake Engineering &
Structural Dynamics, 48(5), 528-547.

Tyler, R. G., & Robinson, W. H. (1984). High-strain tests on
lead-rubber bearings for earthquake loadings. Bulletin of the
New Zealand Society for Earthquake Engineering, 17(2), 90-
105.

Vaiana, N., Sessa, S., Marmo, F., & Rosati, L. (2019b). Nonlinear
dynamic analysis of hysteretic mechanical systems by combining
a novel rate-independent model and an explicit time integration
method. Nonlinear Dynamics, 98(4), 2879-2901.

Vaiana, N., Sessa, S., Marmo, F., & Rosati, L. (2018). A class of uniaxial
phenomenological models for simulating hysteretic phenomena
in rate-independent mechanical systems and materials. Nonlinear
Dynamics, 93(3), 1647-1669.

Vaiana, N., Sessa, S., Marmo, F., & Rosati, L. (2019a). An accurate and
computationally efficient uniaxial phenomenological model for
steel and fiber reinforced elastomeric bearings. Composite Struc-
tures, 211, 196-212.

Vassiliou, M. F., & Makris, N. (2012). Analysis of the rocking
response of rigid blocks standing free on a seismically isolated
base. Earthquake Engineering & Structural Dynamics, 41(2), 177-
196.

Venanzi, 1., lerimonti, L., & Materazzi, A. L. (2018). Active base iso-
lation of museum artifacts under seismic excitation. Journal of
Earthquake Engineering, 24(3), 506-527.

Vestroni, F., & Cinto, S. D. (2000). Base isolation for seismic protec-
tion of statues. Proceedings of 12th World Conference of Earthquake
Engineering, Auckland, New Zealand.

Waltz, R. A., Morales, J. L., Nocedal, J., & Orban, D. (2006). An
interior algorithm for nonlinear optimization that combines line
search and trust region steps. Mathematical Programming, 107(3),
391-408.

Wen, Y. -K. (1976). Method for random vibration of hysteretic sys-
tems. Journal of the Engineering Mechanics Division, 102(2), 249-
263.

Wittich, C. E., & Hutchinson, T. C. (2016). Experimental modal anal-
ysis and seismic mitigation of statue-pedestal systems. Journal of
Cultural Heritage, 20, 641-648.

Yim, C. -S., Chopra, A. K., & Penzien, J. (1980). Rocking response of
rigid blocks to earthquakes. Earthquake Engineering & Structural
Dynamics, 8(6), 565-587.



I MR VV) F I -AVE COMPUTER-AIDED cvit an ineRastructure ENGINEERING )

Zhang, J., & Makris, N. (2001). Rocking response of free-standing
blocks under cycloidal pulses. Journal of Engineering Mechanics,
127(5), 473-483.

Zuccaro, G., Dato, F., Cacace, F., de Gregorio, D., & Sessa, S. (2017).
Seismic collapse mechanisms analyses and masonry structures
typologies: A possible correlation. Ingegneria Sismica, 34(4), 121-
149.

PELLECCHIA ET AL.

How to cite this article: Pellecchia, D., Lo Feudo,
S., Vaiana, N., Dion, J. -L., & Rosati, L. (2021). A
procedure to model and design elastomeric-based
isolation systems for the seismic protection of
rocking art objects. Comput Aided Civ Inf, 1-18.
https://doi.org/10.1111/mice.12775


https://doi.org/10.1111/mice.12775

	A procedure to model and design elastomeric-based isolation systems for the seismic protection of rocking art objects
	Abstract
	1 | INTRODUCTION
	2 | MODEL SETTING
	2.1 | Kinematics and equations of motion
	2.2 | Full-contact
	2.3 | Rocking
	2.4 | Collisions

	3 | ELASTOMERIC ISOLATORS
	3.1 | LRBs
	3.2 | HDRBs

	4 | HYSTERETIC MODEL
	4.1 | Assumptions of the class of hysteretic models
	4.2 | Elastomeric bearings formulation

	5 | THE ENERGY-BASED DESIGN PROCESS FOR THE DEFINITION OF THE HYSTERETIC MODEL PARAMETERS
	5.1 | Evaluation of the energy dissipated per cycle
	5.2 | Evaluation of the hysteretic model parameters

	6 | NUMERICAL EXPERIMENTS
	6.1 | Overturning spectra generated by impulsive excitation
	6.2 | Application to sculptures subjected to seismic excitation

	7 | CONCLUSION
	ACKNOWLEDGMENTS
	ORCID
	REFERENCES


