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TORNADO project: An automated driving demonstration in
peri-urban and rural areas

Vicente Milanés1, David González2, Francisco Navas2, Imane Mahtout1, Alexandre Armand1, Clement Zinoune1,
Arunkumar Ramaswamy1, Farid Bekka1, Nievsabel Molina2, Emmanuel Battesti3, Yvon Kerdoncuff3, Carlos

Guindel4, Jorge Beltrán4, Irene Cortés4, Alejandro Barrera4 and Fernando Garcia4

Abstract—This paper presents the results of a two-week robot-
taxi service demonstration in peri-urban and rural areas. A
fully robotized Renault ZOE was available for general public
use in the Rambouillet Territory in France. The driving zone
included several complex scenarios as two-way narrow road
driving, a tunnel crossing with lane reduction from two-way road
up to a single narrow lane or roundabouts, allowing to evaluate
the maturity of the vehicle for such application. This paper
describes the scientific and technical development especially from
perception, navigation and control point of view to carry out such
demonstration. Results indicate that even if the vehicle was able
to autonomously navigate through peri-urban and rural areas,
there are still some technical challenges that limit its integration
with the transport system.

Index Terms—Intelligent vehicles, perception systems, trajec-
tory planning, vehicle dynamics, intelligent transport systems.

I. INTRODUCTION

Automated vehicles progress has significantly advanced
in the last years, moving from the first Advanced Driving
Assistance Systems (ADAS) as lane departure warning [1] or
cruise control systems [2] to highway lateral and longitudinal
automated vehicle control (i.e. Tesla AutoPilot system1). This
pioneering production system has demonstrated the ability
to introduce advanced supervised technologies in commercial
vehicles. L2-based automated highway systems represent the
first step toward automated vehicles in more complex traffic
scenarios, demanding more intelligent systems.

Urban and rural areas remain as the most challenging
scenarios because of the potential changing situations that
can be found compared with highway scenarios [3]. There
are just a few worldwide demonstrations dealing with these
complex environments. VisLab’s BRAiVE autonomous car
carried out a demonstration [4] through Parma streets in Italy
mixing rural, highway and urban driving scenarios. Results
highlighted that complex scenarios such as roundabouts are
still an open research challenge. Also in Europe, a cooperation
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Fig. 1. Tornado project key scenarios demonstration. Left graphic corresponds
to a roundabout entrance. Centre graphic depicts a narrow two-way road with
a gutter. Right graphic plots a non-visibility tunnel crossing with a reduction
from two-way to a single lane.

between Daimler and Karlsruhe Institute of Technology (KIT)
showed the ability to deal with complex situations in structured
environments. Results of the autonomous trip from Mannheim
to Pforzheim in Germany were presented in Ziegler et al.
[5]. Similar to BRAiVE demonstration, they concluded that
overall performance is significantly downgraded with respect
to a human driver. Multiple private companies in the United
States as Waymo, Zoox and Aptiv are testing their systems
in limited well-structured urban environments but there are no
scientific papers about these works.

Rural areas have received little attention [6] but they rep-
resent an excellent test bench for automated driving technolo-
gies. Conditions are usually degraded with respect to urban
zones (i.e. poor or no lane markings available, patched pave-
ment or narrowed roads among others) and they account for
more than 97% of the United States’ land area [7], highlighting
the importance of demonstrating (and validating) automated
technologies on these zones. Additionally, autonomous mo-
bility systems can be a potential solution for commuters in
low-dense areas with a little or no public transport options.

This paper presents the results of an automated vehicle
demonstration in Rambouillet (France) within the framework
of the Tornado project, covering urban and rural areas. It
describes the in-vehicle architecture for providing automated
vehicle capabilities, focusing later on the development of per-
ception, planning and control stages to overcome the technical
challenges. Next subsection details the key driving scenarios
encountered during the two-week demonstration.

II. TECHNICAL CHALLENGES

Peri-urban and rural areas present multiple challenging situ-
ations. Depending on the complexity, the associated challenges
are divided as follows:
• Nominal driving corresponds to regular traffic situa-

tions. It includes standard width lanes, good lane-marking
quality or well-identified pedestrian crossings. The way
of handling these situations matches with the general
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Fig. 2. Functional components of Tornado Vehicle

architecture description and it serves as starting point for
all specific use case scenarios.

• Roundabout driving is getting more and more popular
replacing crossroads because it increases traffic fluidity,
reducing 37% overall collisions [8] (see left image in
Fig. 1). However, there is no production system available
to deal with these complex scenarios and just a few
demonstrations have tackled this problem, recognizing its
complexity [4]. A description of the perception-planning-
control seamless integration to deal with these use cases
is presented in the coming sections.

• Narrow two-way road driving represents a common
scenario in rural areas. Highway lanes width are usually
set at 3.5 meters in Europe with reductions up to 3m in
urban areas to discourage high speeds in city centers [9].
When it comes to rural areas (see center image in Fig.
1), there are two main constraints to take into account:
1) standard vehicle width has increased in recent years
from 1.8 to 2.2m (including side-view mirror); and 2) lane
width is reduced up to 2.5m in rural areas, increasing the
complexity when crossing vehicles in two-way roads.

• Tunnel driving constitutes a technical challenge that has
been already faced in urban areas. However, additional
factors may increase the complexity in these scenarios
in rural areas. Specifically, the vehicle crosses a tunnel
that includes a lane reduction from two-way road up to
a single narrow lane with a sharp turn when exiting (see
right image in Fig. 1), adding priority traffic management
and control capabilities to classical localization problems
in these situations.

III. IN-VEHICLE ARCHITECTURE

Autonomous driving is computationally intensive and re-
quires integrating different functions such as perception, map
service and localization, world model, navigation and decision-
making, and vehicle control into a unified system that exhibits
rational behavior. The arrangement and interaction of different
functional components play a crucial role on the robustness
and reliability of the vehicle operation. Figure 2 shows differ-
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Fig. 3. Sensor setup in Tornado Vehicle

ent components of the vehicle. The following sections briefly
explain each of these components:
Map and Localization: This component is responsible for
gathering and centralizing all map related information, aiding
to localize the vehicle within the available map. The map
database stores the map of the operational area in a proprietary
format that enables faster access (details are given in subsec-
tion IV-B ). Communication with map service is implemented
in query pattern. Requesting modules send a query to the
map service component for receiving relevant information. The
localization component provides position, heading, velocity
and timing information, together with integrity information.
Cloud Support and Communications Links: This component
provides a platform in which autonomous vehicles commu-
nicate with cloud server. The system mainly provides three
functionalities: 1) Remote tracking and map visualization of
all autonomous vehicles, providing them safety alerts and
warnings such as, slippery zone or civil work in progress; 2)
Remote control during critical situation like priority vehicle
approaching; and 3) Connectivity between vehicles and cloud
through cellular technology.
Supervisory System: This component monitors and controls
all the components to ensure the safety and robustness of
the operational modules. It selects the discrete behavior of
the components, that is, to determine which behavior each
of the functional components must have at each moment. It
maintains different operational modes (e.g. autonomous, man-
ual, standby) and sends signals to the appropriate operational
components to switch their states accordingly.

Perception, World Model, Navigation and Decision Making
and Vehicle Control components are detailed in the next
sections.

IV. PERCEPTION AND WORLD MODEL

This section details the environment detection and under-
standing in two subsections (perception and world model
respectively) accordingly to the in-vehicle architecture.

A. Perception

This section describes the sensor suite configuration and
the algorithms designed to provide reliable detection of the
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Fig. 4. Pipeline for 3D object detection. Objects are detected in the images from the cameras. Later, LiDAR data is included to infer the geometrical properties
of the objects. Finally, all the detections are merged, and a tracking stage adds temporal consistency across consecutive frames.

obstacles in the surroundings of the vehicle. As depicted
in Fig. 3, the system configuration is based on five evenly
distributed cameras and a 32-layer LiDAR located in the center
of the roof rack, providing a 360° field of view.

The perception solution stems from the one presented in
[10], where an analysis of the performance of the complete
pipeline is provided. In brief, the information provided by
the sensors is fused through a low-level fusion approach
for obstacle detection, classification, 3D box estimation, and
tracking. The system obtains vision-based detections from a
robust state-of-the-art framework and feeds them to a 3D box
estimation method that makes use of LiDAR information to
infer their size and location. Finally, the tracking algorithm
exploits this spatial reasoning to add time consistency and
enhance the reliability of the final detections. An overview
of the pipeline is depicted in Fig. 4.

Vision-based detection and classification: Detection and
classification are based on computer vision approaches to take
advantage of the feature-rich appearance information delivered
by the cameras. Due to the multi-camera setup, the system can
identify agents in the entire range of interest, without blind
spots. Furthermore, enhancing the detections with a pixel-wise
semantic mask was proven useful to improve data association
between both modalities (images and LiDAR data), provided
that accurate extrinsic calibration is available. The Mask R-
CNN framework [11] was adopted to perform both tasks
jointly, as it combines the high detection accuracy featured by
the well-known Faster R-CNN detector [12] with the ability
to perform instance segmentation.

Mask R-CNN is a two-stage method that, unlike other
similar approaches, can achieve real-time frame rates using
deep convolutional networks. It accepts an RGB image as
an input and feeds it through a set of stacked convolutional
layers (backbone) responsible for extracting features that are
shared for the subsequent tasks of detection, classification, and
segmentation. Then, these features are used in the first stage
to identify Regions of Interest (ROIs) in the image through an
RPN (Region Proposal Network). Finally, in the second stage,
features are pooled from these ROIs and propagated to suc-
cessive dedicated layers to perform the final inference tasks.
In this work, the ResNet-50 model [13] was adopted as the
backbone because of its compelling performance and limited
computational cost. It was also endowed with an FPN (Feature
Pyramid Network) structure [14] to generate additional feature
maps at different scales, allowing the identification of distant
objects. The system’s speed-accuracy tradeoff is controlled
through the downsampling of the input images, tuned to enable

proper identification of the objects in the intended peri-urban
and rural scenarios.

The outcome provided by this stage is a set of 2D bounding
boxes with information about the category (e.g., car, person,
etc.), each containing a pixel-wise mask that defines the
contour of the object. Note that a different set of detections is
obtained for each camera.

3D box estimation: Once the objects are identified within
the images, LiDAR data is included in the pipeline to provide
geometrical information. The high accuracy featured by Li-
DAR scanners in measuring distances justifies the use of this
modality at this stage.

The semantic masks from Mask R-CNN allow identifying
the LiDAR data (represented as 3D points) that belong to each
obstacle. At this point, accurate extrinsic calibration becomes
critical to ensure proper data association. In this case, an
evolution of [15] suitable for monocular devices was used
to obtain the extrinsic parameters representing the relative
position between sensors.

Frustum PointNet approach [16] was used to retrieve the
geometrical structure behind the raw LiDAR representation of
the obstacle. This approach is able to provide the size, location,
and orientation of the obstacles using LiDAR information,
and taking into account the missing parts due to occlusions
or perspective. The use of the pixel-wise segmentation allows
our approach to provide the 3D estimation stage with a more
precise segmentation of the point cloud of every instance,
minimizing the number of spurious points in the input data.
The expected outcome of this stage is a set of positioned
cuboids representing the real geometry and distance from the
ego-vehicle to every obstacle.

LiDAR processing is performed as follows. In the first
stage, outliers are removed through the use of an instance
segmentation PointNet [17] that filters out the few remaining
noisy points that do not belong to the obstacle. Later, the
3D bounding box of the obstacle is computed through a two-
step phase. The first step provides an estimate of the center
of the obstacle through the T-Net network (based on the
PointNet architecture). Once obtained, the points belonging to
the obstacle are translated into this new reference. In the final
step, a new PointNet-like network is used for the computation
of the final oriented 3D box of the obstacles.

As with the detection part, a different set of 3D boxes
is obtained for each camera. At the end of this stage, all
of them are expressed in a common coordinate system and
merged through a greedy NMS (Non-Maximum Suppression)
procedure that prevents eventual duplications by unifying
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Fig. 5. Bird’s eye view representation of a roundabout scenario according
to the information provided by the perception system. This example depicts
three different obstacles and their trajectories over several consecutive frames,
drawn over raw LiDAR data in different colors and with a unique ID each.
Note that the trajectories overlap as they correspond to different frames.

objects that overlap in a top-down view of the environment.
Tracking: When the whole set of 3D detections is available

and expressed in the same frame, the next step is to add
consistency to the detection through the tracking stage. The
tracking algorithm used in the perception pipeline is composed
of three stages. The first one is the movement estimation, based
on an Unscented Kalman Filter [18] with different movement
models for pedestrians and vehicles. The second step is the
ego-vehicle movement compensation, which is required to
correct the misalignments on the subsequent detections due
to the movement of the vehicle. This is done through the
use of the GPS/INS system available in the vehicle. Finally,
the last stage, data association, correlates the detection in the
current cycle with the set of already tracked agents, adding
new instances whenever it is necessary.

As a result of the tracking stage, the temporal coherence
between consecutive frames can be exploited, avoiding incon-
sistencies and smoothing out any eventual deviation. As an
example, Fig. 5 shows the output of the perception pipeline
over time in a situation with three agents being tracked in
consecutive frames. Experimental results in [10] prove the
adequacy of the solution, which can populate the World Model
with stable detections that are accurately localized.

B. World Model

The perception system provides information about the sur-
rounding obstacles but without considering context informa-
tion. By combining perception output with information stored
in the digital map, the World Model system can add scene
understanding capabilities (see Fig. 2).
High Definition Vector Map: The operation area is described
through a high definition vector map that was created specially
for the experimentation. This map is a general representation
of the road network and includes topological, geometrical and

semantic information. It comprises details about the inter-
actions that may exist between roads at a lane level detail.
The center and the boundaries of each lane are also stored
in the map with centimeter accuracy (for more details see
§2.4.5 in [19]). In addition, semantics are associated with
each lane as attributes representing information such as speed
limit, marking types, driving directions, etc. In France, and
especially in rural zones, markings and signs related to inter-
sections may be challenging to perceive and understand. All
information about intersection type, shapes or priority order
is stored in the map. Traffic lights location and association to
lanes leading to intersections are also stored in the map. All
this knowledge is compiled as a geographical database within
the vehicle. The Map Service system manages this database
and makes it available to other vehicles’ systems upon request
(see Fig. 2). The use of this map is threefold: 1) it allows
computing the itinerary to reach the desired destination; 2) it
supports the navigation module for real time computation of
the trajectory while operating in autonomous mode; and 3) it
provides context in which the vehicle is navigating.
Obstacles Contextualization: The map is used to contextualize
the perception system output. This contextualization aims to
filter the perceived objects by labelling them as pertinent
or not pertinent. There is no additional obstacle tracking
performed within the World Model. This is a part of the
situation understanding process as it is defined in [20]. For
this purpose, pedestrians and vehicles are considered differ-
ently. All pedestrians are automatically labelled as pertinent,
wherever they can be located within the navigable space. On
the contrary, vehicles and other obstacles are considered as not
pertinent if they are not located on a space that is navigable
by the ego vehicle.
Connected Traffic Lights: For this experimentation, the detec-
tion of traffic lights only relies on Vehicle to Infrastructure
(V2I) communication as the embedded perception sensors do
not return traffic lights information. A V2I setup available on
the market was used; it is composed of a pair of construction
site traffic lights equipped with a Road Side Unit (RSU) which
transmit the state of the lights every 100ms. In addition,
the vehicle is equipped with an On Board Unit (OBU) to
receive the information. The V2X devices use the 802.11p
communication standard [21]. The state of the traffic lights is
sent by the infrastructure through a Signal Phase and Timing
(SPaT) standard message [22]. This message stores for each
light information about its state, the time before state change,
the ID, etc. When approaching an area equipped with V2I, the
vehicle receives information about several traffic lights. After
matching the perceived traffic lights with the map (through the
traffic light ID, available in the SPaT message and in the map),
it is straightforward to identify which traffic light is pertinent
for the vehicle decision making and navigation module.

V. TRAJECTORY GENERATION

The trajectory generation process takes into account a set of
high level requirements related to regulatory rules, comfort and
mission purposes. It aims at providing a safe and comfortable
trajectory in real-time to the control while navigating to the
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user-defined destination. The process is divided into two steps
to limit computational effort, namely decision making in which
the appropriate maneuver is chosen; and trajectory planning
in which an optimized short term trajectory is computed and
transmitted to the control system. Moreover, the autonomous
vehicle presented in this work aims at providing a mobility
service within an operational area. When starting a new mis-
sion, a road level plan is computed to determine the shortest
route to reach the requested destination and an evaluation of
the best a priori trajectory is performed. Decision making and
trajectory planning are then computed in real time based on
this initial driving plan and detected obstacles.

A. Decision Making
General concept: The decision making process consists of

evaluating the consequence of each obstacle and traffic light
perceived at a given process time onto the initial driving
plan. This driving plan is then modified according to the
expected interaction between the ego vehicle and the detected
obstacle in order to maintain a safe and comfortable behaviour.
The expected interaction is formulated based on the relative
obstacle position (e.g. same lane as ego vehicle, opposite lane,
partially on ego lane, side walk), direction (i.e., moving along
and backward or forward, moving perpendicular and to or
away from the driving plan) and type (e.g. pedestrian, vehicle).
The maneuver associated with each perceived obstacle is
established in an expert system manner. By doing so, we
keep computational complexity low and get a deterministic
behaviour. Every maneuver adds constraints on the longitudi-
nal (slow down, follow, stop) and lateral (avoid) dimensions
which are taken into account in the trajectory planning process
described in section V-B.

Intersection management: Intersections require a special
treatment because of their complexity. Having this in mind,
an extra set of constraints is designed to handle intersection
crossing. They consider not only the intersection detection
thanks to the digital map but also their priority rules according
to the interactions with other vehicles.

A lane-level description of the road network is provided
by the map embedded in the vehicle. In case of intersecting
or merging lanes, the map also provides the legal right-of-way
between lanes. Finally, the type of intersection is also provided
by the map (e.g. yield, stop). Every lane involved in the driving
plan is studied by the decision making module to detect future
intersection and apply the corresponding maneuver sequence.
If a stop or yield intersection is detected along the path, an
interest zone containing oncoming lanes is computed. The ego
vehicle will therefore stop and wait if an obstacle is detected
inside this interest zone.

The list hereafter describes the decision sequence to enter
a roundabout as implemented in this work:
• Approaching: A yield-type intersection is detected on

the driving plan in a 100 m range. The speed profile is
adapted accordingly before reaching the yield sign.

• Waiting (Yielding): Fig. 6 illustrates this and in this
example, vehicles are detected in the interest zone. The
decision to stop is taken and is kept until the interest zone
is free of obstacles.

Fig. 6. Intersection management, example of entering a roundabout. Ego
vehicle is in blue and detected vehicles are in red. The initial driving plan is
represented in green and the area with right-of-way is formed by red polygons.
The current status of decision making is shown in the top right window.

• Entering: Arriving at the yield line, the interest zone is (or
becomes) free of any detected obstacle. The decision to
slowly enter the roundabout is taken. The speed remains
slow to be able to stop again if a new obstacle is detected
in the interest zone.

• Leaving: The vehicle has passed the yield line. The deci-
sion to accelerate is taken in order to reach a comfortable
speed inside the roundabout.

This approach of decision making coupled with a priori
driving plan provided encouraging results through the differ-
ent scenarios. A transition state machine guarantees that no
illegal decision is taken, managing successive intersections
and providing flexibility for handling perception limitations.
A transition from ”entering” to ”waiting” and vice versa
make possible to stop again if a vehicle lately appears in the
interest zone. This situation occurred when traffic was partially
occluded, when position measurement and type classification
errors filtered out the obstacle; and when vehicles were coming
at high speed.

B. Trajectory planning

The short-term trajectory of the ego vehicle is computed in
real time, including the geometric description of the desired
path, lateral error tolerance and associated speed profile.

Space definition: High definition vector map provides a
geometric description of each lane which is used to create
lateral boundaries (i.e., a driving corridor) limits to the vehicle.
A longitudinal boundary is set with respect to the closest ob-
stacle for which the decision system chooses a stop maneuver.
Spatio-temporal footprint of each obstacle associated with an
avoidance maneuver is computed based on estimated position
and speed. The available driving space is therefore reduced
according to the set of perceived obstacles.

Path optimization: This component is in charge of optimiz-
ing the driving space in the short term horizon. The driving
space is sampled into a set of vertices along regularly spaced
transverse lines. They are candidates for constructing the path
using a set of connected splines as illustrated by Fig. 7. Splines
combinations are convenient to compute a path complying
with second order geometric continuity [23]. Moreover, closed
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Fig. 7. Sampling of driving space with vertices (blue dots) arranged in layers.
An example of a circle spline that connects second and third layer is shown
in solid black. Continuity with first and fourth layer are shown in dotted black
lines.

form expressions of each circle spline can be found which
makes efficient the final sampling of the resulting path.

The full circle spline combination set is computed in order
to create a graph of possible solutions for the current compu-
tation step. This table demands high computational resources.
However, it happens only at the first time step since it is simply
updated while the vehicle progresses on its trajectory.

Finally the optimal circle spline compilation is searched
using a Dijkstra algorithm [24]. Eq. (1) introduces the costs
function for a candidate path P.

J (P) = wp p(P)+wdd (P)+wo
1

o(P)+ ε
(1)

The cost function is composed of three terms in order to
take into account:
• Distance to initial driving plan p(P). Cost increases with

area between candidate and initial driving plan.
• Derivative similarity d (P). Cost increases with the dif-

ference between candidate’s derivative and initial driving
plan derivative. This provides high cost to oscillating
candidates.

• Distance to driving space boundaries o(P). High costs
are associated with candidates that make the vehicle
getting close to the boundaries. The physical vehicle’s
dimensions are taken into account. ε stands for a small
positive number (set to 10−6 here).

wp, wd and wo are scalar parameters to adapt the relative
impact of each term on the total candidate cost and were set
to 0.1, 1 and 25 respectively for this experimentation.

Dijkstra search algorithm explores in priority the less cost
solution. This results in fast solution convergence if the initial
driving plan is still convenient at the current time step. How-
ever, more candidates are evaluated if current constraints make
the initial driving plan infeasible which increases significantly
the computation time. If no solution is found, the previous
solution is kept but the associated speed profile sharply falls
to make the vehicle brake promptly.

Speed profile: The final step of trajectory planning consists
in associating a speed profile to the optimal path considering
road geometry and vehicle dynamic constrains (i.e. maximum
allowed speed or desired lateral acceleration in turns). Initial
driving plan provides a first skeleton on which maneuvers
associated with obstacles apply extra constraints as illustrated

Fig. 8. Speed profile computation. Static and dynamic speed constraints are
combined for the current ego vehicle’s position.

by Fig. 8. The final speed profile is obtained by filtering
and smoothing. The consolidated trajectory is finally sent to
the control system as a set of way-points with information
about vehicle position, heading, speed, acceleration and road
curvature within a speed-based horizon.

VI. VEHICLE DYNAMIC CONTROL

This section describes both lateral and longitudinal con-
trollers. They use as main inputs the positioning and navigation
systems’ information.

A. Lateral control

First Tornado project demonstration in 2018 [25] proposed
two different lateral controllers: 1) a path-tracker controller
able to provide a zero tracking error, increasing the safety
feeling on-board; and 2) a predicted controller minimizing
the control effort whereas keeping the vehicle in the lane
(mimicking human behavior). Both lateral controllers are
based on a look-ahead dependent minimization of the desired
yaw rate [26]. The controller is a second order transfer
function with a gain K, and a variable look-ahead distance
d. Its objective is to determine the steering wheel angle δc
according to a yaw rate error wr calculated as the difference
between desired wd and measured wv yaw rates. The desired
yaw rate wd is equivalent to the vehicle longitudinal speed
v divided by the road curvature ρ in the target point (set at
a look-ahead distance d). Notice how K and d were tuned
in [25] to achieve different behavior for the tracker K1 and
the predicted controllers K2. K1 controller was optimized to
perfectly follow the navigation path, providing a safety feeling
to the passenger in terms of precision. However, it exhibited
an aggressive behavior in roundabouts and lane changes. The
main reason behind this undesirable behavior was that the
path tracker controller was tuned to be a fast controller. On
the contrary, K2 was a relaxed version of the path tracker
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controller, taking advantage of the driving corridor provided
by the navigation system. It was optimized to be slower, less
precise, but exhibiting less overshoot in lane changes and
roundabouts. The predicted controller was more comfortable
but the tracking feeling was downgraded with respect to K1.

Both controllers are here implemented in a single control
structure based on users’ feedback during the 2018 demon-
stration (see [25] for details). This control structure is based
on the Youla-Kucera parametrization [27].

Vehicle lateral model G and both controllers K1 and K2
are factorized as the product of stable left and right coprime
transfer functions (see [28] for more details) :

G = NM−1 = M̃−1Ñ

K1 =UV−1 = Ṽ−1Ũ

K2 =U ′V ′−1 = Ṽ ′−1Ũ ′
(2)

The Youla-Kucera parameter Q permits to describe the class
of all stabilizing controllers; but it is here used for connection
of controllers K1 and K2: Q = Ṽ ′(K2−K1)V . The final control
structure is expressed as follows:

K(γQ) = (U + γQM)(V + γQN)−1 (3)

where γ ∈ [0,1] is computed online with respect to the corridor
width provided by the navigation system and the lateral error.
Different values of γ activate different level of controllers K1
and K2 (γ = 0 is K1, γ = 1 is K2, and γ ∈ [0,1] is a mixed
behavior between both controllers). Figure 9 clarifies how
the γ-based decision-making system works together with the
Youla-Kucera based control structure. The supervisor module
checks first the corridor width, and then the lateral error,
providing the value of γ that activates the corresponding
controller:
• In the roundabout entrance and exit, the predicted con-

troller is activated since the driving corridor is wide,
allowing significant lateral errors. This leads to smoother
control efforts, having a more comfortable control re-
sponse.

• In the narrow two-way road and the tunnel, the tracker
controller is activated. This is caused by the reduction
of the driving corridor, demanding a higher tracking
precision.

• In the other areas γ changes gradually between [0,1]
according to the current lateral error [29]. It activates the
adequate proportion of each controller and performs a
smooth transition between the two previous areas.

B. Longitudinal control

The experimental platform is already equipped with a low-
level longitudinal controller. This low-level controller receives
speed reference from the navigation system, actuating accord-
ingly over throttle and brake pedals. Reference/output behavior
are in blue and red solid lines respectively in Fig. 11. Notice
how discontinuities appear in the speed reference (around
second 22) and how the low-level controller takes around 400
ms to reach the desired speed.

To deal with such discontinuities, a high level longitudinal
controller with better tracking capabilities and robustness was

Fig. 9. Vehicle lateral controller
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Fig. 10. Sensitivity transfer functions for high level LPV longitudinal
controller.

designed. A Linear Parameter Varying (LPV) controller is
proposed, having as scheduling parameter the speed reference
difference from one sample to the other. Specifically, the low-
level controller behavior is considered as an open-loop system,
together with a LPV weighting function based on the desired
sensitivity of the closed-loop (CL) system. Sensitivity transfer
function bandwidth changes with the scheduling parameter,
allowing a faster tracking capability when the speed reference
change is small (less than ±2 m/s2), and slowing down
the response when the difference is greater. A gridding-
based LPV synthesis approach [30] [31] is used for solving
corresponding inequalities in a specific scheduling parameter
range. Reference and resulting sensitivities are in red and
blue in Fig. 10 for the whole scheduling parameter range.
Resulting LPV controller behavior is in solid yellow line in
Fig. 11. The designed high level controller permits a faster
response (200 ms) with better tracking capabilities, filtering out
discontinuities in navigation speed reference, and maintaining
a comfort acceleration in the desired range (±2 m/s2) .

VII. EXPERIMENTAL RESULTS

This section describes the experimental tests conducted dur-
ing two weeks at Rambouillet where 155 people experienced
the vehicle that drove more than 560km in autonomous mode.
The prototype was a Renault ZOE vehicle that travelled 7.5km
per itinerary. Along these kilometers, three scenarios were the
main technical challenges in the demonstration: A roundabout,
a narrow two-way road and a tunnel (see Fig. 1 for details).
Figure 12 presents the vehicle performance zoom-in for the
three specific scenarios. Road boundaries are plotted in red,
autonomous vehicle position with time mark in yellow and
obstacles’ position at a given instant in dark red. Figure
13 shows experimental results on the full itinerary whereas
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Fig. 11. Longitudinal dynamics comparison. Longitudinal low-level controller
(OL) and designed high-level LPV controller (CL).

orange, pink, blue and grey zones represent the roundabout
driving, the narrow S-shaped, the tunnel crossing and the U-
turn (in manual mode) respectively. The top graph shows the
vehicle lateral error. The next one depicts the vehicle steering
wheel angle. The following graph points to the steering wheel
angle rate. The bottom graph shows the speed reference from
the navigation (dotted magenta line) and the current vehicle
speed (solid blue line). These graphics correspond to a given
test but vehicle performance was highly repetitive in each test.

A. Scenario analysis

Results related to the roundabout scenario are depicted in
Fig 12a. The vehicle crosses this area twice: first between
seconds 50 and 60 while entering the north roundabout access
and driving right to the west exit; and then between seconds
630 and 670, where the vehicle enters the roundabout through
the west access and goes north to continue its way back.
The performance of the vehicle is visibly good, accurately
tracking the planned trajectory (see lateral error in the orange
zone on the top graph of Fig. 13), adjusting its speed (second
50) or even stopping when other vehicles are present in the
roundabout (second 630) when approaching the entrance (see
bottom graph of Fig. 13). The steering angle and the steering
wheel rate are kept within the vehicle’s limits.

The two-way narrow road driving is shown in a S-shaped
section (see Fig 12b). It depicts one of the most difficult
scenarios with little tracking error margin. The vehicle travels
through this section twice: 1) Between seconds 70 and 90
from right to left in the figure, where the tire is always close
to a gutter on the right side; and 2) Between seconds 590
and 610 where a curb is present on the right. The tracking
performance can be seen in the top graph of Fig. 13 in the
magenta areas. The vehicle lateral error never goes larger
than 0.2 m precision, depicting a proper behavior even when
turning and maneuvering in narrow two-way roads, keeping
steering angle and steering rate vehicle response within vehicle
boundaries (see second and third graphs from the top in Fig.
13 respectively). The speed profile (see bottom graph in Fig.
13) indicates how the vehicle adapts its speed before reaching
the S-shaped (second 70), decoupling lateral and longitudinal
accelerations as requested by users during 2018 demonstration

[25]. Interestingly, the vehicle is following a bicycle (second
600 s) in the way back, modifying in real-time the speed
profile accordingly.

Figure 12c presents a bird view of the tunnel scenario. The
vehicle also crosses this area twice: first between seconds
260 to 300; and then between seconds 400 to 430. The
scenario depicts a one way tunnel where crossing priority
is assigned via two coordinated V2I traffic lights at each
side of the tunnel. Tunnel boundaries are depicted by the
vehicle positions at second 280 on the outward journey and
vehicle position at second 420 on the way back. This is
one of the most challenging scenarios for the vehicle since
it has to first manage the traffic light, then passes through
a narrow tunnel, reducing its speed since the positioning
system is degraded (i.e. GPS/INS system information quality
is reduced, moving to a close-loop model-based positioning
system estimator). This is visible in the bottom plot in Fig. 13
between seconds 280 and 420 (blue marked areas), when the
speed is significantly reduced whereas the positioning system
is recovering its precision, autonomously driving in a degraded
mode. Scenario complexity is highlighted in second 290 where
the vehicle is exiting the tunnel. There are two stopped vehicle
in the opposite direction waiting in the traffic light that have
to be perfectly positioned, specially in heading. Additionally,
there is a preceding vehicle to follow when traffic light turned
green. The top graph in Fig. 13 shows tracking error (including
positioning system inaccuracy), where the vehicle exhibits a
good performance, keeping the vehicle in the lane. During
this time, K2 controller is fully activated to provide smooth
steering wheel changes (see second and third graph in Fig. 13),
increasing the comfort on-board. Obstacles are depicted at the
exit of the tunnel (second 290), showing two stopped vehicles
at the second traffic light and a vehicle in front which passed
the tunnel before the ego vehicle. Time between seconds
235 and 260 when the vehicle has zero velocity represents
the moment when it’s stopped in front of the traffic light.
The steering angle remains static at the desired angle and
the steering rate goes to zero until traffic light is green and
the vehicle goes through the tunnel. The steering signal is
continuous, giving a smooth and comfortable vehicle behavior
even in full stop situations.

B. Overall performance

Performance out of the challenging zones (see Fig. 13
for details) exhibits also good results and confirms a proper
behavior of the vehicle throughout the itinerary. The top graph
of Fig. 13 shows that the lateral error is always lower than
0.1 m when out of the painted areas. The steering wheel
angle rate (see third graph in Fig. 13) is kept under 200°/s
(maximum system capabilities) even in challenging conditions
as roundabouts or tunnel scenarios. The speed shows a proper
tracking (in blue) of the speed trajectory (in red), even when
following cyclists (see between seconds 560 and 640 in the
bottom part of Fig. 13.

Finally, Fig. 14 presents the acceleration GG diagram.
The accelerations were limited to 0.2 g for the lateral axis
of the vehicle, 0.2 g for the longitudinal acceleration and
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(a) (b) (c)

Fig. 12. The vehicle effective path is shown in blue, vehicle position with time mark in yellow, road boundaries are depicted in red, obstacles at a given
interaction instant in dark red and road lines are plotted in black. (a) Vehicle performance in a roundabout. (b) Vehicle performance in a narrow “S-shaped”
road section. (c) Vehicle performance in the tunnel scenario (the tunnel area is depicted by the teal dashed lines; the traffic lights are located at the front of
the ego-vehicle in T=230 for the first traffic light and in front of Obstacle 1 in T=290 for the second traffic light).
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Fig. 13. Vehicle performance for the round trip proposed experience. Orange,
pink, blue and grey zones represent the roundabout, the narrow S-shaped, the
tunnel crossing and the U-turn (in manual mode) respectively

0.25 g for braking accordingly to users’ feedback in 2018
demonstration [25]. The correspondent acceleration ellipse is
depicted in orange in the diagram. The acceleration profile of
the vehicle is presented in blue and the acceleration points
out of the ellipse are presented in magenta. Interestingly,
the vehicle acceleration points are 99.25% inside the circle,
thus respecting the acceleration constraints, showing that most
situations are properly anticipated by the navigation system.

C. Processing time analysis

One of the challenges in such implementations lies in the
capacity for the autonomous vehicle to react correctly to
real traffic conditions. Despite their complexity, algorithms
involved in autonomous driving shall run with reasonably low
cycle times. This section provides some insights about the two
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Fig. 14. Acceleration GG diagram throughout the itinerary. The orange circle
depicts the acceleration limits for the demonstration.

main processing time consumers, namely Perception system
and Navigation and Decision Making system (see Fig. 2).
Figure 15 shows the breakdown of the computational time
for each module according to their pipelines.

Perception: The configuration of the perception pipeline
was focused on efficiency, targeting rates above 10 FPS. The
most computationally intensive processes (i.e., object detection
and 3D box estimation) are carried out in parallel for all the
cameras. As shown in Fig. 15, measurements made during a
journey yield an average run time of 63.0 ms (with 6.8 ms
of standard deviation) for the detection stage and 21.3 ms
(with 6.8 ms of standard deviation) for the 3D box estimation
part. The run time of the RGB-D association step, which is in
between the previous two, is almost negligible, as is the case
with the final tracking stage (they take around 1.5 ms each).
The latter requires, however, a previous procedure to express
the detections from all the cameras in the LiDAR reference
frame and perform NMS that takes 6.9 ms (3.3 ms of standard
deviation).

Due to the design of the inference frameworks, these run
times depend on the number of objects found in the envi-
ronment, although this dependency is reasonably limited (as
evidenced by the low standard deviations). Values reported
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Fig. 15. Breakdown of computation times in the navigation and perception pipeline.The first four boxplot are part of the Navigation and decision making
block. The other five boxplots depict the Perception module performance.

above correspond to a relatively crowded scenario with 5.7
obstacles per camera; in the extreme case where 24 agents
are found per camera, the detection stage reaches a maximum
of 84.9 ms, and the 3D box estimation one, of 45.7 ms. Even
though the sum of times for each stage in a cycle is often above
100 ms, several frames can be processed at the same time in
different parts of the pipeline so that a new cycle can start
before the end of the previous one. Therefore, the perception
pipeline can sustain average rates of around 10 Hz.

Navigation and Decision Making: As introduced in section
V, real time operations of this system is composed of two main
steps: Decision Making and Trajectory planning. Figure 15
presents the computation time breakdown at each cycle for a
complete user journey. The smallest part of the time budget is
the decision making process since it takes an average time of
2.8 ms (with 0.92 ms standard deviation).

The second time consumer is for the initial step of trajectory
planning: space definition. This takes an average time of 16.5
ms (with 6.3 ms of standard deviation). This process consists
in geometric construction of the navigable space so a large
number of operations is required. Moreover, when interactions
with other vehicles occur, the process is more complex so
computation time increases.

Then, path optimisation takes a similar average time than
space definitions (17.9 ms) but has larger variability with a
standard deviation of 26.1 ms (see third boxplot in Fig. 15).
The computation complexity significantly increases when the
vehicle has driven a sufficient distance to create a new vertex
layer and all the associated candidate splines (see Fig. 7).
These spikes are therefore more rare when the vehicle drives
at low speed.

Finally, the complete trajectory is sent to Control system
with an average period of 100 ms but with a quite high vari-
ability (41.3 ms standard deviation) due to path optimisation
as shown in the fourth boxplot of Fig. 15.

VIII. LESSONS LEARNED

The main idea behind the trials and the two-week demon-
stration with different passengers on-board was to evaluate
the need for novel mobility systems in peri-urban and rural
areas. A questionnaire designed using a modified version of
the Unified Theory of Acceptance and Use of Technology

(UTAUT) model was completed for more than 150 users.
Interestingly, people found the system good enough to either
replace or cohabit with current transport systems but there
were still some remarks on the way the vehicle negotiate some
specific interactions. The environment understanding and the
decision associated with it remain as the two main challenges
to technically overcome in the near future.

Driving rules violation constitutes one of the main blocking
points for the system deployment. As example, some drivers
did not respect the traffic light installed in the tunnel to
deal with visibility problems (one way tunnel and sharp turn
when exiting). Even if during informal talks with Rambouillet
residents they pointed out that the traffic light in the tunnel
was helping to remove an old road safety problem; it created
some critical situations with the automated prototype (i.e., both
vehicles at the same time in the middle of the tunnel) from
people that crossed in red. This kind of situation that for two
human-driven vehicles are easy to negotiate demonstrates the
complexity when it comes to putting autonomous vehicles on
the road.

A clear improvement point (also mentioned in previous
autonomous driving demonstrations [4], [5]) was the ability to
properly manage roundabouts. Especially in rural areas, two-
lane roundabouts allow cutting both lanes, describing almost a
straight line for drivers that are used to the roads. This means
that a considerably longer detection range is required to handle
such drivers, pointing out to the adoption of V2X technologies
in those situations to improve vehicle performance towards a
more natural response.

Finally, it is worth to mention that perception system was
conceived for urban environments (i.e. high interaction with
other road agents and moderate speeds). This is clearly linked
to the Operation Design Domain (ODD) concept, meaning
that the specific sensor set-up should be enlarged to deal with
higher speeds (i.e. highway driving).

IX. CONCLUSIONS

The development and deployment of automated transport
systems in low-dense areas represents a realistic application
domain for autonomous vehicle: less interaction with other
road agents (i.e., vehicles, pedestrians or bikes); limited and
repetitive driving areas that significantly help in terms of
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having an up-to-date digital map with high precision; and a
realistic use-case where the autonomous vehicle can replace a
classical public transport system or even create it with less con-
straints. A final project demo showing the system capabilities
can be found in https://www.youtube.com/watch?v=rijk6R-
SKYg

Next steps will be focused on removing the current technical
barriers (i.e. the ability to deal with unexpected circumstances
as other vehicles passing the traffic light in red) as well as
enlarging the testing area towards a more complete mobility
service. These objectives match with users’ expectations col-
lected via a questionnaire after experience the ride, demanding
even a longer itinerary with more connections.
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de Technologie de Compiègne (UTC), France in
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