Relevance of earth-bound extremophiles in the search for extra-terrestrial life Lorenzo Carré, Giuseppe Zaccai, Xavier Delfosse, Éric Girard, Bruno Franzetti #### ▶ To cite this version: Lorenzo Carré, Giuseppe Zaccai, Xavier Delfosse, Éric Girard, Bruno Franzetti. Relevance of earthbound extremophiles in the search for extra-terrestrial life. Astrobiology, In press, 22 (3), pp.322-367. 10.1089/ast.2021.0033. hal-03400442 HAL Id: hal-03400442 https://hal.science/hal-03400442 Submitted on 25 Oct 2021 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Astrobiology Manuscript Central: http://mc.manuscriptcentral.com/astrobiology # Relevance of earth-bound extremophiles in the search for extra-terrestrial life | Journal: | Astrobiology | |--|--| | Manuscript ID | AST-2021-0033 | | Manuscript Type: | Reviews | | Date Submitted by the Author: | 08-Mar-2021 | | Complete List of Authors: | Carré, Lorenzo; Institut de Biologie Structurale
Zaccai, Giuseppe; Institut de Biologie Structurale; Institut Laue-Langevin
Delfosse, Xavier; Laboratoire d'Astrophysique de Grenoble
Girard, Eric; Institut de Biologie Structurale
Franzetti, Bruno; Institut de Biologie Structurale, | | Keyword: | Habitability, Thermophiles, Halophiles, Psychrophiles, Piezophile | | Manuscript Keywords (Search
Terms): | Macromolecules, Biophysics, Biochemistry, Extreme conditions | | | | SCHOLARONE™ Manuscripts # Relevance of earth-bound extremophiles in the search for extraterrestrial life CARRÉ Lorenzo¹, ZACCAI Giuseppe^{1, 2}, DELFOSSE Xavier³, GIRARD Eric¹, #### FRANZETTI Bruno¹ Extremophile biochemistry for exobiology Corresponding authors: lorenzo.carre@ibs.fr; franzetti@ibs.fr # Keywords Astrobiology – Extremophiles biochemistry and biophysics – Extraterrestrial environments – High pressure – Extreme temperatures – Hypersalinity ¹ Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France. ² Institut Laue-Langevin (ILL), 38042 Grenoble, France ³ Laboratoire d'Astrophysique, Observatoire de Grenoble, 38400 Saint Martin d'Hères, France # **Abstract** The recent discovery of extrasolar earth-like planets orbiting in their habitable zone of their system, and the latest clues of presence of liquid water in subsurface of Mars and in subglacial ocean of Jupiter and Saturn moons, have reopened debates about habitability and limits of life. While liquid water, widely accepted as an absolute requirement for terrestrial life, may be present in other bodies of the solar system or elsewhere, physical and chemical conditions, such as temperature, pressure and salinity may limit this habitability. Nonetheless, life is observed in various extreme terrestrial environments which had been previously thought too harsh. Extremophilic microorganisms found in these environments are adapted to thrive in permanently extreme ranges of physical and chemical conditions. Their biochemistry and biophysics are currently studied actively, in an exploration of the limits for life at a molecular scale. In the context of habitability, these approaches may guide the search of extraterrestrial life. In this review, promising environments for life in the Solar System are discussed in terms of habitability by terrestrial-like extremophiles and the adaptive biophysics and biochemistry of extremophiles growing, respectively, in extreme temperature, pressure or salinity, are reviewed in some detail. ## Introduction The existence of extraterrestrial worlds and life has long been debated by philosophers and thinkers (Gress and Mirault, 2016). The Copernican Revolution in particular has dramatically strengthened the idea that Earth is not the center of Universe and that similar world may host life elsewhere (Peretti, 2019; von Hegner, 2019b). Nonetheless, the question of extraterrestrial worlds and life has been addressed long before, for example during the occidental medieval period by theologists or philosophers such as Nicolas de Cues, Thomas Bradwardine or Jean Buridan. Scientific questions about extraterrestrial life are now at the center of the new field of astrobiology. This thematic is undergoing a revolution by recently becoming a genuine scientific topic — with objects to be studied — thanks to major advances in several areas describing habitability of different bodies outside the Earth. The presence of liquid water is generally the first criterion (but not the only one) to define the habitability of extraterrestrial worlds. There is now irrefutable evidence that water flowed on the surface of Mars during its early phases (Wordsworth, 2016). The icy moons of the giant planets are also of considerable interest for the search of life since the presence of a water ocean under the icy crust is inferred for Ganymede, Europa, Enceladus and Titan (Kivelson *et al.*, 2000; Rambaux *et al.*, 2011; Thomas *et al.*, 2016). Beyond the Solar System, the last quarter of a century has seen the discovery of first extrasolar planets (Mayor and Queloz, 1995), followed a few years later by the discovery of telluric exoplanets in habitable zones around their stars (Delfosse *et al.*, 2013; Bonfils, Curto, *et al.*, 2013; Anglada-Escudé *et al.*, 2016). If such planets of satellites can host liquid water on the surface or below the surface, the conditions of pressures, temperatures, salinities, pH, etc can however be extreme for a terrestrial type of life, and astrobiology is interested on eventual life forms in very diverse environments. Astrobiology could be defined as "the study of the origin, evolution, distribution (and future) of life in the universe: extraterrestrial life and life on Earth" (Cottin, 2019). The term was first proposed in 1953 by the astronomer Gavriil Tikhov (Tikhov, 1953) and the field was first theorized by the biologist Joshua Lederberg in 1960 under the synonym term of exobiology (Lederberg, 1960). In fact, to date there is only one kind of life known: terrestrial life. Every cell on Earth has descended from a common ancestor and shares the same basic chemistry and biological processes. The discovery of a new kind of life, independent from the terrestrial life, would be of huge scientific interest. Still, a general definition of life is required if we were to search for extraterrestrial one (von Hegner, 2019a). Many definitions have been proposed based on thermodynamics, chemical composition or evolution but as there is only one example of life to date, all definitions will be geocentric. It has been proposed that terrestrial life could be defined as a "genome-containing, self-sustaining chemical dissipative system that maintains its localized level of organization at the expense of producing entropy in the environment; which has developed its numerous characteristics through pluripotential Darwinian evolution" (von Hegner, 2019a). Another way to understand life in regards to astrobiology is through its limits (Takai, 2019). Biological processes are based on the chemical reactions between the molecules constituting organisms: biomolecules. Physical and chemical properties of biomolecules determine the range of conditions compatible with their functions and thus the limits of biological activity. As a consequence, life has long been seen as a fragile thing, needing liquid water abundancy, warm temperatures, moderate salinity, no ionizing irradiation, etc (von Hegner, 2020). In this context, the discovery of extremophiles has pushed farther away the limits of life. Many natural terrestrial environments have first appeared to be too harsh and incompatible with persistent life: hyperacidic volcanic hot springs, hyperbaric deep abysses, subzero polar environments or saturated salt lakes. Nonetheless, organisms permanently living in these extreme environments and adapted to live under their extreme conditions, have been discovered. While presence of microscopic infusory-like life in hypersaline lake has been hypothesized by Darwin during its journey on the Beagle (Darwin, 1839), the term of extremophiles was first coined in 1974 (Macelroy, 1974). By opposition, non-extremophilic life can be defined as mesophilic (living between extremes). As life could be found in new unsuspected environments, it has also appeared that classical definitions of life and habitability are generally mesocentric and even the definition of an extreme condition, environment or extremophile may present the mesocentric bias. As a consequence, there is an opposition between two points of view, two ways to understand terrestrial life with consequences on the apparent probability of finding extraterrestrial life: 1) Life is fragile, needs precise conditions to appear and to develop and is thus uncommon in the Universe or 2) Life can adapt to many environments and large panel of physical and chemical conditions and could be more common in the Universe, widening the criterions of habitability. It should however be noted that the existence of extremophiles does not infer that life can appear in extreme environments. In this review, a description of extraterrestrial environments promising for the search of life
and a description of their extreme conditions will be provided. Then an overview of the J relevancy of extremo, ...ural and dynamical scale, basis o biomolecules and biological processes a. found in extremophiles allowing life under c reviewed. # Where to search for life? Promising extraterrestrial #### environments The search for extraterrestrial life, current or traces of past biological activity, is tightly related to the search for habitable environments (Javaux and Dehant, 2010). Because there is, so far, only one known kind of life yet, our notion of habitability is constrained by our understanding of Terran life, its origins, its evolution and its limits (O'Malley-James and Lutz, 2013; Zaccai, 2020). Even if not sufficient, liquid water is strictly essential for life as we know it (Jones and Lineweaver, 2010). The search for extraterrestrial liquid aqueous environments is thus fundamental. In this context, the discovery of exoplanets within the so-called habitable zone associated with their star is promising and highly exciting (Gillon et al., 2017). To be considered as potentially habitable, planets must be within the proper range of orbital distances to allow surface temperatures such that liquid water can be stable on their surface (Kasting et al., 1993; Selsis et al., 2007). This constraint also imposes limits on the planet mass and atmosphere conditions to be within the atmospheric surface pressure range allowing water to be liquid. The greenhouse effect plays a crucial role for the surface temperature, and is estimated in using climate models adapted to the characteristics of the central star. These models are becoming increasingly sophisticated from global one-dimensional models to a new generation of 3D Global Climate Model. But they cannot take into account the particularities of each planet, or even the composition of its bulk and its atmosphere which are unknown today. An important breakthrough will be made in the future, since some of these worlds in habitable zones will become amenable to characterization of their atmosphere through transit spectroscopy either with James Web Spatial Telescope (JWST) (Doyon *et al.*, 2014; Beichman *et al.*, 2014) or by combining high-dispersion spectroscopy with high contrast imaging with Extremely Large Telescope (ELT) (Snellen *et al.*, 2015), and that a highly ambitious space missions such as the Large UV/Optical/Infrared Surveyor (LUVOIR), which could be in operation in the middle of the century, will have as its main objective the characterization of atmospheres of Earth-like planets around solar type stars. But today, if we know that telluric planets in habitable zones are very common (Bonfils, Delfosse, *et al.*, 2013; Dressing and Charbonneau, 2015; Bryson *et al.*, 2020), their environment is globally unknown to us and we can only imagine their diversity. So our review will focus on the better-known characteristic of the bodies of the Solar System. Earth is the only planet in the Solar where solid, liquid and gaseous water co-exist on the surface. A co-existence that is the basis of the cycles that create the climatic conditions that shape our environment. It has been shown, however, that transient liquid water is possible on the surface of Mars (Möhlmann and Thomsen, 2011; Chevrier and Rivera-Valentin, 2012; Martín-Torres *et al.*, 2015). Subsurface Martian environments appear to be more habitable with persistent aqueous environments (Clifford *et al.*, 2010; Jones *et al.*, 2011; Orosei *et al.*, 2018), raising hope for the existence of a deep Martian biosphere, analogous to the deep biosphere of Earth's crust (Richard A. Kerr, 1997; Itävaara *et al.*, 2016) or deep subglacial Antarctic habitats (Michalski *et al.*, 2013; Mikucki *et al.*, 2015). Farther away from Earth, liquid water is abundant under the surface of other bodies of the Solar System. Multiple evidence shows that several icy moons of giant planets possess liquid water oceans beneath a thick crust of ice. Among them, Enceladus, a moon of Saturn, and Europa, a moon of Jupiter, are of particular interest for astrobiology and the search for life (Gaidos et al., 1999; Jebbar et al., 2020a) ## Mars brines and depths Several current geological aspects have given birth to the hypothesis of a water ocean covering large portions of Mars surface approximatively 3-4 billion years ago (Brandenburg, 1987; Chapman, 2003; Di Achille and Hynek, 2010). This hypothesis proposes that surface habitable aquatic environments may have existed on Mars (Grotzinger et al., 2014). Moreover, geochemical traces of past hydrothermal activity on Martian surface lead to the hypothesis that environments similar to acidic terrestrial Laguna Caliente lake (Hynek et al., 2018) or El Tatio geothermal field (Barbieri and Cavalazzi, 2014), which are both habitable and colonized by extremophiles, may also have existed. The permanence of this ancient ocean remains an open question, climate models of Mars having difficulties in reconciling its potential existence in these period with the surface temperature estimated to be too cold, resulting in most surface water having to be trapped in ice (Head et al., 2018; Palumbo and Head, 2018; Turbet and Forget, 2019). This enigma might be solved if the atmosphere of ancient Mars was dominated by H₂ and CO₂. Recent 1D numerical radiative-convective climate calculations suggest that this is a viable solution, and may be the only one, to warm the surface of Mars above the melting point of water (Turbet et al., 2020) but this remains to be confirmed by 3D Global Climate Models computations. However, even if the Martian surface was habitable in the past, it is now considered to be too extreme for life to develop and persist (McCollom, 2006). Major barriers are extreme aridity, cold temperature, abundance of perchlorates which strong oxidative power would impair most biomolecules (Quinn *et al.*, 2013; Wadsworth and Cockell, 2017) and intense UV irradiation which degrades organic matter too. It is also expected that iron, which is abundant in Martian soils, may catalyzes this degradation process (Stalport *et al.*, 2019). The main place where to look for life on the Red Planet may, therefore, be below the surface. In particular, a liquid water body has been recently discovered under the southern ice cap (Orosei *et al.*, 2018). In the hope of finding active current biological activity or traces of past life, future exploration missions such as ESA ExoMars or NASA Mars 2020 will carry equipment such as rovers designed for studying subsurface environments with a special emphasis on biomarkers (Simoneit *et al.*, 1996; Vago *et al.*, 2015; Williford *et al.*, 2018). Indeed, the Martian subsurface is expected to be less harsh than the surface, shielded from sublimation and UV irradiation and where persistent liquid water within brines could be present and stable (Martínez and Renno, 2013). The possibility of a present or past deep Martian biosphere in subsurface waters, based on chemosynthesis and analogous to terrestrial subsurface ecosystems, has been largely hypothesized (Boston *et al.*, 1992; Michalski *et al.*, 2013; Grotzinger *et al.*, 2014; Mikucki *et al.*, 2015). However, putative Martian subsurface organisms would have to cope with desiccation-rehydration cycles and fluctuating salinity, constraints that would select adaptations to cope with high salinity (Reid *et al.*, 2006; Kendrick and Kral, 2006; Vauclare *et al.*, 2020). In particular, Martian brines may reach molar concentrations of various salt ions, similarly to the salinities of terrestrial hypersaline lakes such as Great Salt Lake or Dead Sea (Fox-Powell *et al.*, 2016). Temperatures are expected to be higher at greater depths under the Martian surface due to radiogenic heating allowing liquid water to exist (Clifford, 1993; Clifford *et al.*, 2010) as deep as 310km, at 427°C and a pressure of 4GPa (Jones *et al.*, 2011). By comparison, subsurface liquid water is only possible on Earth in the first 5km deep in the crust, (Jebbar *et al.*, 2020a) under a maximal pressure of 150MPa. Yet deep biosphere is mostly occupied by microorganisms in the first 1-2km (Magnabosco *et al.*, 2018) at pressure values around 100MPa. Putative subsurface Martian life at warm temperatures would thus have to cope with higher pressure than its terrestrial counterpart. These present-days putative habitable Martian environments are representated in Figure 1-A. # Subglacial oceans of giant planets icy moons Earth is the only planetary body in the Solar System with present persistent surface liquid water. However, if subsurface liquid water is also taken into account then the blue planet appears to be rather dry compared to the icy moons of giant planets (Mosher and Cheng, 2018). Indeed, several of these moons may possess, under their ice surface layer, huge liquid water masses that could be called exooceans (Taubner *et al.*, 2020), with liquid water abundance relative to the total mass of the body exceeding Earth's. Furthermore, Europa, Callisto, Titan and Ganymede, subglacial liquid water volumes exceed Earth's total liquid water volume. Europa and Enceladus, in particular, have oceans which are of particular interest for astrobiology because they would be directly in contact with rock allowing geochemical processes such as enrichment of water with various organic and inorganic molecules. On Earth, these interactions between liquid water and rock represent a source of energy and for existing microorganisms and may have been be critical for the origin of life (Hinman, 2013). Hence, they are major targets for exploration and study by future space missions (Pappalardo, 2012; Cable *et al.*, 2016). #### The subglacial ocean on Europa First evidence of a liquid water ocean beneath the ice on Europa came from the Galileo spacecraft imaging in 1996 of the Jovian moon surface showing a geological young surface and evidence of hydrogeological
activity (Kerr, 1996). Further analysis supported existence of a subsurface ocean of liquid water (Carr *et al.*, 1998; Pappalardo *et al.*, 1999), whose origin is the tidal effect of Jupiter's gravity resulting in a massive heating of its satellite (Greenberg, 2009). Beneath the ice, the ocean would be global, up to 100-200km deep, depending on the model used (Anderson *et al.*, 1997, 1998; Pappalardo *et al.*, 1999; Spohn and Schubert, 2003; Marion *et al.*, 2003; Thomas *et al.*, 2016). Its volume would exceed that of all terrestrial oceans volume (Chyba and Phillips, 2001). Models depict an ice shell 10km thick (Park *et al.*, 2015) with local variations in thickness (Thomas *et al.*, 2016). The layer of ice acts as a barrier against cosmic rays, thus offering protection to hypothetical current oceanic life or traces of past life. Europa may also be the only Solar System body other than Earth exhibiting plate tectonics and subduction (Kattenhorn and Prockter, 2014). Subduction in the ice shell of Europa is a particularly interesting feature as it could bring molecules from the surface down the liquid water ocean, molecules such as oxidants produced by photochemistry (Pasek and Greenberg, 2012) or prebiotic molecules delivered by meteorites and comets (Pierazzo and Chyba, 2002; Kimura and Kitadai, 2015). What makes Europa even more interesting for astrobiology is the putative existence of hydrothermal processes at the bottom of the ocean. Modeling of Europa's geology (Lowell and DuBose, 2005) and ocean's chemical composition (Zolotov, 2003) argue in favor of abyssal hydrothermalism. By comparison with Earth's black smokers ecology, hydrothermal vents on Europa would provide an habitable environment with energy source, chemical and physical gradients, making Europa's abysses strong candidates for habitable environments with extraterrestrial life (Gaidos *et al.*, 1999; Chyba and Hand, 2001; Pierazzo and Chyba, 2002; Zolotov, 2003; Marion *et al.*, 2003). The chemical composition of Europa's subglacial ocean has also been modelized. It is expected to be acidic because of the intake of oxidants produced on the surface by photochemistry (Pasek and Greenberg, 2012). Nonetheless, pH could vary close to the putative hydrothermal vents, since hydrothermal fluids which are expected to be alkaline similarly to Earth's (Zolotov, 2003). Preliminary studies have implied that salinity would be close to saturation (Hand and Chyba, 2007), similar to terrestrial hypersaline lakes, and dominated by MgSO₄ (Kargel *et al.*, 2000; Fanale *et al.*, 2001; Zolotov and Shock, 2001; McKinnon and Zolensky, 2003). However, MgSO₄ concentration is supposed to decrease significantly with depth and pressure (Schmidt and Manning, 2017). Other works suggest instead that NaCl would the dominant salt (Valenti *et al.*, 2012), recently supported by Hubble Space Telescope detection of sodium chloride on Europa's surface which may originate from under the ice layer (Trumbo *et al.*, 2019). #### The subglacial ocean on Enceladus Enceladus is much smaller than Europa. It is also heated by the tidal effect of Saturn (Tyler, 2009). First evidence of liquid water beneath the ice came thanks to Cassini-Huygens mission which flied over the moon in 2005 and 2007. It detected various hydrogeological activities at the south pole of the moon: cryovolcanism (Porco *et al.*, 2006), surface thermal emissions (Spencer *et al.*, 2006) and a massive water vapor plume (Hansen *et al.*, 2006). All these elements argue in favor of a local liquid water ocean beneath the south pole of Enceladus. Other evidence includes gravimetric anomalies (less *et al.*, 2014) and chemical analysis of the plume, which led to sampling the composition of the subglacial ocean. Many chemical species have were thus identified: the dominant specie of the plume is water, CO₂ and CH₄ are present in significant amounts and small amounts of NH₃, HCN, propane and acetylene were also detected (Waite, 2006). Further analysis also showed presence of benzene, methanol, various alkenes and alkanes (Waite *et al.*, 2009) and even larger organic molecules with masses above 200Da in ice grains in the plume closer to the icy surface (Postberg *et al.*, 2018). The presence of organic molecules has been interpreted as proof that hot aqueous chemistry (Matson *et al.*, 2007) and hot rock-water interactions (Sekine *et al.*, 2015) are currently active in the Enceladus subglacial ocean. Accumulation of evidence has strengthened the hypothesis of the existence of hydrothermal vents at the bottom of the Enceladus subglacial ocean (Parkinson *et al.*, 2008; Tobie, 2015; Sekine *et al.*, 2015; Waite *et al.*, 2017), making this ocean an even stronger candidate for a habitable extra-terrestrial environment. Enceladus's subglacial ocean is estimated to be about 10km deep (Tyler, 2009), well protected by the ice sheet from cosmic rays (less *et al.*, 2014). Chemical models of the subglacial ocean based on the study of the plume have been proposed. Enceladus present-day subglacial ocean would be a solution of NaCl and carbonate (Zolotov, 2007), with some KCl, MgCl₂ (Brown and Hand, 2013) with a strongly alkaline pH of approximatively 11-12, as determined by models of carbonate speciation (Glein *et al.*, 2015). This would make Enceladus's ocean similar to the terrestrial soda lakes. #### Other icy moons Titan, a moon of Saturn, is considered by many as an icy body of huge astrobiological interest. Several attempts have been made to conceptualize putative life or biomes on Titan (Fortes, 2000; McKay and Smith, 2005). A subglacial ocean hundreds kilometers-deep has been hypothesized for Titan (Grasset and Sotin, 1996); it would be extremely cold, however, and composed of water and ammonia (Grindrod *et al.*, 2008; Baland *et al.*, 2011). In spite of the fact that various bacteria have been shown to survive in highly concentrated ammonia solutions (Kelly *et al.*, 2012), these exotic conditions are largely unknown to natural terrestrial life. If there were life in such subglacial ocean, it is likely that it would be based on a radically different chemistry than on Earth. However, the existence of hydrothermal vents, as possible sites for prebiotic chemistry, at the bottom of the subglacial ocean, has also been hypothesized (Lunine and Rizk, 2007). The surface of Titan is more promising with regard to prebiotic chemistry because of its complex carbon hydrogeology (Raulin *et al.*, 2012). Ganymede, a satellite of Jupiter, is the biggest moon in the Solar System and may have the largest subglacial ocean (McCord *et al.*, 2001). However, it is also expected that a thick high-pressure tetragonal ice layer would separate liquid water and rock (Vance *et al.*, 2014), limiting chemical exchanges. Other icy moons with putative subglacial oceans include Dione, satellite of Saturn (Beuthe *et al.*, 2017), Mimas, also of Saturn (Rhoden *et al.*, 2017) and Triton, satellite of Neptune (Ruiz, 2003; Gaeman *et al.*, 2012). #### Icy moons environmental conditions It should be kept in mind that temperature, salinity, pressure, pH and chemical composition may vary within sub-glacial oceans, leading to multiple types of environment of various habitability: hydrothermal abyssal fields, seafloors, hypersaline brines and the top of the oceans close to the ice (Gaidos *et al.*, 1999; Chyba and Phillips, 2001; Marion *et al.*, 2003). These putative habitable icy moons environments are representated in Figure 1-B. While black smokers have been proposed as models for icy moons abyssal environments, deep hypersaline anoxic basins (DHABs) have been proposed as models for subglacial general waters (Antunes *et al.*, 2020). In fact, DHABs like the Mediterranean Discovery, Urania and Kryos basins or Red Sea brine lakes could share some conditions with icy moons oceans such as anoxia, absence of light, high salinity, high pressure and warm/low temperatures. Subglacial bodies of liquid water are also present on Earth such as the Antarctic lake Vostok. As they low-temperature environments isolated by ice from the outside, they have also been proposed as models for icy moons subglacial oceans (Petit *et al.*, 2005; Cockell *et al.*, 2011). Laboratory experiments from many scientific fields designed for simulating icy moons conditions have recently be reviewed (Taubner *et al.*, 2020). # Extremophiles and astrobiology While the previous Martian and icy moons environments appear rather extreme compared to classical biological standards, they share multiple features with extreme terrestrial environments. In this part, extremophilic microorganisms, which have successfully colonized most of these environments, will be presented in the context of astrobiology and extraterrestrial habitability. Extremophiles are considered as key model organisms for astrobiology by many (Seckbach, 2000; Cavicchioli, 2002; Reid *et al.*, 2006; Marion and Schulze-Makuch, 2007; Pikuta, 2007; Stojanovic et al., 2008; Canganella and Wiegel, 2011; Merino et al., 2019; DasSarma et al., 2020; Jebbar et al., 2020a). Their ability to grow at temperatures above 100°C or under 0°C, at pH under 1 or above 10, at nearly saturating salinity, or at pressure over 100MPa are particularly impressive from our mesophilic anthropocentric point of view. Taken as a whole, extremophiles encompass all kinds of environments inhabited by present-days terrestrial life and show that, as long as there is water, most terrestrial environments can be inhabited and actually are. Existence and diversity of extremophiles argue against the longlived belief that life is intrinsically fragile (von Hegner, 2020). In contrast, the idea that life can work in a various and large range of physical and chemical conditions opens the spectrum of potentially habitable terrestrial and extraterrestrial environments. On the other hand, a precise understanding of life at the extremes may also help to tell which
extraterrestrial environments would be too extreme, even for the billion's years-old evolved terrestrial life. However, as discussed later, feasibility of abiogenesis in extreme environments is still largely debated. Therefore, it should be stressed that environments putatively habitable by extremophiles should not be considered necessarily favorable for life to appear. In general, it is expected that extraterrestrial environments such as Martian depths and icy moons oceans are more extreme than terrestrial counterparts. Therefore, putative life in these environments would have like terrestrial extremophiles to face extreme chemical and physical conditions. As extreme conditions effects on molecular systems are universal, it would also be expected that putative extraterrestrial life would use strategies similar to terrestrial extremophiles to cope with their environment. Extremophiles are present in three domains of cellular life, which all share the last universal common ancestor (LUCA): bacteria, archaea and eukarya. While some extremophiles, mainly among fungi, protists and green algaea, are indeed eukaryotic (with a nucleus), prokaryotes (without nucleus) usually dominates in extreme environments. Macroscopic, which are mostly eukaryotes, are scarce in extreme environments and microorganisms only can permanently thrive and grow in extreme environments by adapting their whole biomolecules to the extreme conditions. Moreover, extremophilic prokaryotes may belong to extensive phylae with extremophiles only, showing a long-evolved adaptation to extreme conditions. Among them, archaea are dominant in extremely hot, acid and hypersaline environments while bacteria are dominant in cold and alkaline environments. Depending on the ambient temperature, deep-sea organisms are typically represented by psychrophilic bacteria or thermophilic archaea. Extremophiles found in marine or continental subsurface rocks are generally bacteria. Some extremophiles and their representative natural environments are represented in Table 1. Like any other cellular organism, extremophiles may be infected by viruses. In fact, virions, the extracellular dispersion form of viruses, have been found in black smokers (Geslin *et al.*, 2003), acidic hot springs (Prangishvili and Garrett, 2005), hypersaline lakes (Sime-Ngando *et al.*, 2011) and cold polar environments (Wells and Deming, 2006). As they infect cells inhabiting extreme environments, viruses of extremophiles also possess biomolecules adapted to these extreme conditions and should be considered as part of extremophilic biodiversity. While the status of viruses, alive or not, is still debated (Koonin and Starokadomskyy, 2016; van Regenmortel, 2016), virions are the most abundant biological objects on earth and their biomass may exceed total biomass of protists (Suttle, 2007). Due to their uncontestable contribution to biogeochemical cycles and evolutions of cells, viruses should be considered as a matter of interest for astrobiology (Berliner *et al.*, 2018). # Experimental astrobiology: using extremophiles to test habitability Besides theoretical considerations, experimental studies have been used to assess compatibility between extremophiles physiology and extraterrestrial conditions expected to be encountered in icy moons subglacial oceans or Martian brines and subsurface. As no sunlight is available in icy moons oceans, photosynthesis is expected to be absent from putative subglacial oceanic life (Gaidos *et al.*, 1999; Chyba and Hand, 2001) and ecosystems would be rather based on chemosynthesis. The same is expected for putative subsurface life on Mars (Boston *et al.*, 1992). Without photosynthesis-driven dioxygen production, these environments would be anoxic. It should be noted that primitive Earth atmosphere and waters were anoxic until about 2.4 billion years, yet allowing life to appear. Anoxia should not be considered as an extreme condition for biological systems or a barrier for life *per se*. On the contrary, since the oxygenation of atmosphere and waters by photosynthetic microorganisms, aerobic microorganisms have to cope with huge oxidative stress through various long-evolved molecular systems. In terrestrial anaerobic environments, methan-producing microbes (methanogens) are key organisms to understand such biotops. Methanogens are widespread microorganisms from the *Archaea* domain encountered in both extreme and moderate environments. They are either autotrophs (producing their own organic matter) or heterotrophs (needing organic matter from the environment). In all cases, CH_4 is a byproduct of their growth, which can be then metabolized by methanotrophs (bacteria and archaea). Hence, methanogens using CO_2 as the carbon source and H_2 as the reducing agent (Lyu *et al.*, 2018), and extremophilic ones in particular, are recurring model organisms in astrobiology which are expected to be able to thrive in extraterrestrial environments (Reid *et al.*, 2006; Kendrick and Kral, 2006; McKay *et al.*, 2008; Taubner *et al.*, 2015). Moreover, as most methane on Earth is of biological origin (Liu and Whitman, 2008) it could be considered to some extent as a biomarker (Jebbar *et al.*, 2020b). This must however be balanced by the fact that existence of CH_4 could be a purely abiotic phenomenon in a case of an H-rich atmosphere. CH_4 being a natural reservoir of carbon (Woitke *et al.*, 2020). The biomarker status of this molecule depends therefore on the type of planetary atmosphere. For the CO₂-rich Martian atmosphere, calculations indicate that the presence of methane is not expected if the atmosphere is at thermodynamic equilibrium (Levine *et al.*, 2010). If emitted, it cannot survive long, with a relatively short lifetime of about 300years. Its detection, specially within local releases (Formisano *et al.*, 2004; Mumma *et al.*, 2009; Webster *et al.*, 2015, 2018), therefore argues for a very young source. Martian methane origin remains an open question, the debate not being settled between geochemical/geological processes or microbial life (Lyons *et al.*, 2005; Yung *et al.*, 2018) questioning the existence of methanogens viability on Mars. Experimental works have shown that extremophilic methanogens could withstand many Martian surface or subsurface extreme conditions: thermophilic *Methanothermobacter wolfeii* survived long Martian-like desiccation (Kendrick and Kral, 2006) and low pressure (Mickol and Kral, 2017), psychrophilic *Methanobacterium articum* could tolerate perchlorate and even use it as a substrate (Shcherbakova *et al.*, 2015), Siberian permafrost methanogens survived simulated Martian thermal daily variation (Morozova *et al.*, 2007), long freezing, high salinity and starvation (Morozova and Wagner, 2007) and psychrophilic *Methanosarcina soligelidi* and *Methanococcoides burtonii* could manage methanogenesis at Martian subsurface pressure and/or at temperatures down to 5°C (Reid *et al.*, 2006; Schirmack *et al.*, 2014). Since H₂, CO₂ and CH₄ have been detected in Enceladus's plume (Waite, 2006; Waite et al., 2009, 2017), it has been proposed that methanogens could be thriving in Enceladus subglacial ocean. Based on this assumption, recent experimental study have shown that growth of the thermophilic methanogen *Methanothermococcus okinawensis* is possible under extrapolated Enceladus hydrothermal vents conditions (Taubner et al., 2018). Extremophiles from hypersaline environments have also been considered in simulated extraterrestrial conditions. As discussed above, many extraterrestrial environments such as brines of Mars, Enceladus and Europa, may be hypersaline, in which halophilic and halotolerant microorganisms, for which terrestrial counterparts represent good models, thrive (DasSarma, 2006; Reid *et al.*, 2006; Sundarasami *et al.*, 2019). Moreover, intracellular accumulation of salts, particularly manganese salts (Webb *et al.*, 2013), in halophilic cells provides protection against ionizing radiation (Kish *et al.*, 2009), which is prevalent in some extraterrestrial environments. Experimental studies showed that some halophilic archaea can tolerate high concentrations of perchlorates similar to what would be faced in Martian brines (Oren *et al.*, 2014; Matsubara *et al.*, 2017; Laye and DasSarma, 2018), Martial-like UV irradiation (Fendrihan *et al.*, 2009), desiccation-rehydration cycles (Vauclare *et al.*, 2020), long-term desiccation and freezing cycles (Mancinelli et al., 2004) or could grow at Martian subsurface temperature (Reid et al., 2006; Laye and DasSarma, 2018). #### Extremophiles and abiogenesis Existence of extraterrestrial conditions compatible with terrestrial life is not a sufficient reason to believe extraterrestrial life has actually originated. In fact, extremophilic life is a complex lifestyle achieved with many mechanisms: large molecular assemblies, efflux/influx systems, molecular glues and rivets, channeling, etc. Evolution has driven life for at least 3,5 billion years, leaving time to evolve new mechanisms allowing adaptation to new environments, but discourses on origin of life, on abiogenesis, are only speculative. In silico predictions of LUCA's genome offered several arguments in favour of a thermophilic origin of modern cells: G+C-rich content (Di giulio, 2000), which is largely associated with modern-days thermophily as GC basepair is less susceptible than AT to thermodenaturation, predicted proteins with amino acid sequences similar to modern-days thermophilic homologs (Giulio, 2003) and the possession of a gene coding reverse gyrase enzyme, a hallmark trait of hyperthermophiles (Catchpole and Forterre, 2019) lead to the model where the last ancestor of all cells have emerged from inorganic natural compartmentation in hydrothermal vents. (Koonin and Martin, 2005). Others have proposed that even first biomolecules have originated in rich hydrothermal prebiotic chemistry (Martin et al.,
2008) and land hydrothermal fields have also been proposed as the place for precellular evolution (Mulkidjanian et al., 2012). High pressure encountered in hydrothermal vents environments could have also facilitated some prebiotic reactions, notably by countering destabilizing effect of high temperature. It has thus been proposed that LUCA, the last ancestor of all cellular organisms, was pressure-adapted (Daniel *et al.*, 2006) or that high pressure in hydrothermal vents environments facilitated synthesis of prebiotic molecules (Hazen *et al.*, 2002; Daniel *et al.*, 2006). All these elements place abyssal hydrothermal vents at the center of abiogenesis. Such claims may be supported by the discovery of putative 3.8-4.3Ga old microorganism fossils in hydrothermal vents precipitates (Dodd *et al.*, 2017), in spite of the fact that such evidence of life older than 2.7Ga is controversial (Gargaud *et al.*, 2012). However, others have pointed out that a thermophilic origin of life is unlikely (Miller and Lazcano, 1995; Levy and Miller, 1998; Galtier *et al.*, 1999; Bada and Lazcano, 2002; Islas *et al.*, 2003). In general, some have argued that in the absence of complex long-evolved adaptations, extreme conditions would have been too harsh for first cells or first biomolecules, hence excluding the relevance of extremophiles for LUCA lifestyle, RNA world or first prebiotic reactions (Cleaves and Chalmers, 2004; Islas *et al.*, 2007). Hence, existence of extreme extraterrestrial environments, such as subglacial hydrothermal vents of Enceladus or Europa, which could be habitable for terrestrial extremophiles does not imply that life actually emerged and adapted there. Extraterrestrial life may not be necessarily extremophilic (von Hegner, 2020). #### Beyond the cell: extremophilic biochemistry in extraterrestrial conditions As the cellular level appears to be too complex and evolution-dependent, extraterrestrial habitability should also be tested at smaller scales. Before the potential existence of cells, with long-evolved mechanisms to cope with extreme conditions, prebiotic systems have to emerge from prebiotic chemistry. Even if the question of terrestrial abiogenesis is still open, extensive work has been done about extraterrestrial prebiotic chemistry (Cleaves, 2014). In particular, several experimental setups for simulating prebiotic chemistry in icy moons putative hydrothermal vents conditions have been proposed (Barge and White, 2017; Taubner et al., 2020). Other extraterrestrial environments relevant to prebiotic chemistry have been experimentally simulated. In interstellar ice, prebiotic molecules such as amino acids have been found to be abiotically synthetized, a process which have been simulated in laboratory conditions (Caro and Dartois, 2013). Amino acids and nucleotides have also been for example synthetized in simulated Titan atmosphere (Hörst et al., 2012). However, the aim of this review is to focus on the scale between cell physiology and prebiotic chemistry: biochemistry. The study of extremophiles encompasses biochemistry, cell biology, microbiology and ecology. Nonetheless, experimental astrobiological studies using extremophilic systems are largely limited to the cell scale. Little work has been done with biomolecules from extremophiles such as proteins and lipids in planetary conditions. By contrast, multiple experimental studies have pushed terrestrial biochemistry in conditions far beyond their normal context and their expected physical and chemical limits. An example of such work include enzymatic catalysis in organic solvents (Dordick, 1989; Klibanov, 1989) or ionic liquids (Kragl *et al.*, 2002). In this context, enzymes from extremophiles have shown many industrial applications (Horikoshi, 1999; Vieille and Zeikus, 2001; Demirjian *et al.*, 2001; Dumorne; *et al.*, 2017). To some degree, these studies push back the limits of life, understood as fundamental biochemical processes. However, these works are generally made outside of the context of astrobiology. In this review we would like to defend the position that experimental studies using biomolecules such as enzymes from extremophilic terrestrial organisms (extremozymes) are of particular interest for astrobiology. In fact, studying viability of terrestrial extremophiles in simulated extraterrestrial environments mainly gives information about one precise microorganism capacity. In fact, survivability of halophiles in simulated Martian conditions, for example, has been proven to be dependent on the strain used (Peeters *et al.*, 2010). Indeed, growth, metabolism and cell division are complex biological phenomenon requiring multiple enzymes, coordinated processes and are thus largely interdependent. In contrast, given precise fundamental biochemical processes such as assembly of a macromolecular edifices, protein synthesis, DNA replication or metabolite production appear simpler to study and to extrapolate. Even if putative extraterrestrial life is based on the same chemistry as terrestrial's, large-scale cell processes may significantly differ. Smaller-scale fundamental biochemistries however could share more similarities. Therefore, studies of biomolecules from extremophiles in simulated planetary conditions may offer insights about limits of given biological processes in extraterrestrial environments. Moreover, in the context of abiogenesis or early life, in absence of most of the long-evolved cellular tools modern cells possess, studying fundamental biological processes may give insights on the feasibility of biochemistry in extraterrestrial environments. Indeed, some extraterrestrial environments are more extreme than their terrestrial commonly accepted analogs. Martian surface is not only extremely dry and UV-irradiated like Atacama Desert but also face generally extremely low temperatures and perchlorates abundancy. For icy moons, it is often believed that putative hydrothermal vents would be analogous to terrestrials. However, depth and pressure significantly differ. Deepest hydrothermal vent on Earth lies at approximatively 5km under the sea level with in situ pressure of 50MPa (Connelly et al., 2012). In contrast, some icy moons subglacial oceans are, according to several models, hundreds kilometers deep (Schmidt and Manning, 2017). Europa subglacial ocean for example, would be 100-200km deep (Anderson et al., 1997; Pappalardo et al., 1999; Spohn and Schubert, 2003; Marion et al., 2003; Thomas et al., 2016). Taking account of the 10km thick ice crust (Park et al., 2015), the 100-200km deep ocean and gravity field of the moon, the hydrostatic pressure at the bottom of the water, where hydrothermal vents would be located, is expected to be approximatively 130-260MPa (Naganuma and Uematsu, 1998), which would correspond on Earth to a theoretical oceanic depth of 13-26km under the sea. There is no known terrestrial hydrothermal vent at such pressure and the highest pressure at which life has been found is approximatively 108MPa at Mariana Trench. High pressure processing has been used since 1914 (Hite *et al.*, 1914) to sterilize food and typically 200-300MPa treatment kills most non-piezophilic bacteria whereas 400-700MPa treatment kills most spores (Huang *et al.*, 2014). The first known obligate piezophile microorganism is the black smoker hyperthermophile *Pyrococcus yayanosii* HC1 which has an optimal growth pressure of 58MPa and is able to grow at pressures as high as 120MPa (Zeng et al., 2009; Birrien et al., 2011). However, piezoresistance has been engineered in non-piezophilic bacteria: selection of pressure-resistant mutants allowed, for example, significant survival of *Escherichia coli* MG1655 after exposure to 20GPa (Vanlint et al., 2011) but with no sign of active growth. In similar experiments, some active enzymatic activity has also be reported at pressures as high as 14GPa (Sharma, 2002; Yayanos, 2002). However, these results are controversial. Yet, little is known about how given biochemical processes, independently of the cellular context, behave in pressures similar to what would be face in Europa's depths. Biomolecules from terrestrial abyssal extremophiles may thus provide insights on how these processes would work under such pressures. More generally, extremophilic molecular adaptations may help understanding how fundamental biological processes could or not work under extraterrestrial conditions. #### Extreme conditions overview The scientific field of extremophiles includes both *stricto sensu* extremophilic systems (needing an extreme condition to work properly) and systems which are just resistant to conditions which would impair most biological processes. It also includes adaptation based on the exclusion of extreme condition out of the cell interior when possible and adaptation of all biomolecules within the cell. Strategies based on special long-term resistance form (such as spores) with reduced metabolism and paused growth are sometime included in this field. extreme conditions may either be of physical or chemical origin. While chemical extreme conditions are diverse, including high abundancies of various compounds, physical extreme conditions are limited to fewer situations. Among them, high or low temperature and pressure are particularly challenging for life at the molecular scale. Indeed, microorganisms, which are dominant in extreme environments, cannot form barriers against temperature or pressure change nor they can maintain internal temperature or pressure different from the environment. Hence, adaptation of all biomolecules is necessary in order to grow under these conditions. Astrobiology Biological membranes, which separate interior the cell from the external environment, are permeable to water and not fully impermeable to small solutes. Thus, in hypersaline environments, osmotic pressure favors loss of intracellular water and increase of intracellular salinity. The latter makes high
salinity a chemical extreme condition different from desiccation and affecting the internal environment, needing adaptation of all biomolecules. As described latter, structure and dynamics traits of proteins are the keys for life at high (HT) or low temperature (LT), high salinity (HS) and high pressure (HP). Because of these fundamental structural changes, growth or survivability of extremophiles may be reduced or impossible under mesophilic conditions, making them "true" extremophiles. Effects of these conditions on biomolecules and molecular traits found in extremophiles to cope with them will be detailed in the next chapters of this review. Terrestrial environments displaying one or multiple extreme conditions among these are represented in Figure 2. Other extreme conditions can be handled by organisms at a cellular scale and without adapting general structure of their biomolecules. In the context of astrobiology, adaptations at the scale of the cell may appear to be less relevant than adaptations at the scale of the structure and dynamics of biomolecules. Nonetheless, these other extreme conditions will be briefly reviewed in this chapter. A general overview of extreme conditions, extremophily types, associated terrestrial environments and extraterrestrial environments putatively displaying these conditions is presented in Table 1. #### Extreme pH Acidophiles and alkaliphiles are extremophilic organisms needing respectively low (< 3) or high pH (> 9) to grow. Acidic environments on Earth where acidophiles thrive include volcanic hot springs, solfataric fields, acid mine drainage, bioreactors and coal spoils. Alkaline environments where alkaliphiles thrive include alkaline hot springs, white smokers, soda lakes and sewage waters. Several attempts to compare acidic terrestrial environments to extraterrestrial ones have been made. In particular, the acidic metal-rich waters and sediments of Río Tinto have been compared with ancient aqueous acidic sulfate-rich martian fields (Clifford 1993; Clifford *et al.* 2010). Enceladus ocean is expected to be alkaline (Glein *et al.*, 2015) but pH of extraterrestrial environments is still largely debated. For terrestrial life, extreme pH is not a condition that cells can afford to totally let in. Because metabolism lies in generating ATP using pH gradients across the cell membrane, equilibration of pH between cytoplasm and external acidic or alkaline environment has to be avoided by cells (Krulwich and Guffanti, 1983; Krulwich, 1995). Therefore, instead of adapting proteins and the rest of cellular content to pH < 3, intracellular pH in acidophiles is generally maintained above 6 (Baker-Austin and Dopson, 2007; Krulwich et al., 2011). The same goes for alkaliphiles which keep an intracellular pH lower than the environment pH (Krulwich et al., 2011). For example, the model extremely alkaliphilic bacteria Bacillus pseudofirmus OF4 grows at pH 10.5 but keeps a cytoplasmic pH of 8.3 (Sturr et al., 1994) and the most extreme acidophile organism Picrophilus torridus which can grow around pH 0 has an intracellular pH of 4.6 (Fütterer et al., 2004). Even if terrestrial acidophiles and alkaliphiles possess specific molecular traits, such as charged cell wall, high membrane impermeability and powerful proton pumps (Krulwich et al., 2011; Kulkarni et al., 2019), extreme pH is an extreme condition that is largely kept out of the cell, thus not needing an overall large adaptation of proteins. #### Desiccation Today, Mars lacks stable surface liquid water. Some terrestrial deserts share several conditions with Martian surface. In particular, the Atacama desert is considered as one of the best model environment for present-Mars surface (Dose et al., 2001) as it displays extreme low abundance of liquid water, extensive UV irradiation and Mars-like soils (Navarro-González et al., 2003; Fletcher et al., 2012). However, extremely arid terrestrial environments such as Atacama Desert or Antarctic surface are among the least inhabited places on Earth. If extraterrestrial life shares liquid water-dependency with Terran life, then it should be considered that current active life would be harder to find in arid extraterrestrial environments. Indeed, most molecular processes in cell require water as a solvent to work. Under desiccation, reactive oxygen species accumulate, damaging all biomolecules, protein and nucleic acids undergo direct damage, metabolism is hindered and membrane impermeability and transport are disrupted (Lebre *et al.*, 2017). Moreover, water activity (a_w) decreases, meaning that less water molecules are available for solvation or catalysis. In this state, life processes are significantly reduced until water returns. Molecular traits of xerotolerant organisms include accumulation of compatible solutes which replace water, stabilize membranes and lower oxidative damage and water retention. Under extended desiccation, xerotolerant organisms undergo reversible cellular states such as dormancy, sporulation and anhydrobiosis (Crowe *et al.*, 1992). In such state, metabolism and most biological processes are inhibited or stopped until water is abundant again. Therefore, xerotolerant organisms may not be described as truly xerophilic. #### **lonizing radiation** Highly irradiated environments are uncommon on Earth and most are of anthropic origin. However, other putatively habitable extraterrestrial environments may be more irradiated than terrestrial surface. Ionizing radiation, which is either caused by α or β particles or by γ or X photons, alters all kinds of biomolecules, mainly by producing radicals. While radicals lead to both DNA damage, leading to accumulation of mutations and loss of genetic information, and membrane damage, leading to the loss of cell integrity, protein damage, caused by radical-induced carbonylation (Suzuki *et al.*, 2010), is the most important and lethal effect for microorganisms of ionizing radiation (Daly, 2009). Radioresistant organisms such as the bacteria *Deinococcus radiodurans* (Anderson *et al.*, 1956) and the archaea *Thermococcus gammatolerans* (Jolivet, 2003) can withstand high doses of ionizing radiation. Proteins (Krisko and Radman, 2010) and DNA (Hutchinson, 1985) are directly damaged by ionizing radiation. Several molecular traits have been related to radioresistance, particularly in the model organism *D. radiodurans:* proteome protection, cytoplasmic accumulation of Mn²⁺ and extensive DNA repair (Krisko and Radman, 2013). Several strategies providing radioresistance, such as Mn²⁺ accumulation, are shared with several archaea (Kish *et al.*, 2009; Webb *et al.*, 2013). However, growth of radioresistant organisms is still inhibited by ionizing radiation: they are not radiophilic. Nonetheless, as some extraterrestrial environments are expected to be highly irradiated, they are still considered by some as an interesting model for astrobiology (Pikuta, 2007; Canganella and Wiegel, 2011; Merino *et al.*, 2019). However, it has to be mentioned that some organisms can actually benefit from sources of ionizing radiation. Melanized fungi found in remains of Chernobyl Atomic Energy Station have shown radiotrophic properties: they tend to grow toward sources of ionizing radiation (Zhdanova *et al.*, 2004) and to produce more biomass as they are irradiated (Dadachova and Casadevall, 2008). It has been shown that melanine enhances radioresistance and radiotrophy (Dadachova, Bryan, Huang, *et al.*, 2007; Dadachova, Bryan, Howell, *et al.*, 2007) and that it could acts as a transductor of energy to the benefit of the cell (Dadachova and Casadevall, 2008). Another example of an organism benefiting of radioactivity is the bacteria *Candidatus Desulforudis audaxviator* isolated from deep continental environments. This organisms has been found to live in mono-specie colonies and to use radiolytically produced molecules as a source of energy and nutrients making this ecosystem independent from surface photosynthesis (Lin *et al.*, 2005, 2006; Chivian *et al.*, 2008). Even if these two examples of organisms taking advantage of ionizing sources are less radioresistant than model *D. radiodurans* and *T. gamatolerans*, they still provide examples of how life could adapt in heavily irradiated extraterrestrial environments (Atri, 2016; Stelmach *et al.*, 2018). #### Organic solvents Organic solvents are highly toxic to biological systems, in particular for membranes and protein structures which rely on hydrophobic interactions in a polar medium (Sikkema *et al.*, 1995). Solvent tolerant organisms such as the bacteria *Staphylococcys haemolyticus* can resume growth after long exposure to 100% toluene, benzene, and p-xylene (Nielsen *et al.*, 2005). In spite of the fact that resistance to organic solvents can be achieved by bacteria and archaea by various molecular traits mainly based on the exclusion of solvent molecules out of the cell (Ramos *et al.*, 1997, 2002; Takuichi *et al.*, 1997; Sardessai and Bhosle, 2002; Usami *et al.*, 2005), to our knowledge no organism requires organic solvents to survive: there is no solvophilic organism. #### Heavy metals Heavy metal-rich environments are uncommon and mainly of anthropic or occasional geologic origin (Nies, 2000; Krami et al., 2013). Therefore, most are geologically extremely recent as they follow industrial revolution. Natural metal-rich environments include geothermal fields, hydrothermal vents and ultramafic soils (Mergeay, 2006). In these environments, monoatomic ions of heavy metals such as Cu, Zn, Hg, Cd, As, Ni, Pb, Cr, Co, V, Ag, Au and Pt and several metal oxides can be highly abundant and toxic to eventual life. Their toxicity comes mainly from the ability to produce reactive oxygen species (ROS) (Prasad and Hagemeyer, 1999; Pinto et al., 2003; Shahid et al., 2014), their chaotropicity and their ability to replace other ions involved in enzymatic activity (Assche and
Clijsters, 1990). For example, many metalloenzymes physiologically possess Ni²⁺ in their catalytic center whose replacement by Zn²⁺ makes them inactive (Boer et al., 2014). Moreover, heavy metals disrupt salt and disulfide bridges of proteins favoring unfolded state (Tamás et al., 2014). Their toxicity is typically ranked in the following order: $Zn^{2+} < Ag^+ < Ni^{2+} << Cu^{2+} < Hg^{2+} << UO_2^{2-} < Co^{2+} < CrO_4^{2-}$ $< Au^{3+} < Cd^{2+} < Mn^{2+} <<< Pb^{2+}$ (Nies, 2000). Metalloresistance is mainly achieved by energy dependent efflux of toxic ions (Silver and Phung, 1996) and by chelating agents (Daniels et al., 1998; Cobbett, 2000). Other sequestration mechanisms in bacteria (Kothe et al., 2010) include biomineralization (Bäuerlein, 2003) and cell wall adsorption (Merroun et al., 2005). Periplasmic sensors are also of particular importance (Trepreau et al., 2014; Nies et al., 2017). Interestingly, metalloresistance is common in acidophilic archaea and bacteria whose sulfur metabolism may increase extracellular metal concentration (Dopson et al., 2003, 2014). Nonetheless, heavy metal concentration is also an extreme condition that can be, to a certain extent, kept out of the cytoplasm and not requiring an adaptation of all proteins. It should however be noted that, in some anoxic environments, many microorganisms, such as the bacteria Geobacter metallireducens, can achieve anaerobic respiration using metals, metalloids or radionuclides (Lovley et al., 1993). These microorganisms can use extracellular Fe(III), Mn(IV), Co(III), Cr(VI) or U(VI) as electron acceptors which they respectively reduce into Fe(II), Mn(II), Co(II), Cr(III) and U(IV) (Gralnick and Newman, 2007; Richter et al., 2012). ## Nutrient scarcity Oligotrophic environments are characterized by low nutrient and energy availability and low biomass. Oligotrophs are slow-growing microorganisms that can persist for long under oligotrophic conditions (Hoehler and Jørgensen, 2013; LaRowe and Amend, 2015) but still they require nutrients and energy sources to grow. To our knowledge, no molecular traits of biomolecules enabling oligotrophy is known. However, organisms adapted to low-energy environments have been considered by some as interesting models for extraterrestrial life since several extraterrestrial environments such as Martian surface appear to be low-energy (Jones et al., 2018). ## Other extreme conditions Some other extreme chemical and physical conditions and their related adapted organisms have fallen into the scientific field of extremophiles: oxygen tension, hypobaric nd Hallswo. .ciated with these . .do not possess clear mole. pressure (Schwendner and Schuerger, 2020), vacuum (Stojanovic et al., 2008) and even chaotropicity (Williams and Hallsworth, 2009; Oren, 2013; Zajc et al., 2014). However, most of the organisms associated with these extreme conditions are not considered as classical extremophiles and do not possess clear molecular traits enabling adaptation. Biochemistry and Biophysics handbook: terrestrial biomolecules and extreme conditions Terrestrial biological systems (cells and viruses) are made of various biomolecules: peptides and proteins, nucleic acids (DNA and RNA), lipids, sugars and various smallmolecular-weight molecules such as metabolites, osmolytes or messenger molecules. However, as intracellular water makes most of the living cell mass (up to 70-80% for most cell) it is often considered as a biomolecule itself. In the next part of this review, biophysical and biochemical properties of major biomolecules will be briefly summarized under the structure-dynamics-function relationship paradigm. Effects of extreme conditions considered by this review (low temperature, high temperature, high salinity and high pressure) on these biomolecules will then be described. As adaptation to extreme temperature, salinity or pressure relies on macromolecular structural and dynamics changes (Panja et al., 2020), it is essential to understand these properties of biomolecules and how they are altered by extreme conditions. Structure-dynamics-function relationship in biomolecules Solution thermodynamics Biology takes place in aqueous solution and interactions with the solvent environment play an essential role in the folding and stabilization of proteins and nucleic acids and organization of lipids to form membranes. In fact, the discovery of biological macromolecules in the late 19th century and their initial characterization in the 20th is tightly interwoven with the development of solution thermodynamics. Useful definitions: The change in *enthalpy*, ΔH , during a chemical reaction is the heat absorbed or released in the breaking and formation of bonds. The heat energy invested by a system in order to sample all the configurations available to it, at a given temperature, is equal to its entropy, S, multiplied by the temperature (in Kelvin units). Gibbs free energy, G, represents the part of the energy in a system that is not used to populate the different entropy configurations (thermal agitation disorder) and which can be transformed into useful work, hence its name. At constant pressure and temperature, the free energy released by a reaction is given by: $$\Delta G = \Delta H - T \Delta S \tag{1}$$ A system that exchanges energy with its surroundings evolves in order to maximize its free energy. The spontaneous sense of a reversible reaction is in the direction for which $\Delta G < 0$. When two states of a system are at equilibrium, their free energy difference is zero, $\Delta G = 0$. In the case of a chemical equilibrium (e.g. between the folded and unfolded state of a protein), free energy (and consequently enthalpy and entropy) are calculated from the measured equilibrium concentrations of the two states. Water: a structured solvent and interactant Water is not only the most abundant biomolecule but is also occupies close to three quarters of the volume in most organisms. Water molecules interact with all biomolecules, which they solvate and act as a lubricant in the crowed intracellular environment, as well as participating directly in chemical reactions. Water in the liquid state is highly dynamic. Neighboring molecules exchange partners through hydrogen bonds on the picosecond timescale (Lynden-Bell et al., 2010). This turns water into a vital entropy sink for biochemical reactions in aqueous solution, as well as for the hydration effects that trigger functional dynamics in macromolecules. Apolar solutes, which cannot form hydrogen bonds with water, interfere unfavorably with its dynamic leading, for example, to the low solubility of oil in water. This is called the hydrophobic effect. The free energy change (eq. 1) upon dissolution reflects the balance between enthalpy and entropy changes in both solvent and solute. Interestingly, this leads to a minimum in solubility at a given temperature (strongest hydrophobic effect) with increased solubility at lower as well as high temperatures. Because of the crowded environment, the properties of intracellular water did not escape controversy (Ball, 2008), until clarified experimentally by neutron scattering and NMR experiments (Jasnin et al., 2010). In fact, despite the extreme concentration and crowding of the cell, macromolecules remain soluble (Costenaro et al., 2002), and about 90% of the water flows freely, maintaining the thermodynamic properties of liquid water, while about 10% is dynamically confined in macromolecular solvation shells (Jasnin et al., 2010). Water dynamics is characterized by various movements at diverse timescales, see Figure 3. Most importantly, water determines both folding and catalytic functions of proteins and nucleic acids (Bellissent-Funel et al., 2016) as will be discussed further below. Proteins are the most diverse of all macromolecules, varying in length, size, shape and physical and chemical properties. Their functions are as diverse with, for example, collagen structuring the extracellular matrix, muscle and flagella converting fore into motion, membrane proteins acting as signal receptors and, of course, enzymes that are fundamental for biological systems as they enable catalysis at lower substrate concentrations and with higher specificity than abiotic catalysis. Depending on the method, 1000-2300 different proteins can be detected in cells of E. coli, one of the most studied organisms, (Han and Lee, 2006; Ishihama et al., 2008; Soufi et al., 2015) whose genome typically encodes up to 4300 putative protein sequences (Serres et al., 2001; Hu et al., 2009). Proteins are synthetized by large intracellular macromolecular assemblies called ribosomes composed of proteins and catalytic RNA (rRNA), which decodes the information of messenger RNA (mRNA) in the process of translation. mRNA has itself been transcribed from genomic DNA. Proteins are structured (folded) and dynamic polymers whose chemical name is polypeptide chains. The combination of these two properties is fundamental to their physical and chemical properties and their biological function as it allows possibility to build active sites, interactions, stability, specificity, etc. Loss of protein dynamics or structure generally results in a loss of function. Even intrinsically disordered proteins (IDPs) or IDP domains in proteins, with little to no persistent three-dimensional structure, obey this structuredynamics-function relationship. Indeed, their apparent lack of structure is fundamental to their functions, they can adopt local structures upon binding (Kragelj et al., 2013), they complement structured proteins (Oldfield and Dunker, 2014) and are fundamental in many cellular processes (Wright and Dyson, 2015). Of particular relevance for effects of extreme conditions and adaptation to extreme environments is the fact that protein structure and dynamics rely heavily on interactions with solvents. Consider the free energy difference (eq. 1) between the folded and
unfolded state of polypeptide chain. The ΔH , ΔS display a complex dependence on temperature: ΔH , because of bonding within the chain as well as between the chain and solvent; ΔS , because of chain disorder as well as solvent disorder (the hydrophobic effect). This leads to the native state being stabilized in a narrow temperature range (close to 37°C for mesophilic proteins) falling off at temperatures above (thermal unfolding) and below (cold denaturation). The maximum stabilisation free energy is interestingly small. At about 50 kJ/mol it corresponds, for example, to the enthalpy gained by breaking two or three H-bonds in the protein interior, when hundreds are involved in internal protein and protein solvent interactions. The structure of proteins is in general understood as the combination of four structural levels, to which a fifth, quinary structure, has however been added for interactions between different proteins within cells (McConkey, 1982; Cohen and Pielak, 2017). The primary structure is the amino acid sequence. While protein is the functional molecule, its chemical composition is a polypeptide linear polymer made up of amino acids (AA) linked by peptide bonds. They share a basic structure with a central α carbon bonded to a hydrogen, an amino group, a carboxyl group and a side chain. All AA found in proteins (proteinogenic AA) are L-stereoisomers. The side chain determines the nature of the AA residue in chain. There are twenty AA in the genetic code. However, two other AA that are not in the universal genetic code can also be found in some proteins: selenocysteine in all three domains of life and pyrrolysine in methanogenic archaea and some bacteria (Rother and Krzycki, 2010). Amino acids can be classified according to their characteristics (small/large, polar/non-polar, charged/uncharged, acid/basic, aromatic or not, etc.) or to their properties (rigid/flexible, proton donor/acceptor, metal-binding, DNA and RNA binding, Mg²⁺ and Ca²⁺binding, etc.). AA residue names are generally written with one-letter or three-letters abbreviations. Primary structures of proteins can be determined by translating open reading frames in genomic DNA. Secondary structure corresponds to local, defined structural organization in segments of a protein. The α -helix and β -sheet are the most common secondary structures, but β -turns (Hutchinson and Thornton, 1994) and Ω-loops (Leszczynski and Rose, 1986; Fetrow, 1995) are also frequent. Tight turns and flexible loops are usually found between helices and sheets. Secondary structures result from hydrogen bonds between amino and carboxyl groups of the same or different AA backbones, thus not directly involving side chains. However, some AA or AA sequences are known to favor or to block secondary structure formations. For example, Met, Ala, Leu, Glu and Lys are common in helixes whereas Pro and Gly block helices formation and are common in turns. Secondary structure can often be predicted in silico with primary structure as the sole information. Tertiary structure is the general three-dimensional architecture defined by the spatial coordinates of each atom of the protein. At this level, prediction by informatics remains really challenging unless through modelling based on experimental data from a homologous structure. The experimental determination of 3D-structures is made by X-ray crystallography (XRC), nuclear magnetic resonance (NMR) or cryo-electronic microscopy (cryo-EM). Tertiary structure involves interactions between side chains: hydrophobic interactions, disulfide bridges, hydrogen bonds, hydrophilic interactions and ionic bonds. The process under which linear AA polymers acquire their tertiary structure is called folding. Folding determines protein properties: affinity with other biomolecules, thermostability, catalytic activity and specificity, dynamics, etc. Most proteins assemble within homomultimers or heteromultimers (Lynch, 2013). Quaternary structure is the transitory or stable resulting macromolecular structure made by association of proteins with other proteins, nucleic acids or other cofactors. Quaternary structure not only relies on subunits' 3D-shapes but also on the contact surfaces. Interactions between subunits are mainly based on hydrophobic interactions but can also be stabilized by electrostatic, hydrogen and occasionally disulfide bonds. Another level of complexity and variation also lies in post-translational modifications. Following translation on the ribosome during which they are synthetized, many proteins undergo covalent chemical modification of carboxy/amino termini or of side chains. These modifications, which are generally catalyzed by enzymes, are various and include glycosylation, phosphorylation or addition of aliphatic chains. Although these modifications are in general not critical for protein structure, they are nonetheless fundamental to many biochemical and cellular processes. It should also be kept in mind that the state of the proteome, i.e. the set of all proteins produced by a cell, is tightly regulated. Not only do cells regulate protein synthesis, folding and post-translational modification but also their repair and degradation are fundamental. Protein degradation in particular is achieved by central macromolecular assemblies called proteasomes and allows the essential regulation of protein quantity and quality control (Sontag et al., 2017). In spite of the fact that countless biologically relevant information has been obtained with more than 160000 solved protein 3D-structures, classical structural biology approaches tend to give time-average representations. However, it is now clear that proteins are dynamical objects. Techniques such as NMR, THz and neutron spectroscopy and neutrons/Xrays scattering have unraveled various kinds of intramolecular movements within proteins with different timescales (Xu and Havenith, 2015), see Figure 3. On one hand, flexibility of proteins is particularly critical for enzymes: substrate selection, entry, binding and catalysis is permitted by both local and general protein intramolecular movements (Zhao, 2017; Sen et al., 2017; Rout et al., 2018; Fürst et al., 2019). On the other hand, stiffer regions within structures have been shown to be relevant for proton or electron transfer (Réat et al., 1998; Sacquin-Mora et al., 2007). ## Nucleic acids Nucleic acids are the biomolecules that harbor the genetic information, which can be transferred horizontally from organism to organism, or vertically from generation to generation. They chemically correspond to linear polymers of nucleotides linked by phosphodiester bonds. Nucleotides are made of a sugar (ribose for RNA and desoxyribose for DNA) associated with a nitrogenous base which can be a purine (adenine, guanine) or a pyrimidine (cytosine, thymine for DNA or uracil for RNA). The base defines the nucleotide leading to the one-letter abbreviation: A, C, G, T (or U). DNA is synthetized in cellulo on a DNA template by enzymes called DNA-polymerases, during the process of semi-conservative replication. However, in cells infected by retroviruses, DNA can also by synthetized from an RNA template by retro-transcriptase enzymes. In contrast, RNAs are synthetized from a DNA template during transcription in the cell but can also be replicated from an RNA template in some RNA-virus-infected cells. In Watson and Crick base pairing, bases interact with each other as A-T, A-U, G-C. It can either lead to the interaction between two separate strands or to the folding of a single strand. This pairing also leads to the right-handed helical structure of double-stranded nucleic acids. The DNA double-helix is usually in a right-handed form called B-DNA. However, as a function of the environment, two other helical structures can be found: the A-form, with increased diameter, and the left-handed Z-form (Henderson and Krude, 2004). The nucleotide sequence constitutes the primary structure of a nucleic acid, secondary structure results from base pairing and tertiary structure from the resulting three-dimensional folding. Nucleic acids can also be chemically modified by enzymes. DNA can be methylated while RNA can undergo many different post-transcriptional modifications (Nachtergaele and He, 2017). DNA is also generally topologically negatively supercoiled in cellulo. Depending mainly on sequence and length, all double-stranded nucleic acids possess a melting temperature (T_m) above which half of the molecules will be turned into singlestranded form. However, nucleic acid stability and folding is also a function of salt concentration as they interact with ions, mainly cations (Von Hippel and Schleich, 1969). tRNA is for example, has been shown to be stabilized within salt crystals (Tehei et al., 2002). While DNA mostly serves as storage of genetic information, RNA molecules may possess many functions. Among them, ribozymes possess catalytic activity which, like protein enzymes, is dependent on structure and dynamics (Doherty and Doudna, 2001). Ribosomal RNAs (rRNAs) are essential and universal ribozymes found in all cells. rRNAs assemble with proteins in a macromolecular assembly called the ribosome. Ribosome decodes genetic information of mRNA into protein sequence which they synthetize (Cech, 2000). This process of translation also requires another type of RNA, transfer RNA (tRNA), which recognizes a three nucleotides sequence (codon) on mRNA, and brings, to the ribosome, the corresponding amino acid (according to the genetic code) to be inserted in the growing polypeptide. Damage to nucleic acids can be spontaneous or induced by chemicals or physical conditions. These damages can lead to mutations and change or loss of the genetic information. While most mutations are generally repaired by enzymes, they still permit phenotypic variation, adaptation and natural selection and, thus, contribute to
Darwinian evolution. ## Lipids Lipids are amphiphilic molecules with polar heads and hydrophobic tails. In aqueous solution, they spontaneously form diverse structures of which the bilayer is the most relevant for membrane formation. Note that in certain archaea, the lipid molecules in the outer and inner leaflets are fused by the tails effectively turning the bilayer into a monolayer. The permeability barrier in biological cellular membranes is the bilayer made up of phospholipids and glycolipids and other hydrophobic molecules such as sterols into which transmembrane proteins are inserted. Membranes segregate cell components from extracellular environments and allow compartmentation. Control of diffusion and active transport across the membrane enables the possibility for cellular homeostasis and chemical gradients which can be used to produce energy. Lipid bilayers take up different thermodynamic phases as a function of temperature and pressure, nature and length of hydrophobic tails, positions of unsaturated bonds in the tails, cyclization etc. Typically, the physiological state of a biological membranes is relatively fluid while not too disordered, allowing balance between fluidity and rigidity (see Figure 4) to favor membrane protein dynamics and function. Furthermore, protein-lipid interactions modulate many membrane functions such as enzymatic activity and microdomain structure (Tien and Ottova-Leitmannova, 2000; Richens et al., 2015). # Effects of extreme conditions on terrestrial biomolecules Temperature, salinity and pressure conditions deeply affect structural and dynamical properties of proteins. Even if some general alterations can be recognized, effects of these conditions depend on the biomolecule. In particular, it should be kept in mind that, depending on their folding, all proteins react differently to these conditions. Therefore, every protein, even within one organism, possesses its own temperature, salinity and pressure limits. Effects of low temperature on biomolecules About 75% of the terrestrial biosphere can be considered as cold (T < 5°C) with many environments that are permanently cold such as deep ocean and polar habitats (Cavicchioli, 2006). Temperature is a general physical parameter governing all biomolecules behavior. The main result of lowering temperature is dynamical, decreasing the motion of atoms in water and biomolecules. As a consequence, processes requiring flexibility such as catalysis can be inhibited at low temperature, unless adaptation has led to weaker intramolecular bonding to allow the flexibility (Tehei et al., 2004). Moreover, as motion is reduced, diffusion is also slowed down at low temperatures, limiting substrate and cofactors availability. According to Arrhenius law, a decrease of 20°C for example lowers reaction rates constants by four orders of magnitude (Russell et al., 1990). In addition to this effect, as a result of a decreased motion of atoms, proteins and all other biomolecules, loose flexibility at cold temperatures. As flexibility is critical for substrate acceptance and chemical transformation, cold temperature disrupts catalytic potential of enzymes. Upon further temperature decrease, many observations tend to show that proteins undergo a process called cold denaturation leading to unfolding (see above, section Structure-Dynamics-Function in Biomolecules). In fact, through the hydrophobic effect, hydration of non-polar residues by water promoting unfolding is favored at low temperatures (Tsai *et al.*, 2002; Yoshidome and Kinoshita, 2012). In particular, formation of ice-water interfaces promotes this unfolding (Arsiccio *et al.*, 2020). However, some have argued that, instead, contribution of hydrophilic groups would be more important (Ben-Naim, 2013). Nonetheless, folding of proteins is impaired or slowed down by low temperatures. This can lead to the disassembly of large molecular edifices such as viral capsids (Da Poian *et al.*, 1995). At low temperatures, ribosome function is also reduced, impairing or slowing down even more protein folding. In contrast to cold-denaturation of proteins, folding of nucleic acids is enhanced at low temperatures, which stabilize secondary structures, including non-native folding (D'Amico *et al.*, 2006). mRNAs in particular are considered more cold-sensitive than proteins (Narberhaus, 2002). However, increased stability of structures, like DNA hairpins for example, impairs processes like replication, transcription or translation as the polymerases or ribosomes are blocked by these structures (Inouye and Phadtare, 2008). Processes involving DNA are also impaired by the increase of negative supercoiling induced by cold temperature (Wang and Syvanen, 1992; Mizushima *et al.*, 1997). Reduced flexibility of biomolecules also affects membrane structure and functions. Lowering temperature promotes gel phase transitions in membranes, increasing compacity of lipid layer, rigidity and reducing permeability and lipid motion (Jebbar *et al.*, 2015, 2020a), see Figure 4. This impairs processes such as secretion and transport. Formation of ice crystals can even perforate cellular membranes (Muldrew and McGann, 1990; Parrilli et al., 2011). Water properties dramatically change with lowered temperature. Viscosity is increased and water activity (a_w) is decreased, meaning that there is less water available for catalysis, solvation and interaction with biomolecules. From a general point of view, low temperature causes osmotic stress. When ice forms in the extracellular environment, osmotic pressure of cytoplasmic water is higher than extracellular ice leading to the efflux of water out of the cell and thus to a dramatic increase of many cytoplasmic compounds concentrations (Russell et al., 1990). Concentration of the extracellular environment may make the environment more extreme (Banciu and Sorokin, 2013). However, due its composition, intracellular water freezes at temperatures under 0°C. In S. cerevisiae, for example, cytosol vitrification typically happens at -17°C (Fonseca et al., 2016). At this point, intracellular ice formation concentrates even more the cytoplasm, altering pH, salinity, ionic strength, and a_W (Russell et al., 1990). Another general effect of low temperature on water is an increased solubilization of gas such as oxygen (D'Amico et al., 2006), leading to an enhanced production of ROS species and thus to an oxidative stress (Abele and Puntarulo, 2004; Vinagre et al., 2012). Effects of high temperature on biomolecules In general, increased temperature means increased molecular movements and overall increased flexibility (Daniel and Cowan, 2000). A first consequence is that temperature acts as a catalyzer of most reactions, like the spontaneous degradation of many small molecules in biological systems. Unstable metabolites like ATP, NAD and acetyl phosphate, for example, have a short half-life at 95°C (Daniel and Cowan, 2000). For protein heat damage, it is possible to distinguish irreversible (degradation) and reversible (denaturation) damage (Daniel *et al.*, 1996). Protein flexibility enhancement at high temperature can also lead to a decrease of stability. As discussed before in this review, protein folding relies on various intramolecular interactions such as hydrophobic contacts, for example. As at high temperature atomic motions are increased, these bonds loose some strength and exposure of hydrophobic regions is enhanced, favoring unfolding (Das and Surewicz, 1995). This local denaturation is to some extent reversible as some protein can spontaneously fold back upon temperature decrease (Daniel *et al.*, 1996). Exposure of hydrophobic regions may, however, promote, interaction between unfolded proteins and hence to irreversible aggregation. In short, high temperature promotes unfolding of proteins which can be reversible. Several irreversible chemical modifications of amino acids composing proteins are enhanced by high temperatures: deamidation of Asn and Gln residues, succinimide formation at Glu and Asp and oxidation of His, Met, Cys, Trp and Tyr (Ahern and Klibanov, 1985; Zale and Klibanov, 1986; Daniel *et al.*, 1996; Daniel and Cowan, 2000). These irreversible degradations not only impair folding but can also lead to cleavage of peptide bond, leading to the loss of structure and function of proteins. Nucleic acids are also altered by high temperature in both reversible and irreversible ways. As temperature increases, subtle alterations of DNA double helix occur: the winding angle expands which lengthens the repeat and reduces the twist in the DNA molecule. A further effect of temperature is the reversible denaturation of the double helix by unbinding of base pairs. When turned into single stranded form, DNA is more sensitive to chemical irreversible damage: hydrolysis which leads to purine deamination and formation of abasic sites, oxidation leading to the formation of hydroxy-guanine or even to a rupture of the helix, saturation of double bonds in nucleobases and non-enzymatic methylation (Lindhal, 1993; Daniel and Cowan, 2000). All these damages impair normal Watson-Crick pairing of nucleobases and can lead to the accumulation of deleterious mutations if not repaired by the cell. RNA is not only be altered by the previous effects but its differences with DNA make it even more thermosensitive. Because the sugar moiety in RNA is ribose, which possesses an additional hydroxyl group, it is sensitive to thermally-enhanced hydrolysis leading to the cleavage of the backbone (Voet and Voet, 2016). Moreover, as RNA incorporates uracil, which lacks a methyl group, instead of thymine, base stacking is less stable than in DNA. Both effects equally diminish thermostability of RNA in comparison to DNA (Wang and Kool, 1995), dramatically shortening its half-life at high temperatures. Membrane properties are also directly temperature-dependent. Increasing temperature promotes fluid phase transitions in
the lipid components, increasing disorder, fluidity, permeability and lipid motion (Jebbar et al., 2015, 2020a), see Figure 4. Increased molecular agitation of hydrophobic tails means less interactions between them and increased permeability of sodium and protons, particularly in non-thermophile membranes (Driessen et al., 1996; Daniel and Cowan, 2000). As a result, non-thermophilic organisms face problems in maintaining homeostasis in high temperature environments. Transmembrane gradients are hence impaired which can turn into bioenergetic failure. At high temperature, water solubilization of gases is decreased, water molecules are more disordered and interact less with charges on biomolecules, impairing protein solvation (Elcock, 1998). ## Effects of high salinity on biomolecules As for other biochemical parameters, cells actively maintain their cytoplasm at a given salinity in composition and concentration that is different from that in the extracellular environment. In particular, in all cells, while the Na⁺ ion is dominant outside, the K⁺ is dominant within the cell. This is true in human blood, for example, in which an injection of physiological 0.9% NaCl into the serum will contribute to treat a dehydrated patient, while an equivalent concentration of KCl would kill the same patient, by overwhelming the membrane pumps acting on ion exchange. In hypersaline environments such as salt lakes and marshes, rock salts, brine ice-inclusions and sea brines (Kanekar *et al.*, 2012), the outside osmolarity poses a further challenge, counterbalanced in the cytoplasm by neutral molecules like glycerol or ectoine, or, in certain archaea and bacteria, by KCl. While the dominant salt in marine hypersaline environments is NaCl, other natural and artificial environments can be KCl, MgCl₂, MgSO₄ or CaCl₂-rich (Schneegurt, 2012; Oren, 2013; Jebbar *et al.*, 2020b). Salinity-induced toxicity results from two distinct effects: non-specific osmotic stress and ion-specific toxicity (Serrano, 1996). Depending on the organism, one can be more important than the other. For example osmotic stress is more toxic in E. coli while sodiumspecific toxicity primes in *S. cerevisiae* (Serrano and Gaxiola, 1994). Specific toxicity of ions comes from their excessive interaction with proteins. While proteins require ions interacting with their charged or polar uncharged residues, excessive ions abundancy can impair protein integrity or interactions, for example, through charge screening. A change of cytoplasmic ion composition may hence alter these interactions: some ions with other steric properties will quench previous ones or new destabilizing ionic interactions will appear (Larsen, 2011; Okur et al., 2017). At molar concentrations, ions can have chaotropic effects, decreasing surface tension and increasing hydrophobic solubility. Chaotropic ions may either be cations or anions depending on their hydration and their effect can be countered by kosmotropic ions with opposite effects, see Table 2. Chaotropic ions (either strongly hydrated cations or weakly hydrated anions) interact with protein backbone (see Figure 5) and thus promote exposure of backbone to solvent, leading to unfolding (Kumar and Venkatesu, 2014; Mazzini and Craig, 2017). Chaotropic divalent cations Mg²⁺ or Ca²⁺ also interact with side-chains of negatively charged amino acids, quenching their eventual physiological interactions involved in structure or function (Okur et al., 2017). These ions are intracellularly accumulated in athalassohaline environments (Oren, 2013), which can be defined as aquatic environments with ionic proportions different from seawater. Chaotropic anions (weakly hydrated) however interact less with side-chains of positively charged residues than kosmotropic anions (strongly hydrated) (Okur et al., 2017) and hence represent a lesser threat to proteins. It has been proposed that chaotropic ions also alter general structure and properties of water (Marcus, 2009) but this idea has been debated (Ball and Hallsworth, 2015). In general, high concentrations of salt ions directly impair interactions between all charged biomolecules: proteins, DNA, RNA, lipid heads, metabolites, etc (Eisenberg, 1995). However, each protein reacts differently depending on its folding and its charge. Osmotic stress comes from the binding of water by salt ions, lowering water activity and causing hydric stress. In a hypersaline environment, water molecules are more bound to salt ions, hence less diffusive and less available for catalysis, solvation and interaction with biomolecules. ## Effects of high pressure on biomolecules High hydrostatic pressure (P > 10MPa) concerns mainly two environments: deep waters (88% of the total oceanic volume has a depth > 1 km) and continental and marine subsurface biosphere, which contains a significant proportion of total earth biomass (McMahon and Parnell, 2014). Hence, high pressure, like cold temperature, is a common extreme condition that terrestrial life faces (Jebbar et al., 2015). Le Chatelier's principle governs systems under pressure changes: equilibriums of nonisovolumetric reactions will react to pressure increases by shifting towards a decrease of volume. Therefore, reactions leading to net increase of charges, such as production of ions, are favored by pressure as charges can condensate water molecules, which will occupy less volume (Gross and Jaenicke, 1994; Fumiyoshi et al., 1999). Another consequence is a favored overall compaction of biomolecules, impairing flexibility and dynamics. The first effect of pressure on proteins is the dissociation of large molecular assemblies such as ribosomes (Gross et al., 1993) or DNA-protein complexes (Kawano et al., 2005). In fact, quaternary structure often relies on charged residues, which can, upon dissociation, condense water molecules. Most multimeric assemblies dissociate at 200MPa (Aertsen et al., 2009). Tertiary structure can also be altered and even lost under pressure. Pressure-induced protein unfolding has long been known (Bridgman, 1914), however, unlike thermal denaturation, mechanisms behind this process are still unclear. As pressure tends to enhance compaction of biomolecules, proteins with internal cavities are particularly affected (Girard et al., 2010; Matthews, 2012; Roche et al., 2012). As a general rule: if a protein occupies more space when folded, which is not the case of all of them, then pressure will favor its unfolding (Jebbar et al., 2020a). Another effect favoring unfolding of proteins is that exposure of hydrophobic residue to solvent enables Van Der Waals interactions with water molecules hence condensing them (Gross et al., 1993). Most proteins unfold at 400MPa (Aertsen et al., 2009). Extensive research has been done about effects of high pressure on DNA-stabilization. As for other macromolecules, DNA is compacted under pressurization. Preliminary work showed that double-stranded DNA solutions can undergo pressure up to 1GPa without being denatured (Hedén et al., 1964). Effect of pressure on DNA stability can be assessed by measuring changes of T_m which measures the temperature above which half of a given DNA undergoes denaturation. With the exception of some short simple synthetic DNA doublestrands which are destabilized by high pressure (Hughes and Steiner, 1966; Gunter and Gunter, 1972), a general rule is that nucleic acids are stabilized under high pressure (Macgregor, 1998), the longer the more stable (Macgregor, 1996). More precisely, stabilization of nucleic acid duplexes is a function of their T_m at P_{atm} (Dubins et al., 2001; Rayan and Macgregor, 2005). Crystallographic studies have shown that DNA can act as a molecular spring, being reversibly compacted under high pressure (Girard et al., 2007). However, since the DNA double-helix needs to be opened for several biological processes, high pressure-induced stabilization of double-stranded nucleic acids impairs fundamental biological processes such as replication, transcription and translation (Macgregor, 2002). As with temperature, membrane rigidity and permeability are pressure-dependent (Hazel and Eugene Williams, 1990). Increasing pressure promotes gel phase transition of membranes, increasing compacity of lipid layer, rigidity and reducing permeability and lipid motion (Jebbar et al., 2015, 2020a), see Figure 4. As effect of pressure on proteins and nucleic acids appear to be moderated in comparison to other extreme conditions, membrane instead is considered to be the most pressure-sensitive biomolecule (Oger and Jebbar, 2010). Cytosolic water is also deeply affected by pressure. Condensation of water molecules being favored, water tends to lose it structure (Gross and Jaenicke, 1994), especially in the crowed cytoplasmic environment. According to Henry-Dalton law, gas solubility in water is increased at high pressure (Gross and Jaenicke, 1994). Dissolution of CO₂ into water in particular releases protons which leads to acidification of cytosol (Abe and Horikoshi, 1998). This phenomenon is increased by the pressure-enhanced deprotonation of phosphate groups (Fumiyoshi et al., 1999) and membrane rigidification which inhibits H⁺ export out of the cell (Abe and Horikoshi, 1995). Interestingly, in E. coli, pressure stress induces synthesis of proteins that are involved in both cold-shock and heat-shock response (Welch et al., 1993). In fact, pressure acts similarly .ses ste to both low and high temperature as it increases stability of membrane and DNA and destabilizes proteins (Jebbar et al., 2015). Molecular traits allowing life at extreme temperatures, salinity and pressure Psychrophilic molecular traits The concept of psychrophily has been debated (Cavicchioli, 2015) to include both organisms requiring a low temperature for growth and organisms tolerant to coldness but growing faster at warmer temperature. A practical general definition would be that psychrophiles are organisms found in
permanently cold environments. Psychrophilic biomolecules are generally characterized by an overall increased flexibility and a lower thermostability. While in hot environments macromolecules "just" need molecular traits to increase their thermostability, in a cool environment (still above cold denaturation), macromolecules are stabilized by weaker forces that still allow functional dynamics as measured in a psychrophilic proteome (Tehei *et al.*, 2004). In contrast, the available energy for catalysis is so scarce that psychrophilic enzymes face the problem of maintaining an activity. However, no universal protein structural signature has been found in all psychrophilic proteins. Instead, each system uses different tools for increasing flexibility and rising catalytic efficiency (Smalås *et al.*, 2000; Bowman and Deming, 2014). As a consequence, these traits uniformly reduce thermal stability of psychrophilic proteins (Feller and Gerday, 2003). It should be noted that psychrophilic enzymes do not work optimally at low temperatures but instead maintain activity at lower temperatures than mesophilic and thermophilic counterparts. In contrast to mesophilic and thermophilic enzymes, which start to loose activity as they unfold, psychrophilic enzymes loose activity as temperature increases before unfolding (D'Amico *et al.*, 2003; Feller, 2013). Figure 6 illustrates stability and activity dependence of a psychrophilic, mesophilic and thermophilic enzyme, respectively. Increased glycine/proline residues ratios appears to be common in psychrophilic proteins (Zheng *et al.*, 2016). Gly residue (which side chain is replaced by an hydrogen) has an increased rotational freedom compared to other residues, its abundancy in psychrophilic proteins may hence provide local flexibility in protein chain. Surface Gly residues can be found far away from the active site (Fields and Somero, 1998), conferring local flexibility of domains increasing general wiggling capacities of the enzyme (Deniz, 2018). Gly abundancy can however also increase in binding pockets (Hashim *et al.*, 2018) increasing flexibility around the active site which improves turnover number of the enzyme at the expense of its affinity for its substrate (Fields and Somero, 1998; Georlette *et al.*, 2000). In general, catalytic potential in the active site is achieved by optimized electrostatics (Smalås *et al.*, 2000). In contrast, the Pro residue, which has less movement freedom and bares rigidifying properties, is scarce in psychrophilic enzymes (Zheng *et al.*, 2016), particularly in protein loops (Hashim *et al.*, 2018), which are longer and more flexible (Wallon, Lovett, *et al.*, 1997). As revealed by several X-ray crystal structures, flexibility of psychrophilic enzymes is largely achieved by a weakening of all intramolecular interactions (Gerday *et al.*, 1997; Casanueva *et al.*, 2010) as suggested by proteome molecular dynamics (Tehei *et al.*, 2004). Surface salt bridges involved in tertiary or quaternary structure are less frequent (Wallon, Lovett, *et al.*, 1997; Riise *et al.*, 2007; Michaux *et al.*, 2008; Bauvois *et al.*, 2008; Parvizpour *et al.*, 2017) and surface charged residues, even if they are often less abundant (Aghajari *et al.*, 1998), are generally unpaired (Arnórsdóttir et al., 2005; Almog et al., 2008; Pedersen et al., 2009), hence facilitating binding of water and stability of solvation shell. Hydrogen bonds too are less abundant (Leiros et al., 2007; Michaux et al., 2008; Altermark et al., 2008; Xie et al., 2009). In addition to lowering overall rigidity, reduced hydrophobic interactions in psychrophilic enzymes (Arnórsdóttir et al., 2005; Huston et al., 2008), especially those implying aromatic residues (Wallon, Lovett, et al., 1997), also counters hydrophobic effect caused by low temperature. Psychrophilic protein cores are also made less rigid and compact by reducing their hydrophobicity (Hashim et al., 2018), decreasing the number of Arg and Pro residues (Aghajari et al., 1998) or by introducing salt bridges across it, which facilitate solvent penetration and destabilize the core (Parvizpour et al., 2017). In fact, exposure to solvent increases entropy and thus participate to the gain of flexibility in psychrophilic proteins (Wallon, Lovett, et al., 1997; Arnórsdóttir et al., 2005; Thorvaldsen et al., 2007; Bauvois et al., 2008; Zheng et al., 2016). Structural traits in cold-adapted proteins are represented in Figure 7. Some studies have found other AA biases associated with psychrophily such as more Ser and Leu and less Arg, Glu, Thr and acidic residues (Médigue, 2005; D'Amico et al., 2006; Casanueva et al., 2010; Raymond-Bouchard et al., 2018). However, relations between these sequence biases and structural modifications are less common than the increased Gly/Pro ratio. Psychrophiles also produce a specific kind of protein to cope with subzero temperatures: antifreeze proteins (AFP). AFP are highly soluble and specifically bind ice nuclei with their hydrophobic residue by strong Van der Waals interactions (Howard et al., 2011, 2014), limiting crystallization of the cytoplasm (Scotter *et al.*, 2006; Venketesh and Dayananda, 2008). Astrobiology Since nucleic acid secondary structures are more stable at low temperatures, many processes involving their opening, such as transcription for DNA and ribosome biogenesis for RNA, are impaired. This could be managed in psychrophiles by overexpression of helicases (Lim *et al.*, 2000), which are enzymes able to open nucleic acid double helix in either double stranded or folded molecules. Increased flexibility in psychrophiles is also met at the membrane level. In contrast to proteins, psychrophilic lipids are not more flexible but possess more steric constraints reducing the packing of hydrophobic queues and thus leading to a less rigid membrane. Incorporation of unsaturation in hydrophobic tails of lipids is a common feature as it induces bends in the tails (Dexter and Cooke, 1984; Okuyama *et al.*, 1993; Jebbar *et al.*, 2020a). Other trait perturbing compacity and increasing fluidity include methyl-branched lipids (Russell, 1997) and shorter acyl chains (Anesi *et al.*, 2016; Rafiq *et al.*, 2019). Some of these traits are summarized in Figure 8. Membrane fluidity can also be modulated by insertion of hydrophobic carotenoid pigments (Jagannadham *et al.*, 2000; Fong *et al.*, 2001a). While polar carotenoid insertion rigidifies membranes, non-polar carotenoids fluidify them (Subczynski *et al.*, 1992). Psychrophilic cytoplasmic content is characterized by an abundance of small molecules. Like organisms coping with high salinity or desiccation, psychrophilic organisms counteract reduced water availability by enriching their cytoplasm with several classes of compatible solutes. Cryoprotectant molecules such as trehalose and exopolysaccharides (EPS) lower water freezing point (D'Amico *et al.*, 2006), bind water molecules limiting their effusion out of the cell and may prevent protein denaturation and aggregation (Phadtare, 2004); interestingly, neutron spectrometry has shown that trehalose stiffens dynamics and reduces flexibility in proteins (Cordone *et al.*, 1999), an unfavorable property for psychrophiles. Trehalose also protects membranes during cold-induced dehydration (Goodrich *et al.*, 1988). Polyols, such as glycerol and mannitol, are also common molecules produced by psychrophiles which act as buffering agents for proteins (Jennings, 1984). It has also been shown that chaotropic agents are preferentially accumulated by psychrophiles and that adding such agents in their medium enhances their ability to grow at low temperatures (Chin *et al.*, 2010). ## Thermophilic molecular traits Thermophiles and hyperthermophiles are organisms defined by optimal growth temperatures above 60 and above 80 °C, respectively Hyperthermophiles are only represented in bacteria and archaea. The most hyperthermophilic microorganisms are archaea. At a given temperature, while psychrophilic biomolecules possess increased flexibility and catalytic potential, thermophilic biomolecules are generally characterized by increased rigidity, expressed in higher resilience or effective force constants maintaining macromolecular structure, which would contribute to their stability at high temperatures (Tehei *et al.*, 2004). As a consequence, these traits make catalysis with thermophilic enzymes extremely inefficient at moderate or low temperatures. Despite their exceptional thermostability, most thermophilic enzymes *in vitro* start to unfold at 80°C. As, according to the Arrhenius law, reaction speeds keep increasing with temperature, stability of enzymes is the only upper limit for catalysis in hyperthermophiles. Optimal temperature for activity is actually reached at a temperature so high that it unfolds most molecules, see Figure 6. Thermophilic proteins in particular are more stable and more resilient (Tehei and Zaccai, 2007; Zaccai, 2013). In fact, resilience has been pointed out as a better term than rigidity for explaining thermostability (Aguilar *et al.*, 1997). Thermophilic enzymes usually display significantly reduced catalytic activity at room temperatures, possess higher optimal temperatures, exceptional thermostability (Vieille *et al.*, 1996; Vieille and Zeikus, 2001) and some, such as amylopullulanases from the archaea *Pyrococcus furiosus* and *Thermococcus littoralis*, display activity at temperatures as high as 110-125°C (Brown and Kelly, 1993). As the environment provides much of the energy, catalysis is not a challenge for thermophilic enzymes. In contrast, thermal denaturation being the challenge, thermophilic proteins have evolved multiple ways to achieve thermostability. At first sight, thermophilic, mesophilic and psychrophilic proteins do not display much difference (Vieille and Zeikus, 2001) with sequence identity of 40-85% (Davies *et al.*, 1993), superimposable tridimensional
structures (Gianese *et al.*, 2002) and identical catalytic mechanisms (Zwickl *et al.*, 1990; Bauer *et al.*, 1998). In fact, thermophilic properties are achieved by a small number of specific mutations which obey to no clearly understood yet rule (Han *et al.*, 2019) but tend to improve compaction (decreasing surface/volume ratio), resilience and enhance hydrophobic interactions within the protein core (Haney *et al.*, 1999; Feller, 2010). Comparative studies of protein dynamics and primary, secondary, tertiary and quaternary structures have given some insights about the ways to achieve thermostability (Irimia et al., 2004; Koutsopoulos et al., 2005a, 2005b; Karlström et al., 2006). It appears that the most recurring molecular traits in thermophilic proteins are salt bridges and ion-pair networks lowering exposure of the protein to the solvent (Goldman, 1995; Yip et al., 1995; Kumar et al., 2000). Indeed, as at high temperatures water molecules interact less with charged residues, these residues can form stabilizing interactions (Elcock, 1998). For thermophilic multimeric assemblies, increased hydrophobicity of subunit interfaces (Wallon, Kryger, et al., 1997; Hatanaka et al., 1997) and introduction of intermolecular disulfide bridges (Dick et al., 2016) favor stability of the quaternary structure. Within globular proteins, interactions between aromatic residues (Phe, Trp, Tyr) have also been proposed as a way to achieve thermostability (Karlström et al., 2006). Probably as a way to protect them from oxidation which is enhanced at high temperature, Cys residues involved in disulfide bridges are often buried within the protein (Choi et al., 1999; Kumar and Nussinov, 2001). As Gly and Pro residues respectively induce flexibility or rigidity in protein backbone, many thermophilic proteins display decreased Gly/Pro ratio (Vieille and Zeikus, 2001). However Gly are more abundant in alpha helices where they increase stability (Petski, 2001). Flexible surface loops can also be shortened or deleted in thermophilic proteins (Thompson and Eisenberg, 1999; Yamagata et al., 2001; Tanaka et al., 2004), hence decreasing surface/volume ratio (Petski, 2001). Figure 7 summarizes some major interactions and structural features enabling thermostability in thermophilic proteins. In contrast to the negatively supercoiled DNA in mesophiles, all hyperthermophiles have the reverse gyrase enzyme that positively supercoils DNA in vitro (de La Tour et al., 1990). This enzyme is specific to thermophiles, possessed by all both bacterial and archaeal hyperthermophiles and is absent from mesophiles (Catchpole and Forterre, 2019). However, the importance of this enzyme for hyperthermophilic life has been long debated (Forterre, 2002; Atomi et al., 2004; Heine and Chandra, 2009). Nonetheless, it is now clear that growth above 90°C requires reverse gyrase (Lipscomb et al., 2017). The in vivo function of reverse gyrase is yet still unclear. Reverse gyrase may prevent thermal denaturation (Ogawa et al., 2015), maintain constant helical repeat in the DNA molecule (Forterre et al., 1996), assure DNA recombination (Jamroze et al., 2014) or repair thermally-depurinated bases (Kampmann and Stock, 2004). Other major traits found in some thermophiles for DNA protection include: compaction of DNA by cationic histone-like proteins (Green et al., 1983; Grayling et al., 1996), stabilization by high intracellular ions concentrations (Hensel and König, 1988) and by polyamines such as putrescine, spermidine, norspermidine, thermospermine and spermine (Friedman and Oshima, 1989). We could also mention the case of the virion of SIRV2, a virus infecting the hyperthermophilic archaeon *Sulfolobus islandicus*. In this virion, tight polar contacts between viral proteins and viral DNA force him to adopt A-form instead of canonical B-form, limiting contact with solvent and hence protecting it (DiMaio et al., 2015). This way to protect DNA in absence of active repair system is also found in some bacterial spores which are particularly resistant to heat (Setlow, 1992). Some post-transcriptional chemical modifications of RNA have also been found to enhance thermostability, such as methylation of rRNA (Noon et al., 1998) and tRNA (Edmonds et al., 1991; Kowalak et al., 1994). Similarly to their proteins, lipids of thermophiles and hyperthermophiles are more rigid and stable than their mesophilic counterparts. Lipids of hyperthermophilic archaea possess several features increasing membrane thermostability. Firstly, instead of an ester bond, polar head and hydrophobic tails are bound by an ether bond, which is less susceptible to hydrolysis. While most lipids in mesophiles possess one head for two hydrophobic tails, hyperthermophilic archaea have lipids with two polar heads, one at either end of the molecule, which can either occupy the same side or opposite sides of the membrane (De Rosa and Gambacorta, 1988). Such lipids form a monolayer in the membrane, like a bilayer of molecules whose tail ends are fused together, which is a structure believed to be particularly rigid. Other determinants of thermostability in lipids are hydrophobic tails of increased length and branching isoprenoid cyclization and crosslinking of isoprenoid chains (Gliozzi et al., 1983; Tolner et al., 1997). These traits increase interactions between lipids and other membrane components, enhancing overall rigidity, stability and impermeability of hyperthermophilic membrane (Gambacorta et al., 1995). Recently, it has been shown that insertion of squalane, an apolar molecule found in membranes of hydrothermal vent hyperthermophilic archaea, may contribute to membrane thermostability by inducing non-lamellar phase (Salvador-Castell et al., 2020). In spite of the fact that these features are mostly archaeal traits, some hyperthermophilic bacteria also possess lipids with one of more of these properties (Koga, 2012; Vinçon-Laugier et al., 2017). See Figure 8 for a summary of main thermophilic lipid traits (Jebbar et al., 2015, 2020a). As with DNA protection, hyperthermophiles also produce various small soluble organic molecules which improve stability or refolding of proteins (Lamosa *et al.*, 2000; Faria *et al.*, 2004; Empadinhas and Costa, 2006; Mukaiyama *et al.*, 2008). These thermoprotectants are typically molecules derived from sugar, amino acid or energetic metabolism with kosmotropic properties (Faria *et al.*, 2004; Schiefner *et al.*, 2004). # Halophilic molecular traits Organisms able to grow at salinities above sea average are generally considered halotolerant. True halophiles are organisms with an absolute requirement for high salt concentrations in order to grow. Two strategies for salt adaptation are generally observed, depending on which osmolyte counterbalances high extracellular salt: salt-in-cytoplasm and organic-osmolyte cytoplasm (Jebbar *et al.*, 2020a). While the latter enables to some extent exclusion of salinity out of the cytoplasm, the fact that the most extreme halophiles all display salt-in strategy leads to the idea that organic-osmolyte strategy may not be sufficient in extremely saline environments. The salt-in-cytoplasm strategy has been proposed in halophilic protozoa (Harding, 2018) and allows extreme halophilic archaea such as *Halobacterium salinarum* to grow in salt-saturated environments (Ventosa and Oren, 1996). Moreover, the salt-in strategy implies adaptation of the whole proteome to the extreme condition. Halophiles may also use a combination of both strategies to cope with their environment. Halophiles counter the outside osmolarity of Na⁺ by accumulating K⁺ in the cytoplasm (Ginzburg and Ginzburg, 1976). Intracellular concentration of K⁺ typically reaches 2-5.5M in extremely halophilic archaea while Na⁺ concentration is generally maintained under 2M (Oren, 2002). In order to function in such a hypersaline cytoplasm, halophilic proteins possess several molecular traits allowing stability, activity and dynamics under these conditions. It was initially believed that the solvation shell in these proteins excluded salt, until a battery of complementary biochemical and biophysical methods established the opposite: Na⁺, K⁺, Cl⁻ ions are, in fact, recruited into the solvation shell and into the structure, and are essential for stabilization and dynamics (Bonneté et al., 1993). Remarkably, even if halophilic malate dehydrogenase, the model studied, is from a salt-in-cytoplasm archaeon, it can also be stabilized similarly to mesophilic proteins by high concentrations of kosmotropic salts (Bonneté et al., 1994). Compared to mesophilic homologs, halophilic proteins are enriched in acidic residues (Asp and Glu). Surfaces of halophilic proteins in particular present more acidic patches (Dym et al., 1995) and clusters of salt bridges, especially in interfaces between subunits of multimeric proteins (Richard et al., 2000). This enrichment leads to highly negatively charged proteins (Kutnowski et al., 2018; Niero et al., 2020; Shirodkar et al., 2020). In hypersaline solvents, such accumulation of charges has been proven to stabilize proteins. The reason lies in both increased ion-binding and solvation shell-structuring properties. In facts, more surface negatively charged residues can bind more solvent cations (Ebel et al., 2002). On the other hand, anions appear to be strongly bind by fewer sites (Ebel et al., 2002). This ion-rich shell may limit water condensation on protein surface which would lead to excessive interaction between proteins and, hence, to their aggregation (Costenaro et al., 2002). Nonetheless, as shown by neutron diffraction experiments, aspartic acid is also particularly efficient for tightly binding water molecules in hypersaline solutions (Lenton et al., 2016). Thus, acidic surfaces of halophilic proteins strongly bind water (Frolow et al., 1996) into a dense, highly structured solvation shell with multiple layers (Britton et al., 2006) and disruption
of pentagonal water networks (Talon et al., 2014). In comparison, positively charged and uncharged protein surfaces appear to bind less tightly water molecules (Kim et al., 2016). Models of interactions between salt, water and proteins have proposed that acidic surface composition may provide specific binding sites for water and salt ions on protein leading to a highly structured and salty solvation shell (Madern et al., 2000). Because of this shell, surfaces are less accessible and overall interaction with bulk solvent is reduced, enhancing solubility and stability in low water activity environment (Tadeo et al., 2009). In contrast, halophilic proteins tend to have fewer Lys residues, slightly more small hydrophobic residues such as Gly, Ala and Val and less haliphatic residues like Phe (Madern et al., 1995, 2000). Computational analysis of halophilic sequences also revealed a preference for small, polar and charged residue (Gln, His, Pro) and lower amounts of Asn, Cys, Ile, Met, Ser (Nath, 2016). As a consequence of these sequence bias, halophilic proteins tend to display increased flexibility (Paul et al., 2008) and polarity and avoid positively charged residues and hydrophobicity (Nath, 2016), weakening hydrophobic contacts (Siglioccolo et al., 2011) and leading to more polar and charged cores (Nayek et al., 2014). Since they have fewer Lys residues, halophilic proteins use more Arg residues in salt bridges which are crucial for stability in hypersaline environments (Madern et al., 2000). On average, halophilic proteins have two times more salt bridges than mesophilic homologs, both buried or exposed at surface, stabilized within salt bridges networks (Nayek et al., 2014). Major structural traits of halophilic proteins are represented in Figure 7. Interestingly, halophilic enzymes show resistance to organic solvent-induced unfolding (Niero et al., 2020; Shirodkar et al., 2020). Moreover, compared to their mesophilic homologs, halophilic enzymes tend to renature easier after heat-induced (Tokunaga et al., 2004) or methanol-induced denaturation (Tokunaga et al., 2017). This property is believed to originate from their high solubility countering the hydrophobic-based aggregation which normally makes denaturation irreversible (Tokunaga et al., 2017). Most of these traits make halophilic proteins highly unstable in low salinity environments: most unfold under 2-3M KCl (Eisenberg, 1995). Nonetheless some proteins found in halophiles show both properties of halophilic proteins, such as high solvation shell salt concentration, and non-halophilic proteins, such as the water-binding potential, making them resistant to both salinity-induced denaturation and to low-salinity denaturation (Coquelle et al., 2010). As halophilic proteins avoid positively charged residues, interaction with the negatively-charged DNA is achieved through cations tightly bound by negatively charged residues deep in the protein (Kutnowski et al., 2018). Membrane of halophiles possess various traits which may be helpful for living in hypersaline environments. In particular, to keep K⁺ in their cytoplasm and to maintain Na⁺ exclusion, membrane permeability is critical. Main adaptation is that halophilic lipids possess sulfate groups with negative charges shielding salt cations (Russell, 1989), limiting H⁺ and Na⁺ permeability and increasing stability (van de Vossenberg et al., 1999). Carotenoid insertion is observed in both halophilic archaea (Calegari-Santos et al., 2016) and bacteria (Köcher and Müller, 2011). These hydrophobic pigments inserted in membrane act as membrane rivets, increasing its rigidity and impermeability (Lazrak et al., 1988) and thus preventing cell lysis (Köcher and Müller, 2011). While polar carotenoid insertion rigidifies membranes, non-polar carotenoids fluidify them (Subczynski et al., 1992). Neutron scattering is particularly sensitive to intracellular water dynamics and as hence be used to study traits of water in halophilic cells (Jasnin et al., 2010). Experiments on Haloarcula marismortui, an halophilic archaeaon from the Dead Sea, revealed a fraction of exceptionally slow water in the hypersaline cytoplasm, hypothetically organized by structured K⁺ ions (Tehei et al., 2007; Frölich et al., 2008). The organic-osmolyte compatible solute strategy is characterized by the intracellular accumulation of small organic molecules such as betaine (Galinski and Trüper, 1982; Imhoff and Rodriguez-Valera, 1984; Nyyssola et al., 2000) and ectoines (Ono et al., 1998; Vargas et al., 2006). Compatible solutes in halophiles are highly soluble molecules, polar but uncharged at intracellular pH, with kosmotropic properties that stabilize the solvation shell of proteins (Galinski, 1993; Zaccai et al., 2016). ### Piezophilic molecular traits Growth of hyperthermophiles in black smokers at temperatures above the boiling point of water at surface pressures naturally requires high pressure to keep water liquid (Marteinsson *et al.*, 1999). However, many non-thermophilic deep sea bacteria (Kato *et al.*, 1998; Nogi *et al.*, 2007; Kusube *et al.*, 2017) demonstrated strict piezophily (impossibility to grow at atmospheric pressure) such as *Colwellia marinimaniae* sp. nov. which has been isolated in Mariana Trench, has a growth range of 80-140MPa and optimally grows at 120MPa (Kusube *et al.*, 2017). Obligate piezophiles have also been found in the archaeal domain (Zeng *et al.*, 2009; Birrien *et al.*, 2011). Remarkably, the most naturally pressure-tolerant archaea, *Thermococcus piezophilus* CDGST, which optimally grows at 50MPa and at pressure as high as 130MPa, can still grow at atmospheric pressure (Dalmasso *et al.*, 2016). In deep-sea organisms, evidence of molecular adaptation to high pressure has been found that depends on the habitat: hot hydrothermal vents or cold deep-sea waters and seafloor. Nonetheless, comparisons to closely related non-piezophilic thermophiles, mesophiles and psychrophiles relatives have permitted to underline several piezophilic specificities. Neutron scattering experiments have been used to measure dynamical response of macromolecules in piezophilic and non piezophilic under high pressure (Zaccai, 2020). Contrary to what is expected from Le Chatelier's principle, piezophilic protein dynamics is enhanced and solvation shell dynamics decreased under high pressure (Martinez et al., 2016), a behavior believed to be an adaptive strategy. In contrast, non-piezophilic proteins lose flexibility and undergo compaction under high pressure. Bulk water dynamics is equally affected in piezophile and non-piezophiles. Enhanced protein flexibility, which has also been observed for individual piezophilic proteins (Shrestha et al., 2015), and a more compact and less dynamic solvation shell may hence be an adaptive strategy for piezophiles. Enhanced flexibility compensates pressure-induced rigidification while compaction of the volume occupied by water molecules bound to proteins could stabilize them. High pressure environments tend to constrain protein sequence evolution towards the reduction of side-chain volume (Gunbin et al., 2009) and assembly of multimeric assemblies tend to display reduced volume changes in deep sea organisms (Morita, 2003). An explanation could be that folding or assembly processes which are less dependent on volume changes are less pressure-sensitive. Sequence analysis revealed that sequence bias in piezophiles is actually dependent on the thermophilic/psychrophilic status. Nonetheless, in comparison to non-psychrophilic homologs, psychrophilic proteins tend to have more polar, hydrophilic and small amino acids (Di Giulio, 2005; Nath and Subbiah, 2016), counting for the reduction of side-chain volume. For non-psychrophilic piezophiles, hydrophobic, non-polar and aliphatic amino acids are also over-represented in comparison to non-psychrophilic relatives (Nath and Subbiah, 2016). Loosely packed protein structures also seem to offer a way to decrease deleterious volumetric effects of high pressure (Nagae et al., 2012). Indeed, when structure and activity rely on internal cavities, larger internal volumes in piezophilic proteins permit to maintain some internal cavities at abyssal pressures while, in comparison, non-piezophilic counterparts will lose too much internal volume. Major structural traits of pressure-adapted proteins are represented in Figure 7. As quaternary structure is primarily affected by high pressure, it has been found that multimeric assemblies, such as SSB DNA-binding proteins from piezophilic Shewanella strains (Chilukuri et al., 2002) and large TET peptidases assemblies from piezophilic Pyrococcus horikoshii (Rosenbaum et al., 2012), are more resistant to pressure-induced dissociation. Some nucleic acid piezophilic traits have been found. For example, an increased length of helices in 16s rRNA improves interaction with proteins and overall resistance to pressure-induced dissociation of ribosomes (Lauro et al., 2007). Piezophilic membrane traits have been described. The common feature of piezophilic membrane is increased fluidity (Siliakus et al., 2017) which is achieved with molecular traits shared with psychrophiles: more unsaturated (DeLong and Yayanos, 1985; Hazel and Eugene Williams, 1990) and shorter (Bartlett and Bidle, 1999) hydrophobic tails. Branched lipids, which increase membrane fluidity, have also been found to be produced by deep sea microorganism as a response to high pressure (Scoma et al., 2019). In abyssal hydrothermal environments however, high temperature may lead to a preference for typical thermophile lipids and to highly stable and rigid membranes. Accumulation of compatible solutes in piezophiles may also help to cope with high pressure. R-hydroxybutyrate has been shown to be accumulated in the pizeophilic bacterial response to high pressure (Martin et al., 2002) and other small organic molecules may enhance protein stability under pressure in piezophilic
cells (Jebbar et al., 2015). Interestingly, insertion of squalane, an apolar molecule found in hydrothermal vent archaea, in membranes not only enhances thermal stability but also resistance to pressure (Salvador-Castell et al., 2020). It should be noted that high pressure triggers both cold-shock (Fujii et al., 1999) and heat-shock responses (Sato et al., 2015) in piezophilic Shewanella bacterial strains. Both pathways induce production of proteins or small molecules related to pressure-resistance. ## Living with many extremes: Polyextremophily and limits of life Terrestrial extreme environments often possess more than one extreme physical or chemical condition, see Figure 2. Inhabitants of these poly-extreme environments are thus called polyextremophiles. Abyssal black smokers thermophilic life also faces high pressure and high concentrations of toxic heavy metals which the hydrothermal fluid is enriched with (Segerer et al., 1993; Luther et al., 2001; Damm, 2013) leading to the selection of metalloresistance (Vetriani et al., 2005) whereas thermophiles in continental volcanic hot springs are exposed to high acidity and are thus also acidophilic (Segerer et al., 1993; Burton and Norris, 2000; Siering et al., 2006; Seckbach et al., 2013), soda lakes halophiles are also alkaliphilic (Jones et al., 1998; Sorokin et al., 2014), Río Tinto river microorganisms face acidic pH and high heavy metals concentrations (Amils et al., 2014) and many brines, either abyssal, subglacial or on the surface, display combinations of high salinity and high pressure, chaotropicity, ultraviolet radiation, heavy metal abundancy, extreme pH and extreme temperatures (Hallsworth, 2019; Varrella et al., 2020). As it was described before, extraterrestrial environments can also have one or more extreme condition in regard of terrestrial life, see Figure 1. Mars subsurface hypersaline environments can be, depending on the depth, cold or hot and under pressure; icy moons oceans can present, depending on the depth and the proximity with a hydrothermal vent, extreme temperatures, extreme pH and high pressure. Therefore, terrestrial environments where polyextremophilic thrive can be considered as good models for extraterrestrial environments (Capece et al., 2013). However, some extreme conditions have synergic deleterious effects on biological systems and some natural polyextreme environments are well known for being the harshest for life, sometimes over the limits of life. If extremely dry environments are excluded from this concern, as liquid water presence is a sine qua non condition for terrestrial life processes, some natural aqueous environments are devoid of significant life and therefore considered as the most extreme for life. Dallol volcanic hypersaline volcanic springs presents ponds with high temperature, saturated salinity, high abundance of iron and extreme acidity (Cavalazzi et al., 2019; Kotopoulou et al., 2019). In this unique environment, considered by some as a potential analog of ancient Mars (Gómez et al., 2019), even if lipids biomarkers have been detected (Carrizo et al., 2019) and some ultra-small archaea and bacteria may have been observed close to the most extreme ponds (Gómez et al., 2019), two strict barriers for life have been identified: combination between extreme salinity and extreme acidity and combination between extreme salinity and extreme chaotropicity resulting from Mg²⁺/Ca²⁺ abundancy (Belilla et al., 2019). Other examples of poly-extreme environment devoid of life are the Mg-rich deep hypersaline anoxic basins (DHAB). These deep sea brines, which can host deep-sea halophilic and piezotolerant microorganisms (van der Wielen, 2005), are considered by some as good models for icy moons subglacial oceans (Antunes et al., 2020). In spite of the fact that some evidence of microbial activity have been found in Discovery Basin (van der Wielen, 2005), the nearly saturating concentrations of the chaotropic cation Mg²⁺ in this DHAB makes it exceptionally hostile to life (Hallsworth et al., 2007). The same goes for Hephaestus DHAB where no life has been found yet (Cono et al., 2019). At such low water activity values and high concentrations of Mg²⁺, life appears to be only possible if kosmotropic ions are present to counteract toxicity of Mg²⁺, like Na⁺ in the Kryos DHAB (Yakimov et al., 2015; Steinle et al., 2018). In these two examples, chaotropicity induced by natural divalent cation abundancy strongly limits life and may, similarly, represent a barrier for life in Martian brines (Fox-Powell et al., 2016). This is supported by the fact that present-days increasing concentration of Mg²⁺ and Ca²⁺ in Dead Sea is progressively making it too hostile for halophiles (Oren, 2010). Although these natural terrestrial environments provide good insights on limits of terrestrial life with regard to water activity and chaotropicity, other poly-extreme conditions that could be present in extraterrestrial environments are still largely unknown. Some combinations of extreme conditions are indeed not associated with any known polyextremophile although the reasons for this absence are unclear. For some cases, synergic deleterious effect would be too much for biomolecules and molecular traits would be mutually incompatible. In other cases, natural environments with a given combination could just not exist. These combinations include psychroacidophily (combination of lowtemperature and low pH adaptations), haloacidophily (high salinity and low pH) and piezoalkaliphily (high pressure and high pH) (Bowers et al., 2009; Capece et al., 2013; Harrison et al., 2013). In the next part of this review, combinations between high/low temperature, high salinity and high pressure, will be discussed in regard to their effect on biomolecule and their eventual polyextremophiles. ### Thermohalophily Hot hypersaline environments, like Atlantis II DHAB (Anschutz et al., 1999) or Dallol hypersaline volcanic hot springs (Kotopoulou et al., 2019), are uncommon on Earth and so are organisms adapted to both high temperature and high salinity. In the archaeal domain, only moderate thermophiles have shown extreme halophily (Mesbah and Wiegel, 2005; Harrison et al., 2013). In general, combination of high temperature and high salinity is considered hard to handle by microorganisms (Chin et al., 2010). One reason lies in the nature of the proteome: thermophilic proteins tend to have overall less charged proteins which are unstable in environments with high ionic concentrations such as the cytoplasm of halophiles (Zaccai, 2011). Moreover, halophilic protein traits include weakening of hydrophobic interactions (Siglioccolo et al., 2011) which are fundamental for thermostability (Haney et al., 1999). Yet, halophilic proteins are more thermostable than non-halophilic counterparts and some protein traits could be shared between thermophiles and halophiles. Salt bridges for instance are both a way for thermostability (Tanaka et al., 2004; Xia et al., 2018) and haloresistance (Nayek et al., 2014). It has indeed been discovered in a thermohalophilic enzyme an abundancy of salt bridges but also of hydrogen bonds (Badiea et al., 2019). It has also been shown that halophilic enzymes can be protected from thermal denaturation when trapped in dry salt crystals (Tehei et al., 2002), showing that relation between high temperature and high salinity conditions may be complex. It has been proposed that in deep sea hypersaline environments, salinity might increase the upper temperature limit of enzymes (Alcaide *et al.*, 2015). Moreover, as halotolerant (Kaye and Baross, 2000) and moderately halophilic (Kaye *et al.*, 2004) bacteria as well as halophilic archaea (Takai *et al.*, 2001; Ellis *et al.*, 2008) have been identified in continental or abyssal hydrothermal environments, it has also been proposed that hot hydrothermal chimneys may host hypersaline hot microenvironments allowing colonization by halophiles (Takai *et al.*, 2001). To date, the most halophilic hyperthermophile is *Thermococcus waiotapuensis sp. nov.* which grows at temperatures as high as 90°C and salinity as high as 2.2M NaCl (González *et al.*, 1999) and the most thermophilic extreme halophile is *Natronolimnobius aegyptiacus* which grows at saturated concentration of Na⁺ and at temperature as high as 56°C (Bowers and Wiegel, 2011; Zhao *et al.*, 2018). #### Thermopiezophily Generally, pressure and temperature have opposite volumetric effects on macromolecular systems: while temperature increases flexibility and pushes objects to occupy more space, pressure increases rigidity and tends to reduce volumes of objects. One major effect of high pressure is the elevation of boiling temperature of water. In abyssal hydrothermal environments, pressure hence widens the range of liquid water conditions, opening new environments for a water-based life to develop. There is no known hyperthermophile with an optimal growth temperature above 100°C. However, the most thermophilic organism *Methanopyrus kandleri*, which optimally grows at 98°C (Kurr *et al.*, 1991), has been shown to grow at temperatures as high as 122°C (Takai *et al.*, 2008) which can only be achieved at abyssal pressures. It has also been shown that for both abyssal archaea *M. kandleri* and abyssal bacteria *Marinitoga piezophile* optimal growth temperature is proportional to pressure (Miroshnichenko and Bonch-Osmolovskaya, 2006; Takai *et al.*, 2008). Some individual enzymes can however be more efficient at temperatures above 100°C. Protease from *Methanococcus jannaschii* for example works optimally at 116°C and displays activity at temperatures as high as 130°C (Michels and Clark, 1997). Thermophilic and piezophilic molecular traits may be synergetic (Capece *et al.*, 2013), such as insertion of squalane in lipid bilayers which improves membrane stability under both high temperature and high pressure (Salvador-Castell *et al.*, 2020). Nonetheless,
structural signatures of thermopiezophily have yet to be described. The fact that high pressure induces heat-shock response in both piezophilic (Sato *et al.*, 2015) and pressure-sensitive microorganisms (Iwahashi *et al.*, 1991; Aertsen *et al.*, 2004) goes along with the idea that some thermophilic traits can also cope with high pressure. In particular, molecular systems coping with protein instability may be useful for both heat-induced and pressure-induced unfolding. #### Psychrohalophily Polar cold environments are often associated with high salinity. In spite of the fact that salt solubility in water decreases with temperature, freezing of water excludes salt from the ice thus concentrating the remaining liquid which becomes hypersaline. Moreover, high salinity lowers freezing point of water to the point that saturated NaCl brines are liquid at temperatures as low as -21°C (Brady, 1992). The saltiest liquid water body on earth is also the coldest: Antarctic Don Juan pond remains liquid at temperatures as low as -50°C because of its high CaCl₂ concentration (Harris and Cartwright, 2013). As with water above 100°C requiring high pressure to remain liquid, subzero liquid water is possible at high salinity, opening the window for life. The most psychrophilic halophile is *Psychromonas ingrahamii* which grows at temperatures as low as -12°C at 3.3M NaCl (Auman *et al.*, 2006) and the most halophilic psychrophile is *Planococcus halocryophilus* Or1, which grows at salinities as high as 18% at -15°C (Mykytczuk *et al.*, 2013). While true psychrophiles found in hypersaline cold environment are bacteria, Antarctic hypersaline Deep Lake is dominated by cold-tolerant halophilic archaea (DeMaere *et al.*, 2013; Williams *et al.*, 2017). At the biomolecular level, psychrophily and halophily appear to have some degree of synergy (Capece *et al.*, 2013). Intracellular accumulation of chaotropes such as Na⁺, Mg²⁺ or Ca²⁺, which is easy in hypersaline environments, facilitates life at low temperature as they counter the cold-induced stabilization of proteins (Chin *et al.*, 2010). As both low temperature and salinity cause osmotic stress, compatibles solutes such as polyols may also be critical to psychrohalophily. Both salt-in-cytoplasm and compatible solute strategies for halophily thus enhance psychrophily. At the membrane level, cold temperature rigidifies membranes and increases their impermeability, which serves resistance to high salinity. Moreover, carotenoids are observed in both halophiles and psychrophiles where they serve membrane fluidity control. However, depending on their nature, they have either rigidifying or fluidifying properties (Subczynski *et al.*, 1992). As psychrophilic bacteria increase production of carotenoids as response to increased salinity (Fong *et al.*, 2001b), they may represent a tool for adjusting membrane fluidity in cold hypersaline environments. At less extreme values of cold and salinity, plants possess common pathways for resisting to drought, coldness and salinity (Xiong *et al.*, 2002; Zhu, 2002; Seki *et al.*, 2003). #### Psychropiezophily Deep ocean cold and pressurized waters represent most of the biosphere volume. While organisms of hydrothermal vents benefit from compensating effects of high pressure and high temperature on molecular flexibility, deep sea organism molecules are rigidified by both low temperature and high pressure (Capece *et al.*, 2013). Remarkably, high pressure induces cold-shock response in both mesophilic (Welch *et al.*, 1993; Wemekamp-Kamphuis *et al.*, 2002) and piezophilic bacteria (Fujii *et al.*, 1999). This pathway is critical to psychropiezophily. In particular, it enables production of unsaturated lipids to counter cold-induced and pressure-induced crystallization (Kato, 2010). Cryoprotectant extracellular polysaccharides (EPS) production also appears to be induced by high pressure conditions in deep-sea bacteria (Marx *et al.*, 2009; Bælum *et al.*, 2012), however the exact function of EPS for pressure-tolerance is still unclear. #### Halopiezophily Most piezophiles have been isolated at low salinity and most halophiles at atmospheric pressure (Harrison *et al.*, 2013). Hypersaline deep environments are limited to DHABs. However, nature of salt may significantly reduce the window for life. For example, high concentrations of MgCl₂ in Discovery and Hephaestus DHABs strongly limits life independently from pressure (Hallsworth *et al.*, 2007; Cono *et al.*, 2019; Antunes *et al.*, 2020). Halophilic and halotolerant bacteria are commonly found in deep sea environments (Takami *et al.*, 1999; Lu *et al.*, 2001) where they generally face low temperature too. Nonetheless, halophilic piezophilic and piezotolerant bacterial enzymes from 3-3.5km deep Medee, Bannock and Kryos DHABs have been described (Alcaide *et al.*, 2015). Interestingly, these enzymes displayed various combinations of traits observed in proteins of thermophiles (such as aromatic interactions or less glycine), halophiles (such as acidic surface) and pizeophiles or piezotolerant (such as less salt bridges, small amino acids) organisms (Alcaide *et al.*, 2015). Some halophiles also seem to be rather piezotolerant. For example, the extreme halophilic archaea *Halobacterium salinarium* NRC-1 which is found in surface hypersaline environments has been shown to survive 400MPa exposure (Kish *et al.*, 2012) and moderate halophilic seawater bacteria *Micrococcus roseus* shows some resistance to 207MPa exposure (Tanaka *et al.*, 2001). Adaptation to both high pressure and high salinity may use compatible solutes conferring both haloresistance and piezotolerance such as ß-hydroxybutyrate (Martin *et al.*, 2002). Extremophilic molecular traits as biomarkers The search for extraterrestrial life is not limited to the search of environments compatible with life but can also be extended to the search of traces of a current or past biological activity. These traces are commonly called biomarkers or biosignatures. Biomarkers may either be remotely observed on or found in situ by space missions. However, reliability and detectability of a biomarker seems to be mutually incompatible. For example, CH₄ and dioxygen have been proposed as biomarkers and can be remotely detected in extraterrestrial atmospheres. As discussed before, CH₄ is mostly biogenic on Earth but can accumulate abiotically in other planetary contexts. As significative accumulation of dioxygen in terrestrial atmosphere was caused and is maintained by photosynthesis, it has been proposed that oxygen-related species could be used as biomarker (Mendillo et al., 2018; Meadows et al., 2018). However, like CH₄, oxygen gazes may also be produced abiotically in significant amounts (Luger and Barnes, 2015; Narita et al., 2015). Even simple organic molecules that constitute essential bricks of life have been proven to be easily produced in abiotic conditions. The famous Murchison meteorite for example contains for example various amino acids (Kvenvolden et al., 1971; Cronin and Pizzarello, 1983), nucleobases (Martins et al., 2008) and even sugar-like polyols (Cooper et al., 2001) that could all be produced by abiotic or prebiotic chemistry. On the other hand, detection of macromolecules and polymers with several features like complexity, chirality or sequence, like proteins or nucleic acids, would constitute a strong evidence for biological activity but would be more difficult to detect in large amounts. Moreover, terrestrial complex biomolecules can be considered as extremely fragile in comparison to their constituents or the products of cell metabolism. Proteins and RNA for example are known to be difficult to handle in laboratory conditions, requiring various procedures to increase their stability. The same goes in cellulo as organisms have evolved numerous biological repairing or recycling processes, such as chaperones and proteasomes, to cope with this instability. In this context, biomolecules from certain extremophiles may offer the advantage of a greater stability, a point which as recently be reviewed (Jebbar *et al.*, 2020a). As mentioned before, lipids and proteins of thermophiles are exceptionally stable in numerous chemical and physical conditions, which would make them easier to detect in extraterrestrial environments. Moreover, many extremophiles accumulate large amounts of compatibles solutes and small organic molecules to cope with extreme conditions. With the proper geological and chemical setting, these molecules could be stable over long periods and hence represent interesting biomarkers. Another example of biomarker related to extremophiles is the case of pigments. Indeed, chlorophyll pigment produced by terrestrial photosynthetic organisms cause a distinctive increase of red light reflection a the planetary level which has remotely detected (Sagan *et al.*, 1993). Red edge on reflectance spectra of exoplanets and exoomoons has hence been proposed as a surface biomarkers (Seager *et al.*, 2005; O'Malley-James and Kaltenegger, 2019), and may be extended to other wavelengths, depending on the light received by the extraterrestrial body which may influence the type of pigments needed by putative organisms (Kiang, 2008; O'Malley-James *et al.*, 2012). However, in addition to light-harvesting, pigments also serve photoprotection and can be accumulated in large amounts. This is especially true for terrestrial halophiles which accumulate carotenes pigments, increasing their resistance to UVs, giving to hypersaline lakes a distinctive red color. As pigment-based radioprotection and putative radiotrophy has been observed in melanized fungi, pigments may also be accumulated by putative life in heavily irradiated extraterrestrial surface environments. It should nonetheless be kept in mind that remote detection of extraterrestrial pigments may be technically difficult or even impossible (Björn et al., 2009). To conclude with,
terrestrial extremophiles also present special metabolisms which could produce biomarkers. For example, in volcanic or hydrothermal environments, which present various combinations of extreme conditions (high temperature, low pH, high pressure, heavy metal abundancy, etc), many organisms metabolize sulfur-containing compounds, leading to isotopic signatures that could be, as for carbon, used as a biomarker t in acidic hot s₄. (Chela-Flores, 2019). While this type metabolism is not limited per se to extreme environments, it is still more abundant in acidic hot springs and deep sea hydrothermal vents. # Conclusion Several extraterrestrial environments in the Solar System and beyond may allow persistence of relatively warm liquid water bodies, raising hope for finding habitable environments, prebiotic chemical processes or even biological activity. Based on our current knowledge about limits of life and the Solar System, habitable extraterrestrial environments are likely to be found in subsurface Martian brines and the subglacial oceans of the Europa and Enceladus moons. Other habitable environments, such as surfaces of exoplanets, may be characterized in the future. These extraterrestrial environments appear to have extreme physical and chemical conditions, hence presenting similarities with terrestrial extreme environments. Extremophilic microorganisms found in hydrothermal vents, deep sea, hypersaline lakes or polar environments have evolved several strategies to cope with the extreme conditions of their environment. Some of these strategies could be shared with putative extraterrestrial life facing similar extreme conditions. Indeed, extremophiles such halophiles or psychrophilic methanogens have been successfully cultivated in extraterrestrial conditions to show feasibility of life out of the earth. While some strategies of terrestrial extremophiles happen at the scale of the cell, adaptation of the nature and properties of their biomolecules is generally required. Smaller-scale systems, such as machineries and assemblies from extremophiles, could be used instead to check general behavior of biomolecules in extraterrestrial conditions. Extreme conditions such as extreme pH, ionizing radiation, high concentrations of heavy metals or organic solvents are managed by terrestrial extremophiles with adaptations at the cellular level and require less to no molecular trait. In contrast, high and low temperature, high salinity and high pressure are extreme conditions commonly faced by life on Earth through adaptations requiring specific traits in all biomolecules, in particular proteins. Extreme conditions impair normal structure and dynamics of biomolecules, altering properties such as flexibility, stability or activity. In particular, alteration of solvation shell, which is fundamental for structure and dynamics of biomolecules, is critical. Each type of biomolecule (protein, nucleic acids, lipids) from extremophiles displays its own set of molecular traits associated with extremophily. Individual proteins may present one or many of these traits allowing function under extreme conditions. Usually, no clear signature of extremophilic adaptation can be recognized, only trends. These adaptations tend to counter the effect of extreme conditions, for example through increased flexibility of psychrophilic proteins to counter rigidification induced by low temperatures or increased solubility of halophilic proteins to counter enhanced aggregation under hypersalinity. For proteins, relatively small changes of overall structure can be observed in crystal structures. In contrast, huge differences with mesophilic proteins can be observed at the dynamical level by techniques such as neutron scattering, spectroscopy or NMR. In particular, adaptation of the solvation shell, which should be understood as a part of the proteins, is fundamental to cope with extreme temperature, salinity or pressure. While most extremophilic systems are studied in regard to one extreme condition, terrestrial extreme environments actually generally display more than one such condition. The same goes for extraterrestrial environments which can also be called polyextreme. Some combinations of extreme conditions are however unknown on Earth and associated with no organism to date. Combinations of extreme conditions may either be compensating or synergistically deleterious for biological system. High pressure and high temperature present in abyssal hydrothermal vents for example have opposite effects on molecular flexibility whereas low temperature and high pressure in deep sea environments both increase rigidity of biomolecules. While some strategies may be shared between two extreme condition, molecular traits allowing life under polyextreme conditions are still poorly understood. Most data about extremophilic adaptation have been obtained through study of simple systems such as monomeric proteins. However, complex biological processes such as DNA replication, transcription, translation, protein degradation or metabolism largely rely on large molecular assemblies. Systems like multimeric enzymes, DNA/RNA polymerases, ribosomes or even viral capsids may represent an intermediary scale between simple proteins and complex cellules. Studying their stability and dynamics under extraterrestrial extreme conditions may bring interesting data about habitability of extraterrestrial environments and how life could manage extreme conditions out of Earth. Existence and diversity of extremophiles have opened the window of habitability, suggesting that life would be possible in extraterrestrial environments similar to extreme terrestrial ones. Yet, some open questions still remain. Can putative extremophilic biomarkers be find in extraterrestrial environments? The study of extremophiles has shown that they may produce biomarkers relevant for astrobiological concern. In particular, biomolecules in thermophiles and halophiles display exceptional stability and resilience and thus could make interesting biomarkers. How fast can life adapt to extreme conditions? It has been showed here that few molecular traits allow single biomolecules such as proteins to work under extreme conditions. These modifications may appear simple but they lead to dramatical changes of dynamical properties. At the scale of the proteome however, numerous changes are required for organisms, leading to the need of a longer evolution. Can macroscopic life appear in extreme environments? Most extremophiles are indeed microorganisms, mostly bacteria and archaea. Extreme environments may host macroscopic life, such as shrimps and tube worms around black smokers, but ancestors of these macroorganisms have originated in mesophilic environments. Furthermore, the hypothesis of abiogenesis taking place in extreme environments is largely debated. Can macroscopic life appear without photosynthesis? Even if claims about life billion years ago are controversial, it is generally believed that multicellular and macroscopic life have appeared long after photosynthesis. Before photosynthesis, ecosystems must have relied on chemosynthesis, just like many modern extreme environments, such as great depths or extremely hot environments, which are largely devoid of photosynthetic organisms. Because metabolic yields are low compared to photosynthesis, it is not certain that macroscopic life could appear in ecosystems with chemosynthesis only. Hence, putative life in Martian subsurface or icy moon abyssal environments may be limited to microorganisms. Where should one search for extraterrestrial life? In the absence of known extraterrestrial mesophilic environments, extreme extraterrestrial environments such as Martian depths or icy moons abysses may be the most habitable. As adaptation to extreme conditions limits the possibility for extremophiles to thrive under mesophilic conditions, environmental variations of physical and chemical conditions may be a limiting factor. Thus, stable extreme environments should be favored over those displaying variations. As pointed by many, the search for hydrothermal should also be a priority. Liquid water may however not be enough, making the search for salt-enriched liquid water environment a priority too. In fact, biochemistry relies on a solvent which is an ionic solution rather than pure water and many biological processes such as folding and metabolism require ions to work. In particular, hydrothermal processes not only favors organic matter enrichment but also accumulation of ions in water. In terrestrial life, solvent is not pure water but an ionic solution where charges enable biological processes such as metabolism. Interestingly, hydrothermalism favors both organic matter and mineral ions enrichment of water. enrict. vch for rocky e ronments. In this context, the search for rocky exoplanets with surface mesophilic conditions may unravel new habitable environments. # **Acknowledgments** This work is supported by the French National Research Agency in the framework of the Investissements d'Avenir program (ANR-15-IDEX-02), through the funding of the "Origin of Life" project of the Univ. Grenoble-Alpes. IBS acknowledges integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA) # **Author contributions** All proposed and contributed in their respective expertise (L.C., E.G. and B.F. microbiology, biochemistry and structural biology, G.Z. biophysics, X.D. planetology and astronomy) and participated in writing the manuscript. L.C. wrote the paper and made the figures, G.Z. and X.D. wrote and corrected the paper, E.G. corrected the paper and B.F. supervised the writing process. # Disclosure statement are not aware of any s. e perceived as affecting the o. ## References Abe, F., Horikoshi, K. (1995). Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae. FEMS Microbiol Lett 130:307–312. Abe, F., Horikoshi, K. (1998). Analysis
of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology. Extremophiles 2:223–228. Abele, D., Puntarulo, S. (2004). Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 138:405–415. Aertsen, A., Meersman, F., Hendrickx, M.E.G., Vogel, R.F., Michiels, C.W. (2009). Biotechnology under high pressure: applications and implications. Trends in Biotechnology 27:434–441. Aertsen, A., Vanoirbeek, K., Spiegeleer, P.D., Sermon, J., Hauben, K., Farewell, A., Nyström, T., Michiels, C.W. (2004). Heat Shock Protein-Mediated Resistance to High Hydrostatic Pressure in Escherichia coli. Appl Environ Microbiol 70:2660–2666. Aghajari, N., Feller, G., Gerday, C., Haser, R. (1998). Structures of the psychrophilic Alteromonas haloplanctis α -amylase give insights into cold adaptation at a molecular level. Structure 6:1503-1516. Aguilar, C.F., Sanderson, I., Moracci, M., Ciaramella, M., Nucci, R., Rossi, M., Pearl, L.H. (1997). Crystal structure of the β-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability11Edited by R. Huber. Journal of Molecular Biology 271:789–802. Ahern, T.J., Klibanov, A.M. (1985). The mechanisms of irreversible enzyme inactivation at 100C. Science 228:1280-1284. Alcaide, M., Stogios, P.J., Lafraya, Á., Tchigvintsev, A., Flick, R., Bargiela, R., Chernikova, T.N., Reva, O.N., Hai, T., Leggewie, C.C., Katzke, N., Cono, V.L., Matesanz, R., Jebbar, M., Jaeger, K.-E., Yakimov, M.M., Yakunin, A.F., Golyshin, P.N., Golyshina, O.V., Savchenko, A., Ferrer, M. (2015). Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats. Environmental Microbiology 17:332–345. Almog, O., Kogan, A., Leeuw, M. de, Gdalevsky, G.Y., Cohen-Luria, R., Parola, A.H. (2008). Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers 89:354–359. Altermark, B., Helland, R., Moe, E., Willassen, N.P., Smalås, A.O. (2008). Structural adaptation of endonuclease I from the cold-adapted and halophilic bacterium Vibrio salmonicida. Acta Cryst D 64:368–376. Amils, R., Fernández-Remolar, D., the IPBSL Team (2014). Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars. *Life* 4:511–534. Anderson, J.D., Lau, E.L., Sjogren, W.L., Schubert, G., Moore, W.B. (1997). Europa's Differentiated Internal Structure: Inferences from Two Galileo Encounters. Science 276:1236-1239. Anderson, A.W., Nordon, H.C., Cain, R., Parrish, G., Duggan, D., Anderson, A.O., Nordan, H., Parish, G., Cullum-Dugan, D. (1956). Studies on a radio-resistant micrococcus. I, Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Anderson, J.D., Schubert, G., Jacobson, R.A., Lau, E.L., Moore, W.B., Sjogren, W.L. (1998). Europa's Differentiated Internal Structure: Inferences from Four Galileo Encounters. Science 281:2019-2022. Anesi, A., Obertegger, U., Hansen, G., Sukenik, A., Flaim, G., Guella, G. (2016). Comparative Analysis of Membrane Lipids in Psychrophilic and Mesophilic Freshwater Dinoflagellates. Front Plant Sci 7. Anglada-Escudé, G., Amado, P.J., Barnes, J., Berdiñas, Z.M., Butler, R.P., Coleman, G.A.L., de la Cueva, I., Dreizler, S., Endl, M., Giesers, B., Jeffers, S.V., Jenkins, J.S., Jones, H.R.A., Kiraga, M., Kürster, M., López-González, M.J., Marvin, C.J., Morales, N., Morin, J., Nelson, R.P., Ortiz, J.L., Ofir, A., Paardekooper, S.-J., Reiners, A., Rodríguez, E., Rodríguez-López, C., Sarmiento, L.F., Strachan, J.P., Tsapras, Y., Tuomi, M., Zechmeister, M. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437– Anschutz, P., Blanc, G., Chatin, F., Geiller, M., Pierret, M.-C. (1999). Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep Sea Research Part I: Oceanographic Research Papers 46:1779–1792. Antunes, A., Olsson-Francis, K., McGenity, T.J. (2020). Exploring Deep-Sea Brines as Potential Terrestrial Analogues of Oceans in the Icy Moons of the Outer Solar System. In: Astrobiology: Current, Evolving, and Emerging Perspectives, Caister Academic Press, p. Arnórsdóttir, J., Kristjánsson, M.M., Ficner, R. (2005). Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation. The FEBS Journal 272:832-845. Arsiccio, A., McCarty, J., Pisano, R., Shea, J.-E. (2020). Heightened Cold-Denaturation of Proteins at the Ice–Water Interface. J Am Chem Soc 142:5722–5730. Assche, F.V., Clijsters, H. (1990). Effects of metals on enzyme activity in plants. *Plant, Cell* & Environment 13:195–206. Atomi, H., Matsumi, R., Imanaka, T. (2004). Reverse Gyrase Is Not a Prerequisite for Hyperthermophilic Life. *Journal of Bacteriology* 186:4829–4833. Atri, D. (2016). On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe. Journal of The Royal Society Interface 13:20160459. Auman, A.J., Breezee, J.L., Gosink, J.J., Kämpfer, P., Staley, J.T. (2006). Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. International Journal of Systematic and Evolutionary Microbiology, 56:1001–1007. Bada, J.L., Lazcano, A. (2002). Some Like It Hot, But Not the First Biomolecules. Science 296:1982-1983. Badiea, E.A., Sayed, A.A., Maged, M., Fouad, W.M., Said, M.M., Esmat, A.Y. (2019). A novel thermostable and halophilic thioredoxin reductase from the Red Sea Atlantis II hot brine pool. *PLOS ONE* 14:e0217565. Bælum, J., Borglin, S., Chakraborty, R., Fortney, J.L., Lamendella, R., Mason, O.U., Auer, M., Zemla, M., Bill, M., Conrad, M.E., Malfatti, S.A., Tringe, S.G., Holman, H.-Y., Hazen, T.C., Jansson, J.K. (2012). Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. *Environmental Microbiology* 14:2405–2416. Baker-Austin, C., Dopson, M. (2007). Life in acid: pH homeostasis in acidophiles. Trends in *Microbiology* 15:165–171. Baland, R.-M., Van Hoolst, T., Yseboodt, M., Karatekin, Ö. (2011). Titan's obliquity as evidence of a subsurface ocean? Astronomy & Astrophysics 530:A141. Ball, P. (2008). Water as an Active Constituent in Cell Biology. *Chemical Reviews* 108:74– Ball, P., Hallsworth, J.E. (2015). Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305. Banciu, H.L., Sorokin, D.Y. (2013). Adaptation in Haloalkaliphiles and Natronophilic Bacteria. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: Life Under Multiple Forms of Stress, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer Netherlands: Dordrecht, pp 121–178. Barbieri, R., Cavalazzi, B. (2014). How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field. Challenges 5:430-443. Barge, L.M., White, L.M. (2017). Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. Astrobiology 17:820–833. Bartlett, D.H., Bidle, K.A. (1999). Membrane-Based Adaptations of Deep-Sea Piezophiles. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments, Cellular Origin and Life in Extreme Habitats. Springer Netherlands: Dordrecht, pp 501–512. Bauer, M.W., Driskill, L.E., Kelly, R.M. (1998). Glycosyl hydrolases from hyperthermophilic microorganisms. Current Opinion in Biotechnology 9:141–145. Bäuerlein, E. (2003). Biomineralization of Unicellular Organisms: An Unusual Membrane Biochemistry for the Production of Inorganic Nano- and Microstructures. *Angewandte* Chemie International Edition 42:614–641. Bauvois, C., Jacquamet, L., Huston, A.L., Borel, F., Feller, G., Ferrer, J.-L. (2008). Crystal Structure of the Cold-active Aminopeptidase from Colwellia psychrerythraea, a Close Structural Homologue of the Human Bifunctional Leukotriene A4 Hydrolase. J Biol Chem 283:23315–23325. Beichman, C., Benneke, B., Knutson, H., Smith, R., Lagage, P.O., Dressing, C., Latham, D., Lunine, J., Birkmann, S., Ferruit, P., Giardino, G., Kempton, E., Carey, S., Krick, J., Deroo, P.D., Mandell, A., Ressler, M.E., Shporer, A., Swain, M., Vasisht, G., Ricker, G., Bouwman, J., Crossfield, I., Greene, T., Howell, S., Christiansen, J., Ciardi, D., Clampin, M., Greenhouse, M., Sozzetti, A., Goudfrooij, P., Hines, D., Keyes, T., Lee, J., McCullough, P., Robberto, M., Stansberry, J., Valenti, J., Rieke, M., Rieke, G., Fortney, J., Bean, J., Kreidberg, L., Ehrenreich, D., Deming, D., Albert, L., Doyon, R., Sing, D. (2014). Observations of transiting exoplanets with the james webb space Telescope (JWST). Publications of the Astronomical Society of the Pacific 126:1134–1173. Belilla, J., Moreira, D., Jardillier, L., Reboul, G., Benzerara, K., López-García, J.M., Bertolino, P., López-Archilla, A.I., López-García, P. (2019). Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 3:1552–1561. Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., Garcia, A.E. (2016). Water Determines the Structure and Dynamics of Proteins. Chemical Reviews 116:7673–7697. Ben-Naim, A. (2013). Theory of cold denaturation of proteins. 2013. Berliner, A.J., Mochizuki, T., Stedman, K.M. (2018). Astrovirology: Viruses at Large in the Universe. Astrobiology 18:207–223. Beuthe, M., Rivoldini, A., Trinh, A. (2017). Enceladus's and Dione's floating ice shells supported by minimum stress isostasy. Geophysical Research Letters: 10,088-10,096. Birrien, J.-L., Zeng, X., Jebbar, M., Cambon-Bonavita, M.-A., Querellou, J., Oger, P., Bienvenu, N., Xiao, X., Prieur, D. (2011). Pyrococcus yayanosii
sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY 61:2827-2881. Björn, L., Papageorgiou, G., Dravins, D., Govindjee, G. (2009). Detectability of life and photosynthesis on exoplanets. Current Science 96:1171–1175. Boer, J.L., Mulrooney, S.B., Hausinger, R.P. (2014). Nickel-dependent metalloenzymes. Archives of Biochemistry and Biophysics 544:142–152. Bonfils, X., Curto, G.L., Correia, A.C.M., Laskar, J., Udry, S., Delfosse, X., Forveille, T., Astudillo-Defru, N., Benz, W., Bouchy, F., Gillon, M., Hébrard, G., Lovis, C., Mayor, M., Moutou, C., Naef, D., Neves, V., Pepe, F., Perrier, C., Queloz, D., Santos, N.C., Ségransan, D. (2013). The HARPS search for southern extra-solar planets - XXXIV. A planetary system around the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone. A&A 556:A110. Bonfils, X., Delfosse, X., Udry, S., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Gillon, M., Lovis, C., Pepe, F., Queloz, D., Santos, N.C., Ségransan, D., Bertaux, J.-L. (2013). The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample. A&A 549:A109. Bonneté, F., Ebel, C., Zaccai, G., Eisenberg, H. (1993). Biophysical study of halophilic malate dehydrogenase in solution: revised subunit structure and solvent interactions of native and recombinant enzyme. J Chem Soc, Faraday Trans 89:2659–2666. Bonneté, F., Madern, D., Zaccaï, G. (1994). Stability against denaturation mechanisms in halophilic malate dehydrogenase 'adapt' to solvent conditions. J Mol Biol 244:436–447. Boston, P.J., Ivanov, M.V., P. McKay, C. (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. *Icarus* 95:300–308. Bowers, K.J., Mesbah, N.M., Wiegel, J. (2009). Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Systems 5:9. Bowers, K.J., Wiegel, J. (2011). Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles 15:119–128. Bowman, J.S., Deming, J.W. (2014). Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis. BMC genomics 15:1120. Brady, J.B. (1992). Does Ice Dissolve or Does Halite Melt? Journal of Geological Education 40:116-118. Brandenburg, J.E. (1987). The Paleo-ocean of Mars Bridgman, P.W. (1914). The Coagulation of Albumen by Pressure. *J Biol Chem* 19:511–512. Britton, K.L., Baker, P.J., Fisher, M., Ruzheinikov, S., Gilmour, D.J., Bonete, M.-J., Ferrer, J., Pire, C., Esclapez, J., Rice, D.W. (2006). Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. PNAS 103:4846– 4851. Brown, M.E., Hand, K.P. (2013). SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA. AJ 145:110. Brown, S.H., Kelly, R.M. (1993). Characterization of Amylolytic Enzymes, Having Both α-1,4 and α-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. *Appl Environ Microbiol* 59:2614–2621. Bryson, S., Kunimoto, M., Kopparapu, R.K., Coughlin, J.L., Borucki, W.J., Koch, D., Aguirre, V.S., Allen, C., Zamudio, K.A., et al. (2020). The Occurrence of Rocky Habitable Zone Planets Around Solar-Like Stars from Kepler Data. arXiv:201014812 [astro-ph]. Burton, N.P., Norris, P.R. (2000). Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320. Cable, M.L., Clark, K., Lunine, J.I., Postberg, F., Reh, K., Spilker, L., Waite, J.H. (2016). Enceladus Life Finder: the search for life in a habitable moon. Calegari-Santos, R., Diogo, R.A., Fontana, J.D., Bonfim, T.M.B. (2016). Carotenoid Production by Halophilic Archaea Under Different Culture Conditions. Curr Microbiol 72:641–651. Canganella, F., Wiegel, J. (2011). Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279. Capece, M.C., Clark, E., Saleh, J.K., Halford, D., Heinl, N., Hoskins, S., Rothschild, L.J. (2013). Polyextremophiles and the Constraints for Terrestrial Habitability. In: Seckbach J, Oren A, Stan-Lotter H (eds) *Polyextremophiles: life under multiple forms of stress*, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer Netherlands: Dordrecht Vol 27, pp 3–59. Caro, G.M.M., Dartois, E. (2013). Prebiotic chemistry in icy grain mantles in space. An experimental and observational approach. *Chem Soc Rev* 42:2173–2185. Carr, M.H., Belton, M.J.S., Chapman, C.R., Davies, M.E., Geissler, P., Greenberg, R., McEwen, A.S., Tufts, B.R., Greeley, R., Sullivan, R., Head, J.W., Pappalardo, R.T., Klaasen, K.P., Johnson, T.V., Kaufman, J., Senske, D., Moore, J., Neukum, G., Schubert, G., Burns, J.A., Thomas, P., Veverka, J. (1998). Evidence for a subsurface ocean on Europa. *Nature* 391:363–365. Carrizo, D., Sánchez-García, L., Rodriguez, N., Gómez, F. (2019). Lipid Biomarker and Carbon Stable Isotope Survey on the Dallol Hydrothermal System in Ethiopia. *Astrobiology* 19:1474–1489. Casanueva, A., Tuffin, M., Cary, C., Cowan, D.A. (2010). Molecular adaptations to psychrophily: the impact of 'omic' technologies. *Trends in Microbiology* 18:374–381. Catchpole, R.J., Forterre, P. (2019). The Evolution of Reverse Gyrase Suggests a Nonhyperthermophilic Last Universal Common Ancestor. *Mol Biol Evol* 36:2737–2747. Cavalazzi, B., Barbieri, R., Gómez, F., Capaccioni, B., Olsson-Francis, K., Pondrelli, M., Rossi, A. p., Hickman-Lewis, K., Agangi, A., Gasparotto, G., Glamoclija, M., Ori, G. g., Rodriguez, N., Hagos, M. (2019). The Dallol Geothermal Area, Northern Afar (Ethiopia)—An Exceptional Planetary Field Analog on Earth. *Astrobiology* 19:553–578. Cavicchioli, R. (2002). Extremophiles and the Search for Extraterrestrial Life. *Astrobiology* 2:281–292. Cavicchioli, R. (2006). Cold-adapted archaea. Nature Reviews Microbiology 4:331–343. Cavicchioli, R. (2015). On the concept of a psychrophile. *The ISME Journal*. Cech, T.R. (2000). The Ribosome Is a Ribozyme. Science 289:878–879. Chapman, M.G. (2003). Sub-ice volcanoes and ancient oceans/lakes: a Martian challenge. *Global and Planetary Change* 35:185–198. Chela-Flores, J. (2019). Testing S isotopes as biomarkers for Mars. *International Journal of Astrobiology* 18:436–439. Chevrier, V.F., Rivera-Valentin, E.G. (2012). Formation of recurring slope lineae by liquid brines on present-day Mars. *Geophysical Research Letters* 39. Chilukuri, L., Bartlett, D., Fortes, G. (2002). Comparison of high pressure-induced dissociation of single-stranded DNA-binding protein (SSB) from high pressure-sensitive and high pressure-adapted marine Shewanella species. *Extremophiles* 6:377–383. Chin, J.P., Megaw, J., Magill, C.L., Nowotarski, K., Williams, J.P., Bhaganna, P., Linton, M., Patterson, M.F., Underwood, G.J.C., Mswaka, A.Y., Hallsworth, J.E. (2010). Solutes determine the temperature windows for microbial survival and growth. *PNAS* 107:7835–7840. Chivian, D., Brodie, E.L., Alm, E.J., Culley, D.E., Dehal, P.S., DeSantis, T.Z., Gihring, T.M., Lapidus, A., Lin, L.-H., Lowry, S.R., Moser, D.P., Richardson, P.M., Southam, G., Wanger, G., Pratt, L.M., Andersen, G.L., Hazen, T.C., Brockman, F.J., Arkin, A.P., Onstott, T.C. (2008). Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth. *Science* 322:275–278. Choi, I.-G., Bang, W.-G., Kim, S.-H., Yu, Y.G. (1999). Extremely Thermostable Serine-type Protease from Aquifex pyrophilus MOLECULAR CLONING, EXPRESSION, AND CHARACTERIZATION. *J Biol Chem* 274:881–888. Chyba, C.F., Hand, K.P. (2001). Life Without Photosynthesis. Science 292:2026–2027. Chyba, C.F., Phillips, C.B. (2001). Possible ecosystems and the search for life on Europa. *Proceedings of the National Academy of Sciences* 98:801–804. Cleaves, H.J. (2014). Prebiotic Synthesis of Biochemical Compounds. In: Astrobiology: An Evolutionary Approach, CRC Press, p. Cleaves, H.J., Chalmers, J.H. (2004). Extremophiles May Be Irrelevant to the Origin of Life. *Astrobiology* 4:1–9. Clifford, S.M. (1993). A model for the hydrologic and climatic behavior of water on Mars. *Journal of Geophysical Research: Planets* 98:10973–11016. Clifford, S.M., Lasue, J., Heggy, E., Boisson, J., McGovern, P., Max, M.D. (2010). Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. *Journal of Geophysical Research* 115. Cobbett, C.S. (2000). Phytochelatin biosynthesis and function in heavy-metal detoxification. *Current Opinion in Plant Biology* 3:11–16. Cockell, C.S., Bagshaw, E., Balme, M., Doran, P., McKay, C.P., Miljkovic, K., Pearce, D., Siegert, M.J., Tranter, M., Voytek, M., Wadham, J. (2011). Subglacial environments and the search for life beyond the Earth. In: Siegert MJ, Kennicutt MC, Bindschadler RA (eds) *Geophysical Monograph Series*, American Geophysical Union: Washington, D. C. Vol 192, pp 129–148. Cohen, R.D., Pielak, G.J. (2017). A cell is more than the sum of its (dilute) parts: A brief history of quinary structure. *Protein Science* 26:403–413. Connelly, D.P., Copley, J.T., Murton, B.J., Stansfield, K., Tyler, P.A., German, C.R., Dover, C.L.V., Amon, D., Furlong, M., Grindlay, N., Hayman, N., Hühnerbach, V., Judge, M., Bas, T.L., McPhail, S., Meier, A., Nakamura, K., Nye, V., Pebody, M., Pedersen, R.B., Plouviez, S., Sands, C., Searle, R.C., Stevenson, P., Taws, S., Wilcox, S. (2012). Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. *Nat Commun* 3:1–9. Cono, V.L., Bortoluzzi, G., Messina, E., Spada, G.L., Smedile, F., Giuliano, L., Borghini, M., Stumpp, C., Schmitt-Kopplin, P., Harir, M., O'Neill, W.K., Hallsworth, J.E., Yakimov, M. (2019). The discovery of Lake Hephaestus, the youngest athalassohaline deep-sea formation on Earth. *Sci Rep* 9:1–11. Cooper, G., Kimmich,
N., Belisle, W., Sarinana, J., Brabham, K., Garrel, L. (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. *Nature* 414:879–883. Coquelle, N., Talon, R., Juers, D.H., Girard, É., Kahn, R., Madern, D. (2010). Gradual Adaptive Changes of a Protein Facing High Salt Concentrations. *Journal of Molecular Biology* 404:493–505. Cordone, L., Ferrand, M., Vitrano, E., Zaccai, G. (1999). Harmonic Behavior of Trehalose-Coated Carbon-Monoxy-Myoglobin at High Temperature. *Biophysical Journal* 76:1043–1047. Costenaro, L., Zaccai, G., Ebel, C. (2002). Link between Protein–Solvent and Weak Protein–Protein Interactions Gives Insight into Halophilic Adaptation. *Biochemistry* 41:13245–13252. Cottin, H. (2019). What is astrobiology? Cronin, J.R., Pizzarello, S. (1983). Amino acids in meteorites. *Advances in Space Research* 3:5–18. Crowe, J.H., Hoekstra, F.A., Crowe, L.M. (1992). Anhydrobiosis. *Annual Review of Physiology* 54:579–599. Da Poian, A.T., Oliveira, A.C., Silva, J.L. (1995). Cold Denaturation of an Icosahedral Virus. The Role of Entropy in Virus Assembly. *Biochemistry* 34:2672–2677. Dadachova, E., Bryan, R.A., Howell, R.C., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D., Casadevall, A. (2007). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement: Radioprotective properties of fungal melanin. *Pigment Cell & Melanoma Research* 21:192–199. Dadachova, E., Bryan, R.A., Huang, X., Moadel, T., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D., Casadevall, A. (2007). Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi (J Rutherford, Ed.). *PLoS ONE* 2:e457. Dadachova, E., Casadevall, A. (2008). Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. *Current Opinion in Microbiology* 11:525–531. Dalmasso, C., Oger, P., Courtine, D., Georges, M., Takai, K., Maignien, L., Alain, K. (2016). Complete Genome Sequence of the Hyperthermophilic and Piezophilic Archeon Thermococcus piezophilus CDGST, Able To Grow under Extreme Hydrostatic Pressures. *Genome Announc* 4. Daly, M.J. (2009). A new perspective on radiation resistance based on Deinococcus radiodurans. *Nature Reviews Microbiology* 7:237–245. D'Amico, S., Collins, T., Marx, J.-C., Feller, G., Gerday, C. (2006). Psychrophilic microorganisms: challenges for life. *EMBO reports* 7:385–389. D'Amico, S., Marx, J.-C., Gerday, C., Feller, G. (2003). Activity-Stability Relationships in Extremophilic Enzymes. *J Biol Chem* 278:7891–7896. Damm, K.L.V. (2013). Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids. In: *Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions*, American Geophysical Union (AGU), pp 222–247. Daniel, R.M., Cowan, D.A. (2000). Biomolecular stability and life at high temperatures. *Cellular and Molecular Life Sciences CMLS* 57:250–264. Daniel, R., Dines, M., Petach, H. (1996). The denaturation and degradation of stable enzymes at high temperatures. *Biochem J* 317:1–11. Daniel, I., Oger, P., Winter, R. (2006). Origins of life and biochemistry under high-pressure conditions. *Chemical Society Reviews* 35:858–875. Daniels, M.J., Turner-Cavet, J.S., Selkirk, R., Sun, H., Parkinson, J.A., Sadler, P.J., Robinson, N.J. (1998). Coordination of Zn2+ (and Cd2+) by Prokaryotic Metallothionein. *Journal of Biological Chemistry* 273:22957–22961. Darwin, C. (1839). The Voyage of the Beagle. P.F. Collier. Das, K.P., Surewicz, W.K. (1995). Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of α-crystallin. *FEBS Letters* 369:321–325. DasSarma, S. (2006). Extreme Halophiles Are Models for Astrobiology. *Microbe Magazine* 1:120–126. DasSarma, S., DasSarma, P., Laye, V.J., Schwieterman, E.W. (2020). Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. *Extremophiles* 24:31–41. Davies, G.J., Gamblin, S.J., Littlechild, J.A., Watson, H.C. (1993). The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. *Proteins: Structure, Function, and Bioinformatics* 15:283–289. De Rosa, M., Gambacorta, A. (1988). The lipids of archaebacteria. *Progress in Lipid Research* 27:153–175. Delfosse, X., Bonfils, X., Forveille, T., Udry, S., Mayor, M., Bouchy, F., Gillon, M., Lovis, C., Neves, V., Pepe, F., Perrier, C., Queloz, D., Santos, N.C., Ségransan, D. (2013). The HARPS search for southern extra-solar planets - XXXIII. Super-Earths around the M-dwarf neighbors Gl 433 and Gl 667C. *A&A* 553:A8. DeLong, E.F., Yayanos, A.A. (1985). Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. *Science* 228:1101–1103. DeMaere, M.Z., Williams, T.J., Allen, M.A., Brown, M.V., Gibson, J.A.E., Rich, J., Lauro, F.M., Dyall-Smith, M., Davenport, K.W., Woyke, T., Kyrpides, N.C., Tringe, S.G., Cavicchioli, R. (2013). High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. *PNAS* 110:16939–16944. Demirjian, D.C., Moris-Varas, F., Cassidy, C.S. (2001). Enzymes from extremophiles. *Current Opinion in Chemical Biology* 5:144–151. Deniz, A.A. (2018). Enzymes can adapt to cold by wiggling regions far from their active site. *Nature* 558:195–196. Dexter, Y., Cooke, R.C. (1984). Fatty acids, sterols and carotenoids of the psychrophile Mucor Strictus and some mesophilic Mucor species. *Transactions of the British Mycological Society Journal* 3:455–461. Di Achille, G., Hynek, B.M. (2010). Ancient ocean on Mars supported by global distribution of deltas and valleys. *Nature Geoscience* 3:459–463. Di giulio, M. (2000). The Universal Ancestor Lived in a Thermophilic or Hyperthermophilic Environment. *Journal of Theoretical Biology* 203:203–213. Di Giulio, M. (2005). A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code. *Gene* 346:1–6. Dick, M., Weiergräber, O.H., Classen, T., Bisterfeld, C., Bramski, J., Gohlke, H., Pietruszka, J. (2016). Trading off stability against activity in extremophilic aldolases. *Scientific Reports* 6:17908. DiMaio, F., Yu, X., Rensen, E., Krupovic, M., Prangishvili, D., Egelman, K.L. (2015). A virus that infects a hyperthermophile encapsidates A-form DNA. *Science* 348:910–914. Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O'Neil, J., Little, C.T.S. (2017). Evidence for early life in Earth's oldest hydrothermal vent precipitates. *Nature* 543:60–64. Doherty, E.A., Doudna, J.A. (2001). Ribozyme Structures and Mechanisms. :20. Dopson, M., Baker-Austin, C., Koppineedi, P.R., Bond, P.L. (2003). Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. *Microbiology (Reading, Engl)* 149:1959–1970. Dopson, M., Ossandon, F.J., Lövgren, L., Holmes, D.S. (2014). Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms. *Front Microbiol* 5. Dordick, J.S. (1989). Enzymatic catalysis in monophasic organic solvents. *Enzyme and Microbial Technology* 11:194–211. Dose, K., Bieger-Dose, A., Ernst, B., Feister, U., Gómez-Silva, B., Klein, A., Risi, S., Stridde, C. (2001). Survival of Microorganisms under the Extreme Conditions of the Atacama Desert. *Orig Life Evol Biosph* 31:287–303. Doyon, R., Lafrenière, D., Albert, L., Artigau, E., Meyer, M., Jayawardhana, R. (2014). Transit Spectroscopy with NIRISS on JWST. *Search for Life Beyond the Solar System Exoplanets, Biosignatures & Exoplanets*. 3.6. Dressing, C.D., Charbonneau, D. (2015). The Occurrence of Potentially Habitable Planets Orbiting M Dwarfs Estimated from the Full Kepler Dataset and an Empirical Measurement of the Detection Sensitivity. *The Astrophysical Journal* 807:45. Driessen, A.J.M., van de Vossenberg, J.L.C.M., Konings, W.N. (1996). Membrane composition and ion-permeability in extremophiles. *FEMS Microbiol Rev* 18:139–148. Dubins, D.N., Lee, A., Macgregor, R.B., Chalikian, T.V. (2001). On the Stability of Double Stranded Nucleic Acids. *Journal of the American Chemical Society* 123:9254–9259. Dumorne;, K., Cordova, D.C., Astorga-Elo, M., Renganathan, P. (2017). Extremozymes: A Potential Source for Industrial Applications. *Journal of Microbiology and Biotechnology* 27:649–659. Dym, O., Mevarech, M., Sussman, J.L. (1995). Structural Features That Stabilize Halophilic Malate Dehydrogenase from an Archaebacterium. *Science* 267:1344–1346. Ebel, C., Costenaro, L., Pascu, M., Faou, P., Kernel, B., Proust-De Martin, F., Zaccai, G. (2002). Solvent Interactions of Halophilic Malate Dehydrogenase. *Biochemistry* 41:13234–13244. Edmonds, C.G., Crain, P.F., Gupta, R., Hashizume, T., Hocart, C.H., Kowalak, J.A., Pomerantz, S.C., Stetter, K.O., McCloskey, J.A. (1991). Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). *Journal of bacteriology* 173:3138–3148. Eisenberg, H. (1995). Life in Unusual Environments: Progress in Understanding the Structure and Function of Enzymes from Extreme Halophilic Bacteria. *Archives of Biochemistry and Biophysics* 318:1–5. Elcock, A.H. (1998). The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins 11 Edited by B. Honig. *Journal of Molecular Biology* 284:489–502 Ellis, D.G., Bizzoco, R.W., Kelley, S.T. (2008). Halophilic Archaea determined from geothermal steam vent aerosols. *Environmental Microbiology* 10:1582–1590. Empadinhas, N., Costa, M.S. da (2006). Diversity and biosynthesis of compatible solutes in hyper/thermophiles. *Diversidade e biossíntese de solutos compatíveis em hiper/termófilas*. Fanale, F.P., Li, Y.-H., Carlo, E.D., Farley, C., Sharma, S.K., Horton, K., Granahan, J.C. (2001). An experimental estimate of
Europa's "ocean" composition independent of Galileo orbital remote sensing. *Journal of Geophysical Research: Planets* 106:14595–14600. Faria, T.Q., Lima, J.C., Bastos, M., Maçanita, A.L., Santos, H. (2004). Protein Stabilization by Osmolytes from Hyperthermophiles EFFECT OF MANNOSYLGLYCERATE ON THE THERMAL UNFOLDING OF RECOMBINANT NUCLEASE A FROM STAPHYLOCOCCUS AUREUS STUDIED BY PICOSECOND TIME-RESOLVED FLUORESCENCE AND CALORIMETRY. *J Biol Chem* 279:48680–48691. Feller, G. (2010). Protein stability and enzyme activity at extreme biological temperatures. *J Phys: Condens Matter* 22:323101. Feller, G. (2013). Psychrophilic Enzymes: From Folding to Function and Biotechnology. *Scientifica* 2013:e512840. Feller, G., Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. *Nat Rev Microbiol* 1:200–208. Fendrihan, S., Bérces, A., Lammer, H., Musso, M., Rontó, G., Polacsek, T.K., Holzinger, A., Kolb, C., Stan-Lotter, H. (2009). Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria. *Astrobiology* 9:104–112. Fetrow, J.S. (1995). Omega loops; nonregular secondary structures significant in protein function and stability. *The FASEB Journal* 9:708–717. Fields, P.A., Somero, G.N. (1998). Hot spots in cold adaptation: Localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. *PNAS* 95:11476–11481. Fletcher, L.E., Valdivia-Silva, J.E., Perez-Montaño, S., Condori-Apaza, R.M., Conley, C.A., McKay, C.P. (2012). Variability of organic material in surface horizons of the hyper-arid Mars-like soils of the Atacama Desert. *Advances in Space Research* 49:271–279. Fong, N., Burgess, M., Barrow, K., Glenn, D. (2001a). Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. *Appl Microbiol Biotechnol* 56:750–756. Fong, N., Burgess, M., Barrow, K., Glenn, D. (2001b). Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. *Appl Microbiol Biotechnol* 56:750–756. Fonseca, F., Meneghel, J., Cenard, S., Passot, S., Morris, G.J. (2016). Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation. *PLoS One* 11. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. (2004). Detection of Methane in the Atmosphere of Mars. *Science* 306:1758–1761. Forterre, P. (2002). A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. *Trends in Genetics* 18:236–237. Forterre, P., Bergerat, A., Lopez-Garcia, P. (1996). The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea. *FEMS microbiology reviews* 18:237–248. Fortes, A.D. (2000). Exobiological Implications of a Possible Ammonia–Water Ocean inside Titan. *Icarus* 146:444–452. Fox-Powell, M.G., Hallsworth, J.E., Cousins, C.R., Cockell, C.S. (2016). Ionic Strength Is a Barrier to the Habitability of Mars. *Astrobiology* 16:427–442. Friedman, S.M., Oshima, T. (1989). Polyamines of Sulfur-Dependent Archaebacteria and Their Role in Protein Synthesis. *J Biochem* 105:1030–1033. Frölich, A., Gabel, F., Jasnin, M., Lehnert, U., Oesterhelt, D., Stadler, A.M., Tehei, M., Weik, M., Wood, K., Zaccai, G. (2008). From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity. *Faraday Discuss* 141:117–130. Frolow, F., Harell, M., Sussman, J.L., Mevarech, M., Shoham, M. (1996). Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. *Nat Struct Mol Biol* 3:452–458. Fujii, S., Nakasone, K., Horikoshi, K. (1999). An Expression of a Cold Shock Inducible Gene CspA Under Hydrostatic Pressure in Deep-Sea Barophilic Bacterium, Shewanella sp. Strain DSS12. In: Ludwig H (ed) *Advances in High Pressure Bioscience and Biotechnology*, Springer: Berlin, Heidelberg, pp 21–24. Fumiyoshi, A., Chiaki, K., Koki, H. (1999). Pressure-regulated metabolism in microorganisms. *Trends in Microbiology* 7:447–453. Fürst, M.J., Fiorentini, F., Fraaije, M.W. (2019). Beyond active site residues: overall structural dynamics control catalysis in flavin-containing and heme-containing monooxygenases. *Current Opinion in Structural Biology* 59:29–37. Fütterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., Dock, C., Antranikian, G., Liebl, W. (2004). Genome sequence of Picrophilus torridus and its implications for life around pH 0. *PNAS* 101:9091–9096. Gaeman, J., Hier-Majumder, S., Roberts, J.H. (2012). Sustainability of a subsurface ocean within Triton's interior. *Icarus* 220:339–347. Gaidos, E.J., Nealson, K.H., Kirschvink, J. (1999). Life in ice-Covered Oceans. 284:3. Galinski, E.A. (1993). Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. *Experientia* 49:487–496. Galinski, E.A., Trüper, H.G. (1982). Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. *FEMS Microbiol Lett* 13:357–360. Galtier, N., Tourasse, N., Gouy, M. (1999). A Nonhyperthermophilic Common Ancestor to Extant Life Forms. *Science* 283:220–221. Gambacorta, A., Gliozzi, A., De Rosa, M. (1995). Archaeal lipids and their biotechnological applications. *World Journal of Microbiology & Biotechnology* 11:115–131. Gargaud, M., Martin, H., López-García, P., Montmerle, T., Pascal, R. (2012). The Messages from the Oldest Terrestrial Rocks. In: Gargaud M, Martin H, López-García P, Montmerle T, Pascal R (eds) *Young Sun, Early Earth and the Origins of Life: Lessons for Astrobiology*, Springer: Berlin, Heidelberg, pp 167–210. Gáspári, Z., Perczel, A. (2010). Protein Dynamics as Reported by NMR. In: *Annual Reports on NMR Spectroscopy*, Elsevier Vol 71, pp 35–75. Georlette, D., Jónsson, Z.O., Petegem, F.V., Chessa, J.-P., Beeumen, J.V., Hübscher, U., Gerday, C. (2000). A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. *European Journal of* Biochemistry 267:3502-3512. Gerday, C., Aittaleb, M., Arpigny, J.L., Baise, E., Chessa, J.-P. (1997). Psychrophilic enzymes: a thermodynamic challenge. *Biochimica et Biophysica Acta* 1342:119–131. Geslin, C., Romancer, M.L., Erauso, G., Gaillard, M., Perrot, G., Prieur, D. (2003). PAV1, the First Virus-Like Particle Isolated from a Hyperthermophilic Euryarchaeote, "Pyrococcus abyssi". *Journal of Bacteriology* 185:3888–3894. Gianese, G., Bossa, F., Pascarella, S. (2002). Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. *Proteins: Structure, Function, and Bioinformatics* 47:236–249. Gillon, M., Triaud, A.H.M.J., Demory, B.-O., Jehin, E., Agol, E., Deck, K.M., Lederer, S.M., de Wit, J., Burdanov, A., Ingalls, J.G., Bolmont, E., Leconte, J., Raymond, S.N., Selsis, F., Turbet, M., Barkaoui, K., Burgasser, A., Burleigh, M.R., Carey, S.J., Chaushev, A., Copperwheat, C.M., Delrez, L., Fernandes, C.S., Holdsworth, D.L., Kotze, E.J., Van Grootel, V., Almleaky, Y., Benkhaldoun, Z., Magain, P., Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. *Nature* 542:456–460. Ginzburg, M., Ginzburg, B.Z. (1976). Regulation of cell volume and ion concentrations in Halobacterium. *J Membrain Biol* 26:153–171. Girard, E., Marchal, S., Perez, J., Finet, S., Kahn, R., Fourme, R., Marassio, G., Dhaussy, A.-C., Prangé, T., Giffard, M., Dulin, F., Bonneté, F., Lange, R., Abraini, J.H., Mezouar, M., Colloc'h, N. (2010). Structure-Function Perturbation and Dissociation of Tetrameric Urate Oxidase by High Hydrostatic Pressure. *Biophysical Journal* 98:2365–2373. Girard, E., Prangé, T., Dhaussy, A.-C., Migianu-Griffoni, E., Lecouvey, M., Chervin, J.-C., Mezouar, M., Kahn, R., Fourme, R. (2007). Adaptation of the base-paired double-helix molecular architecture to extreme pressure. *Nucleic Acids Res* 35:4800–4808. Giulio, M.D. (2003). The Universal Ancestor was a Thermophile or a Hyperthermophile: Tests and Further Evidence. *Journal of Theoretical Biology* 221:425–436. Glein, C.R., Baross, J.A., Waite, J.H. (2015). The pH of Enceladus' ocean. *Geochimica et Cosmochimica Acta* 162:202–219. Gliozzi, A., Paoli, G., De Rosa, M., Gambacorta, A. (1983). Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. *Biochimica et Biophysica Acta*,:234–242. Goldman, A. (1995). How to make my blood boil. Structure 3:1277–1279. Gómez, F., Cavalazzi, B., Rodríguez, N., Amils, R., Ori, G.G., Olsson-Francis, K., Escudero, C., Martínez, J.M., Miruts, H. (2019). Ultra-small microorganisms in the polyextreme conditions of the Dallol volcano, Northern Afar, Ethiopia. *Scientific Reports* 9:7907. González, J.M., Sheckells, D., Viebahn, M., Krupatkina, D., Borges, K.M., Robb, F.T. (1999). Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. *Arch Microbiol* 172:95–101. Goodrich, R.P., Handel, T.M., Baldeschwieler, J.D. (1988). Modification of lipid phase behavior with membrane-bound cryoprotectants. *Biochim Biophys Acta* 938:143–154. Gralnick, J.A., Newman, D.K. (2007). Extracellular respiration. *Mol Microbiol* 65:1–11. Grasset, O., Sotin, C. (1996). The Cooling Rate of a Liquid Shell in Titan's Interior. *Icarus* 123:101–112. Grayling, R.A., Sandman, K., Reeve, J.N. (1996). Histones and chromatin structure in hyperthermophilic Archaea. *FEMS microbiology reviews* 18:203–214. Green, G.R., Searcy, D.G., DeLange, R.J. (1983). Histone-like protein in the Archaebacterium Sulfolobus acidocaldarius. *Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression* 741:251–257. Greenberg, R. (2009). *Europa – The Ocean Moon: Search For An
Alien Biosphere*. Springer Science & Business Media. Gress, T., Mirault, P. (2016). *La philosophie au risque de l'intelligence extraterrestre*. Librairie Philosophique J. Vrin. Grindrod, P.M., Fortes, A.D., Nimmo, F., Feltham, D.L., Brodholt, J.P., Vočadlo, L. (2008). The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan. *Icarus* 197:137–151. Gross, M., Jaenicke, R. (1994). Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. *European Journal of Biochemistry* 221:617–630. Gross, M., Lehle, K., Jaenicke, R., Nierhaus, K.H. (1993). Pressure-induced dissociation of ribosomes and elongation cycle intermediates. *European Journal of Biochemistry* 218:463–468. Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Team, M.S., *et al.* (2014). A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. *Science* 343. Gunbin, K.V., Afonnikov, D.A., Kolchanov, N.A. (2009). Molecular evolution of the hyperthermophilic archaea of the Pyrococcus genus: analysis of adaptation to different environmental conditions. *BMC Genomics* 10:639. Gunter, T.E., Gunter, K.K. (1972). Pressure dependence of the helix–coil transition temperature for polynucleic acid helices. *Biopolymers* 11:667–678. Hallsworth, J.E. (2019). Microbial unknowns at the saline limits for life. *Nature Ecology & Evolution* 3:1503–1504. Hallsworth, J.E., Yakimov, M.M., Golyshin, P.N., Gillion, J.L.M., D'Auria, G., Alves, F.D.L., Cono, V.L., Genovese, M., McKew, B.A., Hayes, S.L., Harris, G., Giuliano, L., Timmis, K.N., McGenity, T.J. (2007). Limits of life in MgCl2-containing environments: chaotropicity defines the window. *Environmental Microbiology* 9:801–813. Han, M.-J., Lee, S.Y. (2006). The Escherichia coli Proteome: Past, Present, and Future Prospects. *Microbiol Mol Biol Rev* 70:362–439. Han, H., Ling, Z., Khan, A., Virk, A.K., Kulshrestha, S., Li, X. (2019). Improvements of thermophilic enzymes: From genetic modifications to applications. *Bioresource Technology* 279:350–361. Hand, K.P., Chyba, C.F. (2007). Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell. *Icarus* 189:424–438. Haney, P.J., Badger, J.H., Buldak, G.L., Reich, C.I., Woese, C.R., Olsen, G.J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. *PNAS* 96:3578–3583. Hansen, C.J., Esposito, L., Stewart, A.I.F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D., West, R. (2006). Enceladus' Water Vapor Plume. *Science* 311:1422–1425. Harding, T. (2018). Molecular Adaptations in Extremely Halophilic Protists. Harris, H.J.H., Cartwright, K. (2013). Hydrology of the Don Juan Basin, Wright Valley, Antarctica. In: *Dry Valley Drilling Project*, American Geophysical Union (AGU), pp 161–184. Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D., Cockell, C.S. (2013). The limits for life under multiple extremes. *Trends in Microbiology* 21:204–212. Hashim, N.H.F., Mahadi, N.M., Illias, R.M., Feroz, S.R., Abu Bakar, F.D., Murad, A.M.A. (2018). Biochemical and structural characterization of a novel cold-active esterase-like protein from the psychrophilic yeast Glaciozyma antarctica. *Extremophiles* 22:607–616. Hatanaka, H., Tanimura, R., Katoh, S., Inagaki, F. (1997). Solution structure of ferredoxin from the thermophilic Cyanobacterium Synechococcus elongatus and its thermostability11Edited by P.E. Wright. *Journal of Molecular Biology* 268:922–933. Hazel, J.R., Eugene Williams, E. (1990). The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. *Progress in Lipid Research* 29:167–227. Hazen, R.M., Boctor, N., Brandes, J.A., Cody, G.D., Hemley, R.J., Sharma, A., Yoder, H.S. (2002). High pressure and the origin of life. *J Phys: Condens Matter* 14:11489–11494. Head, J.W., Forget, F., Wordsworth, R., Turbet, M., Cassanelli, J., Palumbo, A. (2018). Two Oceans on Mars?: History, Problems, and Prospects. *Lunar and Planetary Science Conference*:2194. Hedén, C.G., Lindahl, T., Toplin, I. (1964). The Stability of Deoxyribonucleic Acid Solutions under High Pressure. *Acta Chemica Scandinavica* 18:1150–1156. von Hegner, I. (2019a). An ab initio definition of life pertaining to Astrobiology. *Unpublished*. von Hegner, I. (2019b). Astrobiology and Astrophilosophy: Subsuming or bifurcating disciplines? *Philosophy and Cosmology* 23. von Hegner, I. (2020). Extremophiles: a special or general case in the search for extraterrestrial life? *Extremophiles* 24:167–175. Heine, M., Chandra, S.B.C. (2009). The linkage between reverse gyrase and hyperthermophiles: A review of their invariable association. *J Microbiol* 47:229. Henderson, R., Krude, T. (2004). *DNA: Changing Science and Society*. Cambridge University Press. Hensel, R., König, H. (1988). Thermoadaptation of methanogenic bacteria by intracellular ion concentration. *FEMS Microbiol Lett* 49:75–79. Hinman, N.W. (2013). Water-Rock Interaction and Life. *Procedia Earth and Planetary Science* 7:354–359. Hite, B.H., Giddings, N.J., Weakley, C.E. (1914). *The Effect of Pressure on Certain Micro-Organisms Encountered in the Preservation of Fruits and Vegetables*. West Virginia University Agricultural Experiment Station. Hoehler, T.M., Jørgensen, B.B. (2013). Microbial life under extreme energy limitation. *Nature Reviews Microbiology* 11:83–94. Horikoshi, K. (1999). Alkaliphiles: Some Applications of Their Products for Biotechnology. *Microbiol Mol Biol Rev* 63:735–750. Hörst, S. m., Yelle, R. v., Buch, A., Carrasco, N., Cernogora, G., Dutuit, O., Quirico, E., Sciamma-O'Brien, E., Smith, M. a., Somogyi, Á., Szopa, C., Thissen, R., Vuitton, V. (2012). Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. *Astrobiology* 12:809–817. Howard, E.I., Blakeley, M.P., Haertlein, M., Haertlein, I.P.-, Mitschler, A., Fisher, S.J., Siah, A.C.-, Salvay, A.G., Popov, A., Dieckmann, C.M.-, Petrova, T., Podjarny, A. (2011). Neutron structure of type-III antifreeze protein allows the reconstruction of AFP–ice interface. *Journal of Molecular Recognition* 24:724–732. Howard, E., Blakeley, M.P., Salvay, A.G., Podjarny, A. (2014). Use of neutron scattering techniques for Antifreeze Protein mechanistic studies. *Neutron News* 25:24–27. Hu, P., Janga, S.C., Babu, M., Díaz-Mejía, J.J., Butland, G., Yang, W., Pogoutse, O., Guo, X., Phanse, S., Wong, P., Chandran, S., Christopoulos, C., Nazarians-Armavil, A., Nasseri, N.K., Musso, G., Ali, M., Nazemof, N., Eroukova, V., Golshani, A., Paccanaro, A., Greenblatt, J.F., Moreno-Hagelsieb, G., Emili, A. (2009). Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. *PLoS Riol* 7:e96 encompassing previously uncharacterized proteins. *PLoS Biol* 7:e96. Huang, H.-W., Lung, H.-M., Yang, B.B., Wang, C.-Y. (2014). Responses of microorganisms to high hydrostatic pressure processing. *Food Control* 40:250–259. Hughes, F., Steiner, R.F. (1966). Effects of pressure on the helix–coil transitions of the poly A–poly U system. *Biopolymers* 4:1081–1090. Huston, A.L., Haeggström, J.Z., Feller, G. (2008). Cold adaptation of enzymes: Structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A4 hydrolase. *Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics* 1784:1865–1872. Hutchinson, F. (1985). Chemical changes induced in DNA by ionizing radiation. *Prog Nucleic Acid Res Mol Biol* 32:115–154. Hutchinson, E.G., Thornton, J.M. (1994). A revised set of potentials for beta-turn formation in proteins. *Protein Sci* 3:2207–2216. Hynek, B.M., Rogers, K.L., Antunovich, M., Avard, G., Alvarado, G.E. (2018). Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica. *Astrobiology* 18:923–933. Iess, L., Stevenson, D.J., Parisi, M., Hemingway, D., Jacobson, R.A., Lunine, J.I., Nimmo, F., Armstrong, J.W., Asmar, S.W., Ducci, M., Tortora, P. (2014). The Gravity Field and Interior Structure of Enceladus. *Science* 344:78–80. Imhoff, J.F., Rodriguez-Valera, F. (1984). Betaine is the main compatible solute of halophilic eubacteria. *Journal of Bacteriology* 160:478–479. Inouye, M., Phadtare, S. (2008). The Cold Shock Response. EcoSal Plus 3. Irimia, A., Vellieux, F.M.D., Madern, D., Zaccai, G., Karshikoff, A., Tibbelin, G., Ladenstein, R., Lien, T., Birkeland, N.-K. (2004). The 2.9Å Resolution Crystal Structure of Malate Dehydrogenase from Archaeoglobus fulgidus: Mechanisms of Oligomerisation and Thermal Stabilisation. *Journal of Molecular Biology* 335:343–356. Ishihama, Y., Schmidt, T., Rappsilber, J., Mann, M., Hartl, F.U., Kerner, M.J., Frishman, D. (2008). Protein abundance profiling of the Escherichia coli cytosol. *BMC Genomics* 9:102. Islas, S., Velasco, A.M., Becerra, A., Delaye, L., Lazcano, A. (2003). Hyperthermophily and the origin and earliest evolution of life. *Int Microbiol* 6:87–94. Islas, S., Velasco, A.M., Becerra, A., Delaye, L., Lazcano, A. (2007). Extremophiles and the Origin of Life. *Physiology and Biochemistry of Extremophiles*:3–10. Itävaara, M., Salavirta, H., Marjamaa, K., Ruskeeniemi, T. (2016). Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiology. Elsevier Vol 94, pp 1–77. Iwahashi, H., Kaul, S.C., Obuchi, K., Komatsu, Y. (1991). Induction of barotolerance by heat shock treatment in yeast. *FEMS Microbiol Lett* 80:325–328. Jagannadham, M.V., Chattopadhyay, M.K., Subbalakshmi, C., Vairamani, M., Narayanan, K., Mohan Rao, C., Shivaji, S. (2000). Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. *Arch Microbiol* 173:418–424. Jamroze, A.,
Perugino, G., Valenti, A., Rashid, N., Rossi, M., Akhtar, M., Ciaramella, M. (2014). The Reverse Gyrase from Pyrobaculum calidifontis, a Novel Extremely Thermophilic DNA Topoisomerase Endowed with DNA Unwinding and Annealing Activities. *J Biol Chem* 289:3231–3243. Jasnin, M., Stadler, A., Tehei, M., Zaccai, G. (2010). Specific cellular water dynamics observed in vivo by neutron scattering and NMR. *Phys Chem Chem Phys* 12:10154–10160. Javaux, E.J., Dehant, V. (2010). Habitability: from stars to cells. *The Astronomy and* Astrophysics Review 18:383–416. Jebbar, M., Franzetti, B., Girard, E., Oger, P. (2015). Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. *Extremophiles* 19:721–740. Jebbar, M., Hickman-Lewis, K., Cavalazzi, B., Taubner, R.-S., Rittmann, S.K.-M.R., Antunes, A. (2020a). Microbial Diversity and Biosignatures: An Icy Moons Perspective. *Space Sci Rev* 216:10. Jebbar, M., Hickman-Lewis, K., Cavalazzi, B., Taubner, R.-S., Rittmann, S., Antunes, A. (2020b). Microbial Diversity and Biosignatures: An Icy Moons Perspective. *Space Science Reviews* 216. Jennings, D.H. (1984). Polyol metabolism in fungi. Adv Microb Physiol 25:149–193. Jolivet, E. (2003). Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. *INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY* 53:847–851. Jones, R.M., Goordial, J.M., Orcutt, B.N. (2018). Low Energy Subsurface Environments as Extraterrestrial Analogs. *Front Microbiol* 9. Jones, B.E., Grant, W.D., Duckworth, A.W., Owenson, G.G. (1998). Microbial diversity of soda lakes. *Extremophiles* 2:191–200. Jones, E.G., Lineweaver, C.H. (2010). To What Extent Does Terrestrial Life "Follow The Water"? *Astrobiology* 10:349–361. Jones, E.G., Lineweaver, C.H., Clarke, J.D. (2011). An Extensive Phase Space for the Potential Martian Biosphere. *Astrobiology* 11:1017–1033. Kampmann, M., Stock, D. (2004). Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. *Nucleic Acids Res* 32:3537–3545. Kanekar, P.P., Kanekar, S.P., Kelkar, A.S., Dhakephalkar, P.K. (2012). Halophiles – Taxonomy, Diversity, Physiology and Applications. In: Satyanarayana T, Johri BN (eds) *Microorganisms in Environmental Management: Microbes and Environment*, Springer Netherlands: Dordrecht, pp 1–34. Kargel, J.S., Kaye, J.Z., Head, J.W., Marion, G.M., Sassen, R., Crowley, J.K., Ballesteros, O.P., Grant, S.A., Hogenboom, D.L. (2000). Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life. *Icarus* 148:226–265. Karlström, M., Steen, I.H., Madern, D., Fedöy, A.-E., Birkeland, N.-K., Ladenstein, R. (2006). The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. *The FEBS Journal* 273:2851–2868. Kasting, J.F., Whitmire, D.P., Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. *Icarus* 101:108–128. Kato, C. (2010). Distribution of piezophiles. In: Extremophiles handbook,, pp 543–655. Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J., Horikoshi, K. (1998). Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. *Applied and environmental microbiology* 64:1510–1513. Kattenhorn, S.A., Prockter, L.M. (2014). Evidence for subduction in the ice shell of Europa. *Nature Geoscience* 7:762–767. Kawano, H., Nakasone, K., Abe, F., Kato, C., Yoshida, Y., Usami, R., Horikoshi, K. (2005). Protein–DNA Interactions under High-Pressure Conditions, Studied by Capillary Narrow-Tube Electrophoresis. *Bioscience, Biotechnology, and Biochemistry* 69:1415–1417. Kaye, J.Z., Baross, J.A. (2000). High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. *FEMS Microbiol Ecol* 32:249–260. Kaye, J.Z., Márquez, M.C., Ventosa, A., Baross, J.A. (2004). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. *International Journal of Systematic and Evolutionary Microbiology*, 54:499–511. Kelly, L.C., Cockell, C.S., Summers, S. (2012). Diverse microbial species survive high ammonia concentrations. *International Journal of Astrobiology* 11:125–131. Kendrick, M.G., Kral, T.A. (2006). Survival of Methanogens During Desiccation: Implications for Life on Mars. *Astrobiology* 6:546–551. Kerr, R.A. (1996). Does Europa's Ice Hide an Ocean? Science 274:2015–2015. Kiang, N.Y. (2008). The Color of Plants on Other Worlds. Scientific American 298:48–55. Kim, H.S., Martel, A., Girard, E., Moulin, M., Härtlein, M., Madern, D., Blackledge, M., Franzetti, B., Gabel, F. (2016). SAXS/SANS on Supercharged Proteins Reveals Residue-Specific Modifications of the Hydration Shell. *Biophysical Journal* 110:2185–2194. Kimura, J., Kitadai, N. (2015). Polymerization of Building Blocks of Life on Europa and Other Icy Moons. *Astrobiology* 15:430–441. Kish, A., Griffin, P.L., Rogers, K.L., Fogel, M.L., Hemley, R.J., Steele, A. (2012). High-pressure tolerance in Halobacterium salinarum NRC-1 and other non-piezophilic prokaryotes. *Extremophiles* 16:355–361. Kish, A., Kirkali, G., Robinson, C., Rosenblatt, R., Jaruga, P., Dizdaroglu, M., DiRuggiero, J. (2009). Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. *Environmental Microbiology* 11:1066–1078. Kivelson, M.G., Khurana, K.K., Russell, C.T., Volwerk, M., Walker, R.J., Zimmer, C. (2000). Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. *Science* 289:1340–1343. Klibanov, A.M. (1989). Enzymatic catalysis in anhydrous organic solvents. *Trends in Biochemical Sciences* 14:141–144. Köcher, S., Müller, V. (2011). The Nature and Function of Carotenoids in the Moderately Halophilic Bacterium Halobacillus halophilus. In: Ventosa A, Oren A, Ma Y (eds) *Halophiles and Hypersaline Environments: Current Research and Future Trends*, Springer: Berlin, Heidelberg, pp 303–317. Koga, Y. (2012). Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes. *Archaea* 2012:e789652. Koonin, E.V., Martin, W. (2005). On the origin of genomes and cells within inorganic compartments. *Trends in Genetics* 21:647–654. Koonin, E.V., Starokadomskyy, P. (2016). Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. *Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences* 59:125–134. Kothe, E., Dimkpa, C., Haferburg, G., Schmidt, A., Schmidt, A., Schütze, E. (2010). Streptomycete Heavy Metal Resistance: Extracellular and Intracellular Mechanisms. In: *Soil Heavy Metals*, Soil Biology. Springer Berlin Heidelberg: Berlin, Heidelberg Vol 19, pp 225–235. Kotopoulou, E., Delgado Huertas, A., Garcia-Ruiz, J.M., Dominguez-Vera, J.M., Lopez-Garcia, J.M., Guerra-Tschuschke, I., Rull, F. (2019). A Polyextreme Hydrothermal System Controlled by Iron: The Case of Dallol at the Afar Triangle. *ACS Earth Space Chem* 3:90–99. Koutsopoulos, S., Oost, J. van der, Norde, W. (2005a). Conformational studies of a hyperthermostable enzyme. *The FEBS Journal* 272:5484–5496. Koutsopoulos, S., Oost, J. van der, Norde, W. (2005b). Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering. *Proteins: Structure, Function, and Bioinformatics* 61:377–384. Kowalak, J.A., Dalluge, J.J., McCloskey, J.A., Stetter, K.O. (1994). The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. *Biochemistry* 33:7869–7876. Kragelj, J., Ozenne, V., Blackledge, M., Jensen, M.R. (2013). Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts. *ChemPhysChem* 14:3034–3045. Kragl, U., Eckstein, M., Kaftzik, N. (2002). Enzyme catalysis in ionic liquids. *Current Opinion in Biotechnology* 13:565–571. Krami, L.K., Amiri, F., Sefiyanian, A., Shariff, A.R.B.M., Tabatabaie, T., Pradhan, B. (2013). Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments. *Environ Monit Assess* 185:9871–9888. Krisko, A., Radman, M. (2010). Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. *PNAS* 107:14373–14377. Krisko, A., Radman, M. (2013). Biology of Extreme Radiation Resistance: The Way of Deinococcus radiodurans. *Cold Spring Harb Perspect Biol* 5:a012765. Krulwich, T.A. (1995). Alkaliphiles: 'basic' molecular problems of pH tolerance and bioenergetics. *Molecular microbiology* 15:403–410. Krulwich, T.A., Guffanti, A.A. (1983). Physiology of Acidophilic and Alkalophilic Bacteria. In: *Advances in Microbial Physiology*, Elsevier Vol 24, pp 173–214. Krulwich, T.A., Sachs, G., Padan, E. (2011). Molecular aspects of bacterial pH sensing and homeostasis. *Nature Reviews Microbiology* 9:330–343. Kulkarni, S., Dhakar, K., Joshi, A. (2019). Alkaliphiles: Diversity and Bioprospection. In: *Microbial Diversity in the Genomic Era*, Elsevier, pp 239–263. Kumar, S., Nussinov, R. (2001). How do thermophilic proteins deal with heat? *CMLS, Cell Mol Life Sci* 58:1216–1233. Kumar, S., Tsai, C.-J., Ma, B., Nussinov, R. (2000). Contribution of Salt Bridges Toward Protein Thermostability. *Journal of Biomolecular Structure and Dynamics* 17:79–85. Kumar, A., Venkatesu, P. (2014). Does the stability of proteins in ionic liquids obey the Hofmeister series? *International Journal of Biological Macromolecules* 63:244–253. Kurr, M., Huber, R., König, H., Jannasch, H.W., Fricke, H., Trincone, A., Kristjansson, J.K., Stetter, K.O. (1991). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. *Arch
Microbiol* 156:239–247. Kusube, M., Kyaw, T.S., Tanikawa, K., Chastain, R.A., Hardy, K.M., Cameron, J., Bartlett, D.H. (2017). Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. *International Journal of Systematic and Evolutionary Microbiology*, 67:824–831. Kutnowski, N., Shmuely, H., Dahan, I., Shmulevich, F., Davidov, G., Shahar, A., Eichler, J., Zarivach, R., Shaanan, B. (2018). The 3-D structure of VNG0258H/RosR – A haloarchaeal DNA-binding protein in its ionic shell. *Journal of Structural Biology* 204:191–198. Kvenvolden, K.A., Lawless, J.G., Ponnamperuma, C. (1971). Nonprotein Amino Acids in the Murchison Meteorite. *PNAS* 68:486–490. de La Tour, C.B., Portemer, C., Nadal, M., Stetter, K.O., Forterre, P., Duguet, M. (1990). Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria. *Journal of bacteriology* 172:6803–6808. Lamosa, P., Burke, A., Peist, R., Huber, R., Liu, M.-Y., Silva, G., Rodrigues-Pousada, C., LeGall, J., Maycock, C., Santos, H. (2000). Thermostabilization of Proteins by Diglycerol Phosphate, a New Compatible Solute from the HyperthermophileArchaeoglobus fulgidus. *Appl Environ Microbiol* 66:1974–1979. LaRowe, D.E., Amend, J.P. (2015). Power limits for microbial life. *Front Microbiol* 6. Larsen, H. (2011). Biochemical aspects of extreme halophilism. *Advances in microbial physiology* 1:97–132. Lauro, F.M., Chastain, R.A., Blankenship, L.E., Yayanos, A.A., Bartlett, D.H. (2007). The Unique 16S rRNA Genes of Piezophiles Reflect both Phylogeny and Adaptation. *Appl Environ Microbiol* 73:838–845. Laye, V.J., DasSarma, S. (2018). An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts. *Astrobiology* 18:412–418. Lazrak, T., Wolff, G., Albrecht, A.-M., Nakatani, Y., Ourisson, G., Kates, M. (1988). Bacterioruberins reinforce reconstituted Halobacterium lipid membranes. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 939:160–162. Lebre, P.H., De Maayer, P., Cowan, D.A. (2017). Xerotolerant bacteria: surviving through a dry spell. *Nature Reviews Microbiology* 15:285–296. Lederberg, J. (1960). Exobiology: Approaches to Life beyond the Earth. *Science* 132:393–400. Leiros, H.-K.S., Pey, A.L., Innselset, M., Moe, E., Leiros, I., Steen, I.H., Martinez, A. (2007). Structure of Phenylalanine Hydroxylase from Colwellia psychrerythraea 34H, a Monomeric Cold Active Enzyme with Local Flexibility around the Active Site and High Overall Stability. *J Biol Chem* 282:21973–21986. Lenton, S., Walsh, D.L., Rhys, N.H., Soper, A.K., Dougan, L. (2016). Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations. *Phys Chem Chem Phys* 18:18054–18062. Leszczynski, J.F., Rose, G.D. (1986). Loops in globular proteins: a novel category of secondary structure. *Science* 234:849–855. Levine, J.S., Summers, M.E., Ewell, M. (2010). Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations. In: *Geophysical Research Letters*, Vol 29, pp 24-1-24-4. Levy, M., Miller, S.L. (1998). The stability of the RNA bases: Implications for the origin of life. *Proceedings of the National Academy of Sciences* 95:7933–7938. Lim, J., Thomas, T., Cavicchioli, R. (2000). Low temperature regulated DEAD-box RNA helicase from the antarctic archaeon, Methanococcoides burtonii11Edited by J. H. Miller. *Journal of Molecular Biology* 297:553–567. Lin, L.-H., Hall, J., Lippmann-Pipke, J., Ward, J.A., Lollar, B.S., DeFlaun, M., Rothmel, R., Moser, D., Gihring, T.M., Mislowack, B., Onstott, T.C. (2005). Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. *Geochemistry, Geophysics, Geosystems* 6. Lin, L.-H., Wang, P.-L., Rumble, D., Lippmann-Pipke, J., Boice, E., Pratt, L.M., Lollar, B.S., Brodie, E.L., Hazen, T.C., Andersen, G.L., DeSantis, T.Z., Moser, D.P., Kershaw, D., Onstott, T.C. (2006). Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome. *Science* 314:479–482. Lindhal, T. (1993). Instability and decay of the primary structure of DNA. *Nature* 362:709–716. Lipscomb, G.L., Hahn, E.M., Crowley, A.T., Adams, M.W.W. (2017). Reverse gyrase is essential for microbial growth at 95 °C. *Extremophiles* 21:603–608. Liu, Y., Whitman, W.B. (2008). Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. *Annals of the New York Academy of Sciences* 1125:171–189. Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S. (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. *Arch Microbiol* 159:336–344. Lowell, R.P., DuBose, M. (2005). Hydrothermal systems on Europa. *Geophysical Research Letters* 32. Lu, J., Nogi, Y., Takami, H. (2001). Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. *FEMS Microbiol Lett* 205:291–297. Luger, R., Barnes, R. (2015). Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs. *Astrobiology* 15:119–143. Lunine, J.I., Rizk, B. (2007). Titan. In: Baross J, Sullivan I Woodruff T (eds) *Planets and Life: The Emerging Science of Astrobiology*, Cambridge University Press: Cambridge, pp 424–443. Luther, G.W., Rozan, T.F., Taillefert, M., Nuzzio, D.B., Meo, C.D., Shank, T.M., Lutz, R.A., Cary, S.C. (2001). Chemical speciation drives hydrothermal vent ecology. *Nature* 410:813–816. Lynch, M. (2013). Evolutionary diversification of the multimeric states of proteins. *PNAS* 110:E2821–E2828. Lynden-Bell, R.M., Morris, S.C., Barrow, J.D., Finney, J.L., Harper, C. (2010). *Water and Life: The Unique Properties of H2O*, 1st edn. CRC Press: Boca Raton, FL. Lyons, J.R., Manning, C., Nimmo, F. (2005). Formation of methane on Mars by fluid-rock interaction in the crust. *Geophysical Research Letters* 32. Lyu, Z., Shao, N., Akinyemi, T., Whitman, W.B. (2018). Methanogenesis. *Current Biology* 28:R727–R732. Macelroy, R.D. (1974). Some comments on the evolution of extremophiles. *Biosystems* 6:74–75. Macgregor, R.B. (1996). Chain length and oligonucleotide stability at high pressure. *Biopolymers* 38:321–328. Macgregor, R.B. (1998). Effect of hydrostatic pressure on nucleic acids. *Biopolymers* 48:253–263. Macgregor, R.B. (2002). The interactions of nucleic acids at elevated hydrostatic pressure. *Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology* 1595:266–276. Madern, D., Ebel, C., Zaccai, G. (2000). Halophilic adaptation of enzymes. *Extremophiles* 4:91–98. Madern, D., Pfister, C., Zaccai, G. (1995). Mutation at a Single Acidic Amino Acid Enhances the Halophilic Behaviour of Malate Dehydrogenase from Haloarcula Marismortui in Physiological Salts. *European Journal of Biochemistry* 230:1088–1095. Magnabosco, C., Lin, L.-H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter, H., Pedersen, K., Kieft, T.L., van Heerden, E., Onstott, T.C. (2018). The biomass and biodiversity of the continental subsurface. *Nature Geoscience* 11:707–717. Mancinelli, R.L., Fahlen, T.F., Landheim, R., Klovstad, M.R. (2004). Brines and evaporites: analogs for Martian life. *Advances in Space Research* 33:1244–1246. Marcus, Y. (2009). Effect of Ions on the Structure of Water: Structure Making and Breaking. *Chem Rev* 109:1346–1370. Marion, G.M., Fritsen, C.H., Eicken, H., Payne, M.C. (2003). The Search for Life on Europa: Limiting Environmental Factors, Potential Habitats, and Earth Analogues. *Astrobiology* 3:785–811. Marion, G.M., Schulze-Makuch, D. (2007). Astrobiology and the Search for Life in the Universe. In: *Physiology and Biochemistry of Extremophiles*, American Society of Microbiology, pp 351–358. Marteinsson, V.T., Birrien, J.-L., Reysenbach, A.-L., Vernet, M., Marie, D., Gambacorta, A., Messner, P., Sleytr, U.B., Prieur, D. (1999). Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. *International Journal of Systematic and Evolutionary Microbiology*, 49:351–359. Martin, W., Baross, J., Kelley, D., Russell, M.J. (2008). Hydrothermal vents and the origin of life. *Nat Rev Microbiol* 6:805–814. Martin, D., Bartlett, D.H., Roberts, M.F. (2002). Solute accumulation in the deep-sea bacterium Photobacterium profundum. *Extremophiles* 6:507–514. Martinez, N., Michoud, G., Cario, A., Ollivier, J., Franzetti, B., Jebbar, M., Oger, P., Peters, J. (2016). High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes. *Sci Rep* 6:1–11. Martínez, G.M., Renno, N.O. (2013). Water and Brines on Mars: Current Evidence and Implications for MSL. Space Sci Rev 175:29–51. Martins, Z., Botta, O., Fogel, M.L., Sephton, M.A., Glavin, D.P., Watson, J.S., Dworkin, J.P., Schwartz, A.W., Ehrenfreund, P. (2008). Extraterrestrial nucleobases in the Murchison meteorite. *Earth and Planetary Science Letters* 270:130–136. Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J., Madsen, M.B., Goetz, W., McEwen, A.S., Hardgrove, C., Renno, N., Chevrier, V.F., Mischna, M., Navarro-González, R., Martínez-Frías, J., Conrad, P., McConnochie, T., Cockell, C., Berger, G., Vasavada, A.R., Sumner, D., Vaniman, D. (2015). Transient liquid water and water activity at Gale crater on Mars. *Nature Geosci* 8:357–361. Marx, J.G., Carpenter, S.D., Deming, J.W. (2009). Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. *Can J Microbiol* 55:63–72. Matson, D.L., Castillo, J.C., Lunine, J., Johnson, T.V.
(2007). Enceladus' plume: Compositional evidence for a hot interior. *Icarus* 187:569–573. Matsubara, T., Fujishima, K., Saltikov, C.W., Nakamura, S., Rothschild, L.J. (2017). Earth analogues for past and future life on Mars: isolation of perchlorate resistant halophiles from Big Soda Lake. *International Journal of Astrobiology* 16:218–228. Matthews, B.W. (2012). Proteins under pressure. PNAS 109:6792–6793. Mayor, M., Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. *Nature* 378:355–359. Mazzini, V., Craig, V. (2017). What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents. *Chem Sci* 8. McCollom, T.M. (2006). The Habitability of Mars: Past and Present. In: Blondel P, Mason JW (eds) *Solar System Update*, Springer Praxis Books. Springer-Verlag: Berlin, Heidelberg, pp 159–175. McConkey, E.H. (1982). Molecular evolution, intracellular organization, and the quinary structure of proteins. *PNAS* 79:3236–3240. McCord, T.B., Hansen, G.B., Hibbitts, C.A. (2001). Hydrated Salt Minerals on Ganymede's Surface: Evidence of an Ocean Below. *Science* 292:1523–1525. McKay, C.P., Porco, C.C., Altheide, T., Davis, W.L., Kral, T.A. (2008). The Possible Origin and Persistence of Life on Enceladus and Detection of Biomarkers in the Plume. *Astrobiology* 8:909–919. McKay, C.P., Smith, H.D. (2005). Possibilities for methanogenic life in liquid methane on the surface of Titan. *Icarus* 178:274–276. McKinnon, W.B., Zolensky, M.E. (2003). Sulfate Content of Europa's Ocean and Shell: Evolutionary Considerations and Some Geological and Astrobiological Implications. *Astrobiology* 3:879–897. McMahon, S., Parnell, J. (2014). Weighing the deep continental biosphere. *FEMS Microbiol Ecol* 87:113–120. Meadows, V.S., Reinhard, C.T., Arney, G.N., Parenteau, M.N., Schwieterman, E.W., Domagal-Goldman, S.D., Lincowski, A.P., Stapelfeldt, K.R., Rauer, H., DasSarma, S., Hegde, S., Narita, N., Deitrick, R., Lustig-Yaeger, J., Lyons, T.W., Siegler, N., Grenfell, J.L. (2018). Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment. *Astrobiology* 18:630–662. Médigue, C. (2005). Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. *Genome Research* 15:1325–1335. Mendillo, M., Withers, P., Dalba, P.A. (2018). Atomic oxygen ions as ionospheric biomarkers on exoplanets. *Nature Astronomy* 2:287–291. Mergeay, M. (2006). Metallophiles and Acidophiles in Metal-Rich Environments. In: *Extremophiles (Life under extreme conditions)*, Eolss Publishers: Oxford, United Kingdom, p. 9. Merino, N., Aronson, H.S., Bojanova, D.P., Feyhl-Buska, J., Wong, M.L., Zhang, S., Giovannelli, D. (2019). Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. *Front Microbiol* 10. Merroun, M.L., Raff, J., Rossberg, A., Hennig, C., Reich, T., Selenska-Pobell, S. (2005). Complexation of Uranium by Cells and S-Layer Sheets of Bacillus sphaericus JG-A12. *Appl Environ Microbiol* 71:5532–5543. Mesbah, N.M., Wiegel, J. (2005). Halophilic Thermophile: A Novel Group of Extremophiles. In: *Microbial Diversity: Current Perspectives and Potential Applications.*, I. K. International Pvt Ltd, pp 99–118. Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D., Wright, S.P. (2013). Groundwater activity on Mars and implications for a deep biosphere. *Nature Geosci* 6:133–138. Michaux, C., Massant, J., Kerff, F., Frère, J.-M., Docquier, J.-D., Vandenberghe, I., Samyn, B., Pierrard, A., Feller, G., Charlier, P., Beeumen, J.V., Wouters, J. (2008). Crystal structure of a cold-adapted class C β -lactamase. *The FEBS Journal* 275:1687–1697. Michels, P.C., Clark, D.S. (1997). Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. *Appl Environ Microbiol* 63:3985–3991. Mickol, R.L., Kral, T.A. (2017). Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars. *Orig Life Evol Biosph* 47:511–532. Mikucki, J.A., Auken, E., Tulaczyk, S., Virginia, R.A., Schamper, C., Sørensen, K.I., Doran, P.T., Dugan, H., Foley, N. (2015). Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. *Nat Commun* 6:1–9. Miller, S.L., Lazcano, A. (1995). The origin of life—did it occur at high temperatures? *J Mol Evol* 41:689–692. Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A. (2006). Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. *Extremophiles* 10:85–96. Mizushima, T., Kataoka, K., Ogata, Y., Inoue, R., Sekimizu, K. (1997). Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. *Molecular Microbiology* 23:381–386. Möhlmann, D., Thomsen, K. (2011). Properties of cryobrines on Mars. *Icarus* 212:123–130. Morita, T. (2003). Structure-based Analysis of High Pressure Adaptation of α -Actin. *J Biol Chem* 278:28060–28066. Morozova, D., Möhlmann, D., Wagner, D. (2007). Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions. *Orig Life Evol Biosph* 37:189–200. Morozova, D., Wagner, D. (2007). Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. *FEMS Microbiol Ecol* 61:16–25. Mosher, D., Cheng, J. (2018). Earth is a desert planet compared to these ocean worlds in the solar system. *Business Insider*. Mukaiyama, A., Koga, Y., Takano, K., Kanaya, S. (2008). Osmolyte effect on the stability and folding of a hyperthermophilic protein. *Proteins: Structure, Function, and Bioinformatics* 71:110–118. Muldrew, K., McGann, L.E. (1990). Mechanisms of intracellular ice formation. *Biophys J* 57:525–532. Mulkidjanian, A.Y., Bychkov, A.Y., Dibrova, D.V., Galperin, M.Y., Koonin, E.V. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. *Proceedings of the National Academy of Sciences* 109:E821–E830. Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M., Smith, M.D. (2009). Strong Release of Methane on Mars in Northern Summer 2003. *Science* 323:1041–1045. Mykytczuk, N.C.S., Foote, S.J., Omelon, C.R., Southam, G., Greer, C.W., Whyte, L.G. (2013). Bacterial growth at -15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. *The ISME Journal* 7:1211–1226. Nachtergaele, S., He, C. (2017). The emerging biology of RNA post-transcriptional modifications. *RNA Biology* 14:156–163. Nagae, T., Kato, C., Watanabe, N. (2012). Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. *Acta Cryst F* 68:265–268. Naganuma, T., Uematsu, H. (1998). Dive Europa: A Search-for-Life Initiative. *Biological Sciences in Space* 12:126–130. Narberhaus, F. (2002). mRNA-mediated detection of environmental conditions. *Arch Microbiol* 178:404–410. Narita, N., Enomoto, T., Masaoka, S., Kusakabe, N. (2015). Titania may produce abiotic oxygen atmospheres on habitable exoplanets. *Scientific Reports* 5:13977. Nath, A. (2016). Insights into the sequence parameters for halophilic adaptation. *Amino Acids* 48:751–762. Nath, A., Subbiah, K. (2016). Insights into the molecular basis of piezophilic adaptation: Extraction of piezophilic signatures. *Journal of Theoretical Biology* 390:117–126. Navarro-González, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., Rosa, J. de la, Small, A.M., Quinn, R.C., Grunthaner, F.J., Cáceres, L., Gomez-Silva, B., McKay, C.P. (2003). Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life. *Science* 302:1018–1021. Nayek, A., Sen Gupta, P., Banerjee, S., Mondal, B., Bandyopadhyay, A. (2014). Salt-Bridge Energetics in Halophilic Proteins. *PloS one* 9:e93862. Nielsen, L.E., Kadavy, D.R., Rajagopal, S., Drijber, R., Nickerson, K.W. (2005). Survey of Extreme Solvent Tolerance in Gram-Positive Cocci: Membrane Fatty Acid Changes in Staphylococcus haemolyticus Grown in Toluene. *Applied and Environmental Microbiology* 71:5171–5176. Niero, M., Righetto, I., Beneventi, E., Polverino de Laureto, P., Fraaije, M.W., Filippini, F., Bergantino, E. (2020). Unique Features of a New Baeyer–Villiger Monooxygenase from a Halophilic Archaeon. *Catalysts* 10:128. Nies, D.H. (2000). Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. *Extremophiles* 4:77–82. Nies, D.H., Covès, J., Sawers, R.G. (2017). Cross-Talk Between Nickel and Other Metals in Microbial Systems. In: Zamble D, Rowinska-Zyrek M, Kozlowski H (eds) *Metallobiology*, Royal Society of Chemistry: Cambridge, pp 306–338. Nogi, Y., Hosoya, S., Kato, C., Horikoshi, K. (2007). Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. *International Journal of Systematic and Evolutionary Microbiology*, 57:1360–1364. Noon, K.R., Bruenger, E., McCloskey, J.A. (1998). Posttranscriptional Modifications in 16S and 23S rRNAs of the Archaeal Hyperthermophile Sulfolobus solfataricus. *Journal of Bacteriology* 180:2883–2888. Nyyssola, A., Kerovuo, J., Kaukinen, P., von Weymarn, N., Reinikainen, T. (2000). Extreme Halophiles Synthesize Betaine from Glycine by Methylation. *Journal of Biological Chemistry* 275:22196–22201. Ogawa, T., Yogo, K., Furuike, S., Sutoh, K., Kikuchi, A., Kinosita, K. (2015). Direct observation of DNA overwinding by reverse gyrase. *PNAS* 112:7495–7500. Oger, P.M., Jebbar, M. (2010). The many ways of coping with pressure. *Research in Microbiology* 161:799–809. Okur, H.I., Hladílková, J., Rembert, K.B., Cho, Y., Heyda, J., Dzubiella, J., Cremer, P.S., Jungwirth, P. (2017). Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their
Biological Functions. *J Phys Chem B* 121:1997–2014. Okuyama, H., Okajima, N., Sasaki, S., Higashi, S. (1993). The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. *Biochimica et Biophysica Acta* 1084:13–20. Oldfield, C.J., Dunker, A.K. (2014). Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions. *Annual Review of Biochemistry* 83:553–584. O'Malley-James, J.T., Kaltenegger, L. (2019). Expanding the Timeline for Earth's Photosynthetic Red Edge Biosignature. *ApJL* 879:L20. O'Malley-James, J.T., Lutz, S. (2013). From Life to Exolife: The Interdependence of Astrobiology and Evolutionary Biology. In: Pontarotti P (ed) *Evolutionary Biology: Exobiology and Evolutionary Mechanisms*, Springer: Berlin, Heidelberg, pp 95–108. O'Malley-James, J. t., Raven, J. a., Cockell, C. s., Greaves, J. s. (2012). Life and Light: Exotic Photosynthesis in Binary and Multiple-Star Systems. *Astrobiology* 12:115–124. Ono, H., Okuda, M., Tongpim, S., Imai, K., Shinmyo, A., Sakuda, S., Kaneko, Y., Murooka, Y., Takano, M. (1998). Accumulation of compatible solutes, ectoine and hydroxyectoine, in a moderate halophile, Halomonas elongata KS3 isolated from dry salty land in Thailand. *Journal of Fermentation and Bioengineering* 85:362–368. Oren, A. (Ed.) (2002). Intracellular Salt Concentrations and Ion Metabolism in Halophilic Microorganisms. In: *Halophilic Microorganisms and their Environments*, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer Netherlands: Dordrecht, pp 207–231. Oren, A. (2010). The dying Dead Sea: The microbiology of an increasingly extreme environment. *Lakes & Reservoirs: Science, Policy and Management for Sustainable Use* 15:215–222. Oren, A. (2013). Life in Magnesium- and Calcium-Rich Hypersaline Environments: Salt Stress by Chaotropic Ions. In: Seckbach J, Oren A, Stan-Lotter H (eds) *Polyextremophiles*, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer Netherlands: Dordrecht Vol 27, pp 215–232. Oren, A., Elevi Bardavid, R., Mana, L. (2014). Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars. *Extremophiles* 18:75–80. Orosei, R., Lauro, S.E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Paolo, F.D., Flamini, E., Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, G., Nenna, C., Noschese, R., Restano, M., Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. *Science* 361:490–493. Palumbo, A.M., Head, J.W. (2018). Early Mars Climate History: Characterizing a "Warm and Wet" Martian Climate With a 3-D Global Climate Model and Testing Geological Predictions. *Geophysical Research Letters* 45:10,249-10,258. Panja, A.S., Maiti, S., Bandyopadhyay, B. (2020). Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. *Sci Rep* 10:1–9. Pappalardo, R.T. (2012). *Europa Study 2012 Report*. Pappalardo, R.T., Belton, M.J.S., Breneman, H.H., Carr, M.H., Chapman, C.R., Collins, G.C., Denk, T., Fagents, S., Geissler, P.E., Giese, B., Greeley, R., Greenberg, R., Head, J.W., Helfenstein, P., Hoppa, G., Kadel, S.D., Klaasen, K.P., Klemaszewski, J.E., Magee, K., McEwen, A.S., Moore, J.M., Moore, W.B., Neukum, G., Phillips, C.B., Prockter, L.M., Schubert, G., Senske, D.A., Sullivan, R.J., Tufts, B.R., Turtle, E.P., Wagner, R., Williams, K.K. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. *Journal of Geophysical Research: Planets* 104:24015–24055. Park, R.S., Bills, B., Buffington, B.B., Folkner, W.M., Konopliv, A.S., Martin-Mur, T.J., Mastrodemos, N., McElrath, T.P., Riedel, J.E., Watkins, M.M. (2015). Improved detection of tides at Europa with radiometric and optical tracking during flybys. *Planetary and Space Science* 112:10–14. Parkinson, C.D., Liang, M.-C., Yung, Y.L., Kirschivnk, J.L. (2008). Habitability of Enceladus: Planetary Conditions for Life. *Origins of Life and Evolution of Biospheres* 38:355–369. Parrilli, E., Sannino, F., Marino, G., Tutino, M.L. (2011). Life in icy habitats: new insights supporting panspermia theory. *Rendiconti Lincei* 22:375–383. Parvizpour, S., Razmara, J., Shamsir, M.S., Illias, R.M., Murad, A.M.A. (2017). The role of alternative salt bridges in cold adaptation of a novel psychrophilic laminarinase. *Journal of Biomolecular Structure and Dynamics* 35:1685–1692. Pasek, M.A., Greenberg, R. (2012). Acidification of Europa's Subsurface Ocean as a Consequence of Oxidant Delivery. *Astrobiology* 12:151–159. Paul, S., Bag, S.K., Das, S., Harvill, E.T., Dutta, C. (2008). Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. *Genome Biology* 9:R70. Pedersen, H.L., Willassen, N.P., Leiros, I. (2009). The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida. *Acta Crystallogr Sect F Struct Biol Cryst Commun* 65:84–92. Peeters, Z., Vos, D., ten Kate, I.L., Selch, F., van Sluis, C.A., Sorokin, D.Yu., Muijzer, G., Stan-Lotter, H., van Loosdrecht, M.C.M., Ehrenfreund, P. (2010). Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment. *Advances in Space Research* 46:1149–1155. Peretti, F.-X. de (2019). De la pluralité des mondes. In: Grenoble World Trade Center, p. Petit, J.R., Alekhina, I., Bulat, S. (2005). Lake Vostok, Antarctica: Exploring a Subglacial Lake and Searching for Life in an Extreme Environment. In: Gargaud M, Barbier B, Martin H, Reisse J (eds) *Lectures in Astrobiology*, Advances in Astrobiology and Biogeophysics. Springer Berlin Heidelberg: Berlin, Heidelberg, pp 227–288. Petski, G.A. (2001). Structural Basus of Thermostability in Hyperthermophilic Proteins, or 'There's More Than One Way to Skin a Cat'. *Methods In Enzyomology*. Phadtare, S. (2004). Recent developments in bacterial cold-shock response. *Curr Issues Mol Biol* 6:125–136. Pierazzo, E., Chyba, C.F. (2002). Cometary Delivery of Biogenic Elements to Europa. *Icarus* 157:120–127. Pikuta, E.V.H. (2007). Astrobiological Significance of Microbial Extremophiles. In: San Diego, CA, United States, p . Pinto, E., Sigaud-kutner, T., Leitao, M.A., Okamoto, O.K., Morse, D., Colepicolo, P. (2003). Heavy Metal-Induced Oxidative Stress in Algae. *Journal of Phycology* 39:1008–1018. Porco, C.C., Helfenstein, P., Thomas, P.C., Ingersoll, A.P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T.V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J.A., DelGenio, A.D., Dones, L., Murray, C.D., Squyres, S. (2006). Cassini Observes the Active South Pole of Enceladus. *Science* 311:1393–1401. Postberg, F., Khawaja, N., Abel, B., Choblet, G., Glein, C.R., Gudipati, M.S., Henderson, B.L., Hsu, H.-W., Kempf, S., Klenner, F., Moragas-Klostermeyer, G., Magee, B., Nölle, L., Perry, M., Reviol, R., Schmidt, J., Srama, R., Stolz, F., Tobie, G., Trieloff, M., Waite, J.H. (2018). Macromolecular organic compounds from the depths of Enceladus. *Nature* 558:564–568. Prangishvili, D., Garrett, R.A. (2005). Viruses of hyperthermophilic Crenarchaea. *Trends in Microbiology* 13:535–542. Prasad, M.N.V., Hagemeyer, J. (1999). *Heavy Metal Stress in Plants*. Springer Berlin Heidelberg: Berlin, Heidelberg. Pucci, F., Rooman, M. (2017). Physical and molecular bases of protein thermal stability and cold adaptation. *Current Opinion in Structural Biology* 42:117–128. Quinn, R.C., Martucci, H.F.H., Miller, S.R., Bryson, C.E., Grunthaner, F.J., Grunthaner, P.J. (2013). Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity. *Astrobiology* 13:515–520. Rafiq, M., Hassan, N., Rehman, M., Hasan, F. (2019). Adaptation Mechanisms and Applications of Psychrophilic Fungi. In: Tiquia-Arashiro SM, Grube M (eds) *Fungi in Extreme Environments: Ecological Role and Biotechnological Significance*, Springer International Publishing: Cham, pp 157–174. Rambaux, N., Hoolst, T.V., Karatekin, Ö. (2011). Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit. *A&A* 527:A118. Ramos, J.L., Duque, E., Gallegos, M.-T., Godoy, P., Ramos-González, M.I., Rojas, A., Terán, W., Segura, A. (2002). Mechanisms of Solvent Tolerance in Gram-Negative Bacteria. *Annual Review of Microbiology* 56:743–768. Ramos, J.L., Duque, E., Rodríguez-Herva, J.-J., Godoy, P., Haïdour, A., Reyes, F., Fernández-Barrero, A. (1997). Mechanisms for solvent tolerance in bacteria. *Journal of Biological Chemistry* 272:3887–3890. Raulin, F., Brassé, C., Poch, O., Coll, P. (2012). Prebiotic-like chemistry on Titan. *Chem Soc Rev* 41:5380–5393. Rayan, G., Macgregor, R.B. (2005). Comparison of the Heat- and Pressure-Induced Helix-Coil Transition of Two DNA Copolymers. *The Journal of Physical Chemistry B* 109:15558–15565. Raymond-Bouchard, I., Goordial, J., Zolotarov, Y., Ronholm, J., Stromvik, M., Bakermans, C., Whyte, L.G. (2018). Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. *FEMS Microbiol Ecol* 94. Réat, V., Patzelt, H., Ferrand, M., Pfister, C., Oesterhelt, D., Zaccai, G. (1998). Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. *PNAS* 95:4970–4975. van Regenmortel, M.H.V. (2016). The metaphor that viruses are living is alive and well, but it is no more than a metaphor. *Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences* 59:117–124. Reid, I.N., Sparks, W.B., Lubow, S., McGrath, M., Livio, M., Valenti, J., Sowers, K.R., Shukla, H.D., MacAuley, S., Miller, T., Suvanasuthi, R., Belas,
R., Colman, A., Robb, F.T., DasSarma, P., Müller, J.A., Coker, J.A., Cavicchioli, R., Chen, F., DasSarma, S. (2006). Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. *International Journal of Astrobiology* 5:89–97. Rhoden, A.R., Henning, W., Hurford, T.A., Patthoff, D.A., Tajeddine, R. (2017). The implications of tides on the Mimas ocean hypothesis. *Journal of Geophysical Research: Planets* 122:400–410. Richard A. Kerr (1997). Geomicrobiology: Life Goes to Extremes in the Deep Earth--and Elsewhere? *Science* 276:703–704. Richard, S.B., Madern, D., Garcin, E., Zaccai, G. (2000). Halophilic Adaptation: Novel Solvent Protein Interactions Observed in the 2.9 and 2.6 Å Resolution Structures of the Wild Type and a Mutant of Malate Dehydrogenase from Haloarcula marismortui. *Biochemistry* 39:992-1000. Richens, J.L., Lane, J.S., Bramble, J.P., O'Shea, P. (2015). The electrical interplay between proteins and lipids in membranes. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 1848:1828–1836. Richter, K., Schicklberger, M., Gescher, J. (2012). Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration. *Appl Environ Microbiol* 78:913–921. Riise, E.K., Lorentzen, M.S., Helland, R., Smalås, A.O., Leiros, H.-K.S., Willassen, N.P. (2007). The first structure of a cold-active catalase from Vibrio salmonicida at 1.96 Å reveals structural aspects of cold adaptation. *Acta Cryst D* 63:135–148. Roche, J., Caro, J.A., Norberto, D.R., Barthe, P., Roumestand, C., Schlessman, J.L., Garcia, A.E., Garcia-Moreno E., B., Royer, C.A. (2012). Cavities determine the pressure unfolding of proteins. *Proceedings of the National Academy of Sciences* 109:6945–6950. Rosenbaum, E., Gabel, F., Durá, M.A., Finet, S., Cléry-Barraud, C., Masson, P., Franzetti, B. (2012). Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. *Archives of Biochemistry and Biophysics* 517:104–110. Rother, M., Krzycki, J.A. (2010). Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea. *Archaea* 2010. Rout, M.K., Lee, B.L., Lin, A., Xiao, W., Spyracopoulos, L. (2018). Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K. *Sci Rep* 8:1–15. Ruiz, J. (2003). Heat flow and depth to a possible internal ocean on Triton. *Icarus* 166:436–439. Russell, N.J. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. *Journal of Bioenergetics and Biomembranes* 21:93–113. Russell, N.J. (1997). Psychrophilic bacteria—Molecular adaptations of membrane lipids. *Comparative Biochemistry and Physiology Part A: Physiology* 118:489–493. Russell, N.J., Harrisson, P., Johnston, I.A., Jaenicke, R., Zuber, M., Franks, F., Wynn-Williams, D. (1990). Cold Adaptation of Microorganisms [and Discussion]. *Philosophical Transactions of the Royal Society B: Biological Sciences* 326:595–611. Sacquin-Mora, S., Sebban, P., Derrien, V., Frick, B., Lavery, R., Alba-Simionesco, C. (2007). Probing the Flexibility of the Bacterial Reaction Center: The Wild-Type Protein Is More Rigid Than Two Site-Specific Mutants. *Biochemistry* 46:14960–14968. Sagan, C., Thompson, W.R., Carlson, R., Gurnett, D., Hord, C. (1993). A search for life on Earth from the Galileo spacecraft. *Nature* 365:715–721. Salvador-Castell, M., Brooks, N.J., Peters, J., Oger, P. (2020). Induction of non-lamellar phases in archaeal lipids at high temperature and high hydrostatic pressure by apolar polyisoprenoids. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 1862:183130. Sardessai, Y., Bhosle, S. (2002). Tolerance of bacteria to organic solvents. *Research in Microbiology*:263–268. Sato, H., Nakasone, K., Yoshida, T., Kato, C., Maruyama, T. (2015). Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. *Extremophiles* 19:751–762. Schiefner, A., Holtmann, G., Diederichs, K., Welte, W., Bremer, E. (2004). Structural Basis for the Binding of Compatible Solutes by ProX from the Hyperthermophilic Archaeon Archaeoglobus fulgidus. *J Biol Chem* 279:48270–48281. Schirmack, J., Böhm, M., Brauer, C., Löhmannsröben, H.-G., de Vera, J.-P., Möhlmann, D., Wagner, D. (2014). Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions. *Planetary and Space Science* 98:198–204. Schmidt, C., Manning, C.E. (2017). Pressure-induced ion pairing in MgSO4 solutions: Implications for the oceans of icy worlds. *Geochemical Perspectives Letters*:66–74. Schneegurt, M.A. (Ed.) (2012). Media and Conditions for the Growth of Halophilic and Halotolerant Bacteria and Archaea. In: *Advances in Understanding the Biology of Halophilic Microorganisms*, Springer Netherlands: Dordrecht, p. Schwendner, P., Schuerger, A.C. (2020). Exploring Microbial Activity in Low-pressure Environments. *Current Issues in Molecular Biology*:163–196. Scoma, A., Garrido-Amador, P., Nielsen, S.D., Røy, H., Kjeldsen, K.U. (2019). The Polyextremophilic Bacterium Clostridium paradoxum Attains Piezophilic Traits by Modulating Its Energy Metabolism and Cell Membrane Composition. *Appl Environ Microbiol* 85. Scotter, A.J., Marshall, C.B., Graham, L.A., Gilbert, J.A., Garnham, C.P., Davies, P.L. (2006). The basis for hyperactivity of antifreeze proteins. *Cryobiology* 53:229–239. Seager, S., Turner, E. I., Schafer, J., Ford, E. b. (2005). Vegetation's Red Edge: A Possible Spectroscopic Biosignature of Extraterrestrial Plants. *Astrobiology* 5:372–390. Seckbach, J. (2000). Extremophilies as Models for Extraterrestrial Life. *Bioastronomy 99* 213. Seckbach, J., Oren, A., Stan-Lotter, H. (2013). *Polyextremophiles: life under multiple forms of stress*. Springer Science+Business Media: Dordrecht. Segerer, A.H., Burggraf, S., Fiala, G., Huber, G., Huber, R., Pley, U., Stetter, K.O. (1993). Life in hot springs and hydrothermal vents. *Origins Life Evol Biosphere* 23:77–90. Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. *Current Opinion in Biotechnology* 14:194–199. Sekine, Y., Shibuya, T., Postberg, F., Hsu, H.-W., Suzuki, K., Masaki, Y., Kuwatani, T., Mori, M., Hong, P.K., Yoshizaki, M., Tachibana, S., Sirono, S. (2015). High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. *Nature Communications* 6:8604. Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I., Delfosse, X. (2007). Habitable planets around the star Gliese 581? *A&A* 476:1373–1387. Sen, K., Horrell, S., Kekilli, D., Yong, C.W., Keal, T.W., Atakisi, H., Moreau, D.W., Thorne, R.E., Hough, M.A., Strange, R.W. (2017). Active-site protein dynamics and solvent accessibility in native Achromobacter cycloclastes copper nitrite reductase. *IUCrJ* 4:495–505. Serrano, R. (1996). Salt Tolerance in Plants and Microorganisms: Toxicity Targets and Defense Responses. In: Jeon KW (ed) *International Review of Cytology*, Academic Press Vol 165, pp 1–52. Serrano, R., Gaxiola, R. (1994). Microbial Models and Salt Stress Tolerance in Plants. *Critical Reviews in Plant Sciences* 13:121–138. Serres, M.H., Gopal, S., Nahum, L.A., Liang, P., Gaasterland, T., Riley, M. (2001). A functional update of the Escherichia coli K-12 genome. *Genome Biol* 2:research0035.1-research0035.7. Setlow, P. (1992). DNA in dormant spores of Bacillus species is in an A-like conformation. *Mol Microbiol* 6:563–567. Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., Pinelli, E. (2014). Heavy-Metal-Induced Reactive Oxygen Species: Phytotoxicity and Physicochemical Changes in Plants. In: Whitacre DM (ed) *Reviews of Environmental Contamination and Toxicology Volume 232*, Springer International Publishing: Cham Vol 232, pp 1–44. Sharma, A. (2002). Microbial Activity at Gigapascal Pressures. *Science* 295:1514–1516. Shcherbakova, V., Oshurkova, V., Yoshimura, Y. (2015). The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars. *Microorganisms* 3:518–534. Shirodkar, P.V., Muraleedharan, U.D., Damare, S., Raghukumar, S. (2020). A Mesohaline Thraustochytrid Produces Extremely Halophilic Alpha-Amylases. *Mar Biotechnol*. Shrestha, U.R., Bhowmik, D., Copley, J.R.D., Tyagi, M., Leão, J.B., Chu, X. (2015). Effects of pressure on the dynamics of an oligomeric protein from deep-sea hyperthermophile. *PNAS* 112:13886–13891. Siering, P.L., Clarke, J.M., Wilson, M.S. (2006). Geochemical and Biological Diversity of Acidic, Hot Springs in Lassen Volcanic National Park. *Geomicrobiology Journal* 23:129–141. Siglioccolo, A., Paiardini, A., Piscitelli, M., Pascarella, S. (2011). Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. *BMC Struct Biol* 11:50. Sikkema, J., De Bont, J.A., Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. *Microbiological reviews* 59:201–222. Siliakus, M.F., van der Oost, J., Kengen, S.W.M. (2017). Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. *Extremophiles* 21:651–670. Silver, S., Phung, L.T. (1996). Bacterial heavy metal resistance: New Surprises. *Annual Review of Microbiology* 50:753–789. Sime-Ngando, T., Lucas, S., Robin, A., Tucker, K.P., Colombet, J., Bettarel, Y., Desmond, E., Gribaldo, S., Forterre, P., Breitbart, M., Prangishvili, D. (2011). Diversity of virus-host systems in hypersaline Lake Retba, Senegal: Viral diversity in Lake Retba. *Environmental Microbiology* 13:1956–1972. Simoneit, B.R.T., Summons, R.E., Jahnke, L.L. (1996). Biomarkers as tracers for life on early earth and mars. *Origins of Life and Evolution of the Biosphere* 26:515–516. Smalås, A.O., Leiros, H.K., Os, V., Willassen, N.P.
(2000). Cold adapted enzymes. *Biotechnol Annu Rev* 6:1–57. Snellen, I., Kok, R. de, Birkby, J.L., Brandl, B., Brogi, M., Keller, C., Kenworthy, M., Schwarz, H., Stuik, R. (2015). Combining high-dispersion spectroscopy with high contrast imaging: Probing rocky planets around our nearest neighbors. *A&A* 576:A59. Sontag, E.M., Samant, R.S., Frydman, J. (2017). Mechanisms and Functions of Spatial Protein Quality Control. *Annual Review of Biochemistry* 86:97–122. Sorokin, D.Y., Berben, T., Melton, E.D., Overmars, L., Vavourakis, C.D., Muyzer, G. (2014). Microbial diversity and biogeochemical cycling in soda lakes. *Extremophiles* 18:791–809. Soufi, B., Krug, K., Harst, A., Macek, B. (2015). Characterization of the E. coli proteome and its modifications during growth and ethanol stress. *Front Microbiol* 6. Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C. (2006). Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot. Science 311:1401–1405. Spohn, T., Schubert, G. (2003). Oceans in the icy Galilean satellites of Jupiter? *Icarus* 161:456–467. Stalport, F., Rouquette, L., Poch, O., Dequaire, T., Chaouche-Mechidal, N., Payart, S., Szopa, C., Coll, P., Chaput, D., Jaber, M., Raulin, F., Cottin, H. (2019). The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit. *Astrobiology* 19:1037–1052. Steinle, L., Knittel, K., Felber, N., Casalino, C., de Lange, G., Tessarolo, C., Stadnitskaia, A., Sinninghe Damsté, J.S., Zopfi, J., Lehmann, M.F., Treude, T., Niemann, H. (2018). Life on the edge: active microbial communities in the Kryos MgCl2-brine basin at very low water activity. *The ISME Journal* 12:1414–1426. Stelmach, K.B., Neveu, M., Vick-Majors, T.J., Mickol, R.L., Chou, L., Webster, K.D., Tilley, M., Zacchei, F., Escudero, C., Flores Martinez, C.L., Labrado, A., Fernández, E.J.G. (2018). Secondary Electrons as an Energy Source for Life. *Astrobiology* 18:73–85. Stojanovic, D., Fojkar, O., Drobac-Cik, A., Cajko, K., Dulic, T., Svircev, Z. (2008). Extremophiles: Link between earth and astrobiology. *Zbornik Matice srpske za prirodne nauke*:5–16. Sturr, M.G., Guffanti, A.A., Krulwich, T.A. (1994). Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. *Journal of Bacteriology* 176:3111–3116. Subczynski, W.K., Markowska, E., Gruszecki, W.I., Sielewiesiuk, J. (1992). Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 1105:97–108. Sundarasami, A., Sridhar, A., Mani, K. (2019). Chapter 13 - Halophilic archaea as beacon for exobiology: Recent advances and future challenges. In: Meena SN, Naik MM (eds) *Advances in Biological Science Research*, Academic Press, pp 197–214. Suttle, C.A. (2007). Marine viruses — major players in the global ecosystem. *Nature Reviews Microbiology* 5:801–812. Suzuki, Y.J., Carini, M., Butterfield, D.A. (2010). Protein Carbonylation. *Antioxid Redox Signal* 12:323–325. Tadeo, X., López-Méndez, B., Castaño, D., Trigueros, T., Millet, O. (2009). Protein Stabilization and the Hofmeister Effect: The Role of Hydrophobic Solvation. *Biophysical Journal* 97:2595–2603. Takai, K. (2019). Limits of Terrestrial Life and Biosphere. In: Yamagishi A, Kakegawa T, Usui T (eds) *Astrobiology: From the Origins of Life to the Search for Extraterrestrial Intelligence*, Springer: Singapore, pp 323–344. Takai, K., Komatsu, T., Inagaki, F., Horikoshi, K. (2001). Distribution of Archaea in a Black Smoker Chimney Structure. *Appl Environ Microbiol* 67:3618–3629. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., Horikoshi, K. (2008). Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. *Proc Natl Acad Sci U S A* 105:10949–10954. Takami, H., Kobata, K., Nagahama, T., Kobayashi, H., Inoue, A., Horikoshi, K. (1999). Biodiversity in deep-sea sites located near the south part of Japan. *Extremophiles* 3:97–102. Takuichi, T., Toshiyuki, T., Ryuichiro, K. (1997). Change of cell membrane hydrophobicity in a bacterium tolerant to toxic alcohols. *Canadian journal of microbiology* 43:292–295. Talon, R., Coquelle, N., Madern, D., Girard, E. (2014). An experimental point of view on hydration/solvation in halophilic proteins. *Front Microbiol* 5. Tamás, M.J., Sharma, S.K., Ibstedt, S., Jacobson, T., Christen, P. (2014). Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. *Biomolecules* 4:252–267. Tanaka, T., Burgess, J., Wright, P. (2001). High-pressure adaptation by salt stress in a moderately halophilic bacterium obtained from open seawater. *Applied Microbiology and Biotechnology* 57:200–204. Tanaka, Y., Tsumoto, K., Yasutake, Y., Umetsu, M., Yao, M., Fukada, H., Tanaka, I., Kumagai, I. (2004). How Oligomerization Contributes to the Thermostability of an Archaeon Protein PROTEIN 1-ISOASPARTYL-O-METHYLTRANSFERASE FROM SULFOLOBUS TOKODAII. *J Biol Chem* 279:32957–32967. Taubner, R.-S., Olsson-francis, K., Vance, S., Ramkissoon, N., Postberg, F., de Vera, J.-P., Antunes, A., Camprubí Casas, E., Sekine, Y., Noack, L., Barge, L., Goodman, J., Jebbar, M., Journaux, B., Karatekin, Ö., Klenner, F., Rabbow, E., Rettberg, P., Rückriemen-Bez, T., Soderlund, K. (2020). Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. *Space Science Reviews* 216. Taubner, R.-S., Pappenreiter, P., Zwicker, J., Smrzka, D., Pruckner, C., Kolar, P., Bernacchi, S., Seifert, A.H., Krajete, A., Bach, W., Peckmann, J., Paulik, C., Firneis, M.G., Schleper, C., Rittmann, S.K.-M.R. (2018). Biological methane production under putative Enceladus-like conditions. *Nature Communications* 9:748. Taubner, R.-S., Schleper, C., Firneis, M.G., Rittmann, S.K.-M.R. (2015). Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. *Life* 5:1652–1686. Tehei, M., Franzetti, B., Madern, D., Ginzburg, M., Ginzburg, B.Z., Giudici-Orticoni, M.-T., Bruschi, M., Zaccai, G. (2004). Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. *EMBO reports* 5:66–70. Tehei, M., Franzetti, B., Maurel, M.-C., Vergne, J., Hountondji, C., Zaccai, G. (2002). The search for traces of life: the protective effect of salt on biological macromolecules. *Extremophiles* 6:427–430. Tehei, M., Franzetti, B., Wood, K., Gabel, F., Fabiani, E., Jasnin, M., Zamponi, M., Oesterhelt, D., Zaccai, G., Ginzburg, M., Ginzburg, B.-Z. (2007). Neutron scattering reveals extremely slow cell water in a Dead Sea organism. *PNAS* 104:766–771. Tehei, M., Zaccai, G. (2007). Adaptation to high temperatures through macromolecular dynamics by neutron scattering. *The FEBS Journal*:4034–4043. Thomas, P.C., Tajeddine, R., Tiscareno, M.S., Burns, J.A., Joseph, J., Loredo, T.J., Helfenstein, P., Porco, C. (2016). Enceladus's measured physical libration requires a global subsurface ocean. *Icarus* 264:37–47. Thompson, M.J., Eisenberg, D. (1999). Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability1 1Edited by I. B. Honig. *Journal of Molecular Biology* 290:595–604. Thorvaldsen, S., Hjerde, E., Fenton, C., Willassen, N.P. (2007). Molecular characterization of cold adaptation based on ortholog protein sequences from Vibrionaceae species. *Extremophiles* 11:719–732. Tien, H.T., Ottova-Leitmannova, A. (2000). *Membrane Biophysics: As Viewed from Experimental Bilayer Lipid Membranes*. Elsevier. Tikhov, G.A. (1953). Astrobiology. *Molodaya gvardia (Young Guard) Moscow: Publishing House.* Tobie, G. (2015). Enceladus' hot springs. *Nature* 519:162–163. Tokunaga, H., Ishibashi, M., Arakawa, T., Tokunaga, M. (2004). Highly efficient renaturation of beta-lactamase isolated from moderately halophilic bacteria. *FEBS Lett* 558:7–12. Tokunaga, H., Maeda, J., Arakawa, T., Tokunaga, M. (2017). Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart. *Protein J* 36:228–237. Tolner, B., Poolman, B., Konings, W.N. (1997). Adaptation of microorganisms and their transport systems to high temperatures. *Comparative Biochemistry and Physiology Part A: Physiology* 118:423–428. Trepreau, J., Grosse, C., Mouesca, J.-M., Sarret, G., Girard, E., Petit-Haertlein, I., Kuennemann, S., Desbourdes, C., de Rosny, E., Maillard, A.P., Nies, D.H., Covès, J. (2014). Metal sensing and signal transduction by CnrX from Cupriavidus metallidurans CH34: role of the only methionine assessed by a functional, spectroscopic, and theoretical study. *Metallomics* 6:263–273. Trumbo, S.K., Brown, M.E., Hand, K.P. (2019). Sodium chloride on the surface of Europa. *Science Advances* 5:eaaw7123. Tsai, C.-J., Maizel, J.V., Nussinov, R. (2002). The hydrophobic effect: a new insight from cold denaturation and a two-state water structure. *Critical Reviews in Biochemistry and Molecular Biology* 37:55–69. Turbet, M., Boulet, C., Karman, T. (2020). Measurements and semi-empirical calculations of CO2 + CH4 and CO2 + H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. *Icarus* 346:113762. Turbet, M., Forget, F. (2019). The paradoxes of the Late Hesperian Mars ocean. *Sci Rep* 9:1–5. Tyler, R.H. (2009). Ocean tides heat Enceladus. Geophysical Research Letters 36. Usami, R., Fukushima, T., Mizuki, T., Yoshida, Y., Inoue, A., Horikoshi, K. (2005). Organic solvent tolerance of halophilic archaea, Haloarcula strains: Effects of NaCl concentration on the tolerance and polar lipid composition. *Journal of Bioscience and
Bioengineering* 99:169–174 Vago, J., Witasse, O., Svedhem, H., Baglioni, P., Haldemann, A., Gianfiglio, G., Blancquaert, T., McCoy, D., de Groot, R. (2015). ESA ExoMars program: The next step in exploring Mars. *Sol Syst Res* 49:518–528. Valenti, P., Bodnar, R.J., Schmidt, C. (2012). Experimental determination of H2O–NaCl liquidi to 25mass% NaCl and 1.4GPa: Application to the Jovian satellite Europa. *Geochimica et Cosmochimica Acta* 92:117–128. Vance, S., Bouffard, M., Choukroun, M., Sotin, C. (2014). Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. *Planetary and Space Science* 96:62–70. Vanlint, D., Mitchell, R., Bailey, E., Meersman, F., McMillan, P.F., Michiels, C.W., Aertsen, A. (2011). Rapid Acquisition of Gigapascal-High-Pressure Resistance by Escherichia coli. *mBio* 2. Vargas, C., Jebbar, M., Carrasco, R., Blanco, C., Calderón, M.I., Iglesias-Guerra, F., Nieto, J.J. (2006). Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens. *Journal of Applied Microbiology* 100:98–107. Varrella, S., Tangherlini, M., Corinaldesi, C. (2020). Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. *Marine Drugs* 18:91. Vauclare, P., Natali, F., Kleman, J.P., Zaccai, G., Franzetti, B. (2020). Surviving salt fluctuations: stress and recovery in Halobacterium salinarum, an extreme halophilic Archaeon. *Sci Rep* 10:1–10. Venketesh, S., Dayananda, C. (2008). Properties, Potentials, and Prospects of Antifreeze Proteins. *Critical Reviews in Biotechnology* 28:57–82. Ventosa, A., Oren, A. (1996). Halobacterium salinarum nom. corrig., a Name To Replace Halobacterium salinarium (Elazari-Volcani) and To Include Halobacterium halobium and Halobacterium cutirubrum. *International Journal of Systematic and Evolutionary Microbiology*, 46:347–347. Vetriani, C., Chew, Y.S., Miller, S.M., Yagi, J., Coombs, J., Lutz, R.A., Barkay, T. (2005). Mercury Adaptation among Bacteria from a Deep-Sea Hydrothermal Vent. *Appl Environ Microbiol* 71:220–226. Vieille, C., Burdette, D.S., Zeikus, J.G. (1996). Thermozymes. In: El-Gewely MR (ed) *Biotechnology Annual Review*, Elsevier Vol 2, pp 1–83. Vieille, C., Zeikus, G.J. (2001). Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. *Microbiol Mol Biol Rev* 65:1–43. Vinagre, C., Madeira, D., Narciso, L., Cabral, H.N., Diniz, M. (2012). Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. *Ecological Indicators* 23:274–279. Vinçon-Laugier, A., Cravo-Laureau, C., Mitteau, I., Grossi, V. (2017). Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria. *Front Microbiol* 8:1532. Voet, D., Voet, J.G. (2016). Biochimie. De Boeck Superieur. Von Hippel, P.H., Schleich, T. (1969). Ion effects on the solution structure of biological macromolecules. *Acc Chem Res* 2:257–265. van de Vossenberg, J.LC.M.C., Driessen, A.J.M., Grant, D., Konings, W.N. (1999). Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration. *Extremophiles* 3:253–257. Wadsworth, J., Cockell, C.S. (2017). Perchlorates on Mars enhance the bacteriocidal effects of UV light. *Sci Rep* 7:1–8. Waite, J.H. (2006). Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. *Science* 311:1419–1422. Waite, J.H., Glein, C.R., Perryman, R.S., Teolis, B.D., Magee, B.A., Miller, G., Grimes, J., Perry, M.E., Miller, K.E., Bouquet, A., Lunine, J.I., Brockwell, T., Bolton, S.J. (2017). Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. *Science* 356:155–159. Waite, J.H., Lewis, W.S., Magee, B.A., Lunine, J.I., McKinnon, W.B., Glein, C.R., Mousis, O., Young, D.T., Brockwell, T., Westlake, J., Nguyen, M.-J., Teolis, B.D., Niemann, H.B., Jr, R.L.M., Perry, M., Ip, W.-H. (2009). Liquid water on Enceladus from observations of ammonia and 40 Ar in the plume. *Nature* 460:487–490. Wallon, G., Kryger, G., Lovett, S.T., Oshima, T., Ringe, D., Petsko, G.A. (1997). Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus11Edited by A. R. Fersht. *Journal of Molecular Biology* 266:1016–1031. Wallon, G., Lovett, S.T., Magyar, C., Svingor, A., Szilagyi, A., Zavodszky, P., Ringe, D., Petsko, G.A. (1997). Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability. *Protein engineering* 10:665–672. Wang, S., Kool, E.T. (1995). Origins of the large differences in stability of DNA and RNA helices: C-5 methyl and 2'-hydroxyl effects. *Biochemistry* 34:4125–4132. Wang, J.-Y., Syvanen, M. (1992). DNA twist as a transcriptional sensor for environmental changes. *Molecular Microbiology* 6:1861–1866. Webb, K.M., Yu, J., Robinson, C.K., Noboru, T., Lee, Y.C., DiRuggiero, J. (2013). Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum. *Extremophiles* 17:485–497. Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A., Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, L.E., Pavlov, A.A., Martín-Torres, J., Zorzano, M.-P., McConnochie, T.H., Owen, T., Eigenbrode, J.L., Glavin, D.P., Steele, A., Malespin, C.A., Archer, P.D., Sutter, B., Coll, P., Freissinet, C., McKay, C.P., Moores, J.E., Schwenzer, S.P., Bridges, J.C., Navarro-Gonzalez, R., Gellert, R., Lemmon, M.T., Team, the M.S. (2015). Mars methane detection and variability at Gale crater. *Science* 347:415–417. Webster, C.R., Mahaffy, P.R., Atreya, S.K., Moores, J.E., Flesch, G.J., Malespin, C., McKay, C.P., Martinez, G., Smith, C.L., Martin-Torres, J., Gomez-Elvira, J., Zorzano, M.-P., Wong, M.H., Trainer, M.G., Steele, A., Archer, D., Sutter, B., Coll, P.J., Freissinet, C., Meslin, P.-Y., Gough, R.V., House, C.H., Pavlov, A., Eigenbrode, J.L., Glavin, D.P., Pearson, J.C., Keymeulen, D., Christensen, L.E., Schwenzer, S.P., Navarro-Gonzalez, R., Pla-García, J., Rafkin, S.C.R., Vicente-Retortillo, Á., Kahanpää, H., Viudez-Moreiras, D., Smith, M.D., Harri, A.-M., Genzer, M., Hassler, D.M., Lemmon, M., Crisp, J., Sander, S.P., Zurek, R.W., Vasavada, A.R. (2018). Background levels of methane in Mars' atmosphere show strong seasonal variations. Science 360:1093–1096. Welch, T.J., Farewell, A., Neidhardt, F.C., Bartlett, D.H. (1993). Stress response of Escherichia coli to elevated hydrostatic pressure. *Journal of Bacteriology* 175:7170–7177. Wells, L.E., Deming, J.W. (2006). Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. *Aquatic Microbial Ecology* 45:15–29. Wemekamp-Kamphuis, H.H., Karatzas, A.K., Wouters, J.A., Abee, T. (2002). Enhanced Levels of Cold Shock Proteins in Listeria monocytogenes LO28 upon Exposure to Low Temperature and High Hydrostatic Pressure. *Appl Environ Microbiol* 68:456–463. van der Wielen, P.W.J.J. (2005). The Enigma of Prokaryotic Life in Deep Hypersaline Anoxic Basins. *Science* 307:121–123. Williams, J.P., Hallsworth, J.E. (2009). Limits of life in hostile environments: no barriers to biosphere function? *Environ Microbiol* 11:3292–3308. Williams, T.J., Liao, Y., Ye, J., Kuchel, R.P., Poljak, A., Raftery, M.J., Cavicchioli, R. (2017). Cold adaptation of the Antarctic haloarchaea Halohasta litchfieldiae and Halorubrum lacusprofundi. *Environmental Microbiology* 19:2210–2227. Williford, K.H., Farley, K.A., Stack, K.M., Allwood, A.C., Beaty, D., Beegle, L.W., Bhartia, R., Brown, A.J., de la Torre Juarez, M., Hamran, S.-E., Hecht, M.H., Hurowitz, J.A., Rodriguez-Manfredi, J.A., Maurice, S., Milkovich, S., Wiens, R.C. (2018). Chapter 11 - The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life. In: Cabrol NA, Grin EA (eds) *From Habitability to Life on Mars*, Elsevier, pp 275–308. Woitke, P., Herbort, O., Helling, C., Stüeken, E., Dominik, M., Barth, P., Samra, D. (2020). Coexistence of CH4, CO2 and H2O in exoplanet atmospheres. *arXiv:201012241 [astro-ph]*. Wordsworth, R.D. (2016). The Climate of Early Mars. *Annual Review of Earth and Planetary Sciences* 44:381–408. Wright, P.E., Dyson, H.J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. *Nat Rev Mol Cell Biol* 16:18–29. Xia, Y.-L., Sun, J.-H., Ai, S.-M., Li, Y., Du, X., Sang, P., Yang, L.-Q., Fu, Y.-X., Liu, S.-Q. (2018). Insights into the role of electrostatics in temperature adaptation: a comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases. *RSC Advances* 8:29698–29713. Xie, B.-B., Bian, F., Chen, X.-L., He, H.-L., Guo, J., Gao, X., Zeng, Y.-X., Chen, B., Zhou, B.-C., Zhang, Y.-Z. (2009). Cold Adaptation of Zinc Metalloproteases in the Thermolysin Family from Deep Sea and Arctic Sea Ice Bacteria Revealed by Catalytic and Structural Properties and Molecular Dynamics NEW INSIGHTS INTO RELATIONSHIP BETWEEN CONFORMATIONAL FLEXIBILITY AND HYDROGEN BONDING. *J Biol Chem* 284:9257–9269. Xiong, L., Schumaker, K.S., Zhu, J.-K. (2002). Cell Signaling during Cold, Drought, and Salt Stress. *The Plant Cell* 14:S165–S183. Xu, Y., Havenith, M. (2015). Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy. *J Chem Phys* 143:170901. Yakimov, M.M., Cono, V.L., Spada, G.L., Bortoluzzi, G., Messina, E., Smedile, F., Arcadi, E., Borghini, M., Ferrer, M., Schmitt-Kopplin, P., Hertkorn, N., Cray, J.A., Hallsworth, J.E., Golyshin, P.N., Giuliano, L. (2015). Microbial community of the deep-sea brine Lake Kryos seawater–brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA.
Environmental Microbiology 17:364–382. Yamagata, Y., Ogasahara, K., Hioki, Y., Lee, S.J., Nakagawa, A., Nakamura, H., Ishida, M., Kuramitsu, S., Yutani, K. (2001). Entropic Stabilization of the Tryptophan Synthase α-Subunit from a Hyperthermophile, Pyrococcus furiosus X-RAY ANALYSIS AND CALORIMETRY. *J Biol Chem* 276:11062–11071. Yayanos, A.A. (2002). Are Cells Viable at Gigapascal Pressures? *Science* 297:295–295. Yip, K.S.P., Stillman, T.J., Britton, K.L., Artymiuk, P.J., Baker, P.J., Sedelnikova, S.E., Engel, P.C., Pasquo, A., Chiaraluce, R., Consalvi, V., others (1995). The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158. Yoshidome, T., Kinoshita, M. (2012). Physical origin of hydrophobicity studied in terms of cold denaturation of proteins: comparison between water and simple fluids. *Phys Chem Chem Phys* 14:14554–14566. Yung, Y.L., Chen, P., Nealson, K., Atreya, S., Beckett, P., Blank, J.G., Ehlmann, B., Eiler, J., Etiope, G., Ferry, J.G., Forget, F., Gao, P., Hu, R., Kleinböhl, A., Klusman, R., Lefèvre, F., Miller, C., Mischna, M., Mumma, M., Newman, S., Oehler, D., Okumura, M., Oremland, R., Orphan, V., Popa, R., Russell, M., Shen, L., Sherwood Lollar, B., Staehle, R., Stamenković, V., Stolper, D., Templeton, A., Vandaele, A.C., Viscardy, S., Webster, C.R., Wennberg, P.O., Wong, M.L., Worden, J. (2018). Methane on Mars and Habitability: Challenges and Responses. *Astrobiology* 18:1221–1242. Zaccai, G. (2011). Molecular adaptations to life in high salt: lessons from Haloarcula marismortui. In: *Origins and Evolution of Life : An Astrobiological Perspective*, Cambridge University Press, pp 375–388. Zaccai, G. (2013). Ecology of Protein Dynamics. Zaccai, G. (2020). Molecular dynamics in cells: A neutron view. *Biochimica et Biophysica Acta (BBA) - General Subjects* 1864:129475. Zaccai, G., Bagyan, I., Combet, J., Cuello, G.J., Demé, B., Fichou, Y., Gallat, F.-X., Galvan Josa, V.M., von Gronau, S., Haertlein, M., Martel, A., Moulin, M., Neumann, M., Weik, M., Oesterhelt, D. (2016). Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane. *Scientific Reports* 6:31434. Zajc, J., Džeroski, S., Kocev, D., Oren, A., Sonjak, S., Tkavc, R., Gunde-Cimerman, N. (2014). Chaophilic or chaotolerant fungi: a new category of extremophiles? *Front Microbiol* 5. Zale, S.E., Klibanov, A.M. (1986). Why does ribonuclease irreversibly inactivate at high temperatures? *Biochemistry* 25:5432–5444. Zeng, X., Birrien, J.-L., Fouquet, Y., Cherkashov, G., Jebbar, M., Querellou, J., Oger, P., Cambon-Bonavita, M.-A., Xiao, X., Prieur, D. (2009). Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. *ISME J* 3:873–876. Zhao, Q. (2017). On the indirect relationship between protein dynamics and enzyme activity. *Progress in Biophysics and Molecular Biology* 125:52–60. Zhao, B., Hu, Q., Guo, X., Liao, Z., Sarmiento, F., Mesbah, N.M., Yan, Y., Li, J., Wiegel, J. (2018). Natronolimnobius aegyptiacus sp. nov., an extremely halophilic alkalithermophilic archaeon isolated from the athalassohaline Wadi An Natrun, Egypt. *Int J Syst Evol Microbiol* 68:498–506. Zhdanova, N.N., Tugay, T., Dighton, J., Zheltonozhsky, V., Mcdermott, P. (2004). Ionizing radiation attracts soil fungi. *Mycological Research* 108:1089–1096. Zheng, Y., Li, Y., Liu, W., Chen, C.-C., Ko, T.-P., He, M., Xu, Z., Liu, M., Luo, H., Guo, R.-T., Yao, B., Ma, Y. (2016). Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. *Journal of Structural Biology* 193:206–211. Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. *Annual Review of Plant Biology* 53:247–273. Zolotov, M.Y. (2003). Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. *Journal of Geophysical Research* 108. Zolotov, M.Y. (2007). An oceanic composition on early and today's Enceladus. *Geophysical Research Letters* 34. Zolotov, M.Y., Shock, E.L. (2001). Composition and stability of salts on the surface of Europa and their oceanic origin. *Journal of Geophysical Research: Planets* 106:32815— "dain, C., Haas, A., Hensel, R. (1996). "e hyperthermophilic archaebacterium Py, "the cavyme, cloning and sequencing of the ge "si. Journal of Bacteriology 172-4329. 4338. "C., Chong, L.T. (2010). Reaching biological timescales v "mics simulations. Current Opinion in Pharmacology 10:745–7 #### Figure 1: Extreme extraterrestrial environments Martian (A) and icy moons (B) putative habitable extraterrestrial environments. Putative extreme conditions are showed, abbreviations are: HS (high salinity), LT (low temperature), HP (high pressure), HT (high temperature). Main extreme constitutive conditions are written in bold while secondary of facultative extreme conditions are indicated in parentheses. Environments may possess additional extreme conditions such as pH. ## Figure 2: Terrestrial environments with permanent extreme conditions On left, archetypal permanently extreme terrestrial environments and examples. On right, abbreviated extreme conditions among those considered by this review: HS (high salinity), LT (low temperature), HP (high pressure), HT (high temperature). Main extreme constitutive conditions are written in bold while secondary of facultative extreme conditions are indicated in parentheses. These environments may possess additional extreme conditions such as pH. Image credits from top to down: Goddard Space Flight Center NASA (x2), NASA/Dick Ewers, Virginia Edgcomb WHOI/NSF/ROV Jason/©WHOI, Jeremy Bishop on Unsplash, NOAA, James St John on Flicker, Lukas Kloeppel on Pexels, Pierre c 38 on Flicker, Ralf Steinberger on Flickr (all modified). ## Figure 3: Dynamical properties of proteins and solvent Representative timescales of solvent and protein intermolecular and intramolecular processes. Timescale is logarithmic from 1fs to 1s. HB means hydrogen bond. Adapted from (Gáspári and Perczel 2010; Zwier and Chong 2010; Xu and Havenith 2015). ## Figure 4: Phase transitions of lipid membranes This figure represents simple lipid bilayers, not biological membranes. The functional state of lipids in biological membranes is close to a disordered phase, between L_{g} and L_{α} . Reversible phase transitions can be triggered by low temperature (LT), high pressure (HP) or high temperature (HT). Locally, some types of lipids are found in the ripple phase P_{g} which is an intermediary between the gel and fluid phases. Bilayer pictures taken from: http://www.vwalter.fr/ressources/scheme/ Adapted from (Jebbar et al. 2015). ## Figure 5: Interactions between ions and proteins The protein here is *Pyrococcus abyssi* DNA Polymerase B (green) interacting with DNA (orange). Electrostatic interactions between ions and proteins are represented by arrows whose thickness illustrates bond strength. Ions are colored depending on their charge and the thickness of their shell represents their hydration. Adapted from (Okur et al. 2017). # Figure 6: Theoretical stability/activity thermal curves of three homologous extremophilic enzymes Activity (% of maximum activity measured for the protein) and stability (% of folded protein) theoretical curves for three psychrophilic (blue), mesophilic (green) and thermophilic (red) homologous enzymes are given. Activity is relative to each enzyme. At temperature allowing maximum activity, psychrophilic enzymes are still stable (A) while thermophilic enzymes are largely denatured (B). Adapted from (D'Amico et al. 2003). ## Figure 7: Structural features of extremophilic proteins Pictures on the left are graphical representations of protein sites. Residues involved with an interaction are colored. Adapted from (Alcaide et al. 2015; Pucci and Rooman 2017) # Figure 8: Molecular traits of lipids in extreme conditions Adaptive membrane changes in archaea. Lipids may adopt multiple traits at the same time. Traits reducing membrane permeability may also protect against other extreme conditions such as low pH. Adapted from (Jebbar et al. 2015). General C | Extreme condition and exclusion possibility | Range of extremophily | Maximum extreme reached by terrestrial life | Examples of terrestrial environment | Extraterrestrial environments | Remarks | |--|---|--|--|---|---| | • | <i>(</i>) | True extremophily type | s described in this review | | | | High
Temperature
(Impossible to
exclude) | Thermophiles grow at T > 50°C Hyperthermophiles grow at T > 80°C | Gowth reported at 122°C (Methanopyrus kandleri) | Marine hydrothermal vents, volcanic hot springs and lakes | Icy moons putative hydrothermal vents | Evidence of survival
after exposure to
130°C (Geogemma
barossii
Strain 121) | | Low
Temperature
(Impossible to
exclude) | Psychrophile can grow at T < 15°C | Growth at -18°C (Rhodotolura glutinis) | Polar ocean, deep sea, ice interiors, Antarctic surface | Mars surface and
subsurface rocks and
brines
Icy moons subglacial
oceans top, middle and
bottom waters | Evidence of metabolism at -33°C (Paenisporosarcina sp. B5) | | High Salinity
(Partially
possible to
exclude) | Halophiles grow at salinity > 8,8% Hyperhalophiles grow at salinity > 14,6% | 35% NaCl
(saturation) (Halobacterium salinarum) | Saline marshes and lakes,
seawater brines, DHAB, salt
rocks, solar salterns | Mars Brines
Icy Moons Oceans | | | High hydrostatic Pressure (Impossible to exclude) | Piezophiles grow at P > 10Mpa Hyperpiezophiles grow at P > 50MPa | Growth at 130MPa
(Thermococcus piezophilus
CDGST) | Deep sea, DHAB, oceanic and continental subsurfaces | Mars deep brines and rocks Icy Moons abysses | Non-piezophilic
bacteria have been
engineered to
survive exposure to
20GPa | | | | | remophily types | | | | Low pH
(Partially
possible to
exclude) | Acidophiles grow at pH < 5 Hyperacidophiles grow at pH < 3 | Confirmed growth at pH 0,7 but evidence of growth at negative pH (<i>Picrophilus torridus</i>) | Acid mine drainage, solfataric fields, acido-thermal hot springs, fumaroles, coal spoils | Martian surface, Europa subglacial ocean | Most acidic
cytoplasm pH 4.6
(Picrophilus
torridus) | | High pH
(Partially
possible to
exclude) | Alkaliphiles grow at pH > 9 Hyperalkaliphiles grow at pH > 11 | Growth at pH 13.2 (strains of <i>Bacillus</i> and <i>Clostridium</i>) | Soda lakes, alkalithermal hot springs, hydrothermal systems, sewage water | Enceladus subglacial ocean | Most alkaline cytoplasm pH 10.5 (Bacillus pseudofirmus OF4) | | | | | emophily" types | | /x. | | Low water
activity
(Partially
possible to
exclude) | Xerophiles can grow at a _W < 0,9 | Growth at a _W 0,605 (Xeromyces bisporus) | Desert, brines | Martian surface,
subsurface and brines
Icy moons subglacial
brines | No true xerophile known yet | | Ionizing radiation (Impossible to exclude) | Radioresistant organisms survive exposure to 500Gy | Survival after exposure to 30kGy (Thermococcus gammatolerans) | Anthropically contaminated environments, Guyamas basin hydrothermal vent | Martian surface | Less radioresistant
but radiotrophic
fungi are known | |---|--|--|--|--|--| | Chaotropes
abundancy
(Possible to
exclude) | Chaotolerant organisms
tolerate high concentration
of MgCl ₂ or CaCl ₂ without
kosmotropic counterion | Growth at 2.1M MgCl2 (Aspergillus proliferans) or 2.0M CaCl2 (Aspergillus sydowii) | DHABs, athalassohaline lakes | Europa subglacial ocean,
Martian surface | No true chaophile known yet | | Heavy metal
abundancy
(Possible to
exclude) | Metalloresistant organisms
can grow at millimolar
concentrations of heavy
metal ions | Growth at 20mM Zn ²⁺ , 20mM
Co ²⁺ or 5mM Cd ²⁺ (<i>Ralstonia</i> sp. CHR4)
> 48h survival on pure copper
surface (<i>Kocuria palustris</i> and
<i>Brachybacterium conglomeratum</i>) | Contaminated soils, Río Tinto, | Ancient Martian surface | No true metallophile
known yet | | Organic
solvents
abundancy
(Partially
possible to
exclude) | Solvoresistant organisms can grow at organic solvents concentration > 1% or survive at higher concentrations | Surviving 100% toluene, benzene and p-xylene (Staphylococcus haemolyticus) | Contaminated environments, petroleum seeps | Titan atmosphere and surface | No true solvophile
known yet | | Nutrients
scarcity
(NA) | Oligotrophs grow with extremely low nutrient abundancy at low rates, growth often inhibited by high nutrient mixtures | Pelagibacter ubique | Ocean waters, deserts, oligotrophic soils | Martian surface and subsurface? Icy moon waters? | | | | | | | 0;57/6 | | | | | | | | | #### Table 2: Chaotropic versus kosmotropic properties of ions Ions irrelevant to biological contexts or absent from natural environments have been excluded from this table. Based on the Hofmeister series (Zhang and Cremer 2006). | Properties | ← Kosmotropic = Salting out ← Stabilize proteins ← Decrease hydrophobic solubility ← Increase surface tension | Chaotropic = Salting in → Promote denaturation → Increase hydrophobic solubility → Decrease surface tension → | |------------|--|---| | Anions | $CO_3^{2-} > SO_4^{2-} > HPO_4^{2-} > CH_3COO^-$ | $> Cl^{-} > NO_{3}^{-} > ClO_{3}^{-} > ClO_{4}^{-} > SCN^{-}$ | | | ← Strongly hydrated | Weakly hydrated $ ightarrow$ | | Cations | NH ₄ ⁺ > K ⁺ > Na ⁺ > H ⁺ | | | | ← Weakly hydrated cations | Strongly hydrated cations → | | | | | | | | | Figure 1: Extreme extraterrestrial environments Martian (A) and icy moons (B) putative habitable extraterrestrial environments. Putative extreme conditions are showed, abbreviations are: HS (high salinity), LT (low temperature), HP (high pressure), HT (high temperature). Main extreme constitutive conditions are written in bold while secondary of facultative extreme conditions are indicated in parentheses. Environments may possess additional extreme conditions such as pH. 719x358mm (72 x 72 DPI) Figure 2: Terrestrial environments with permanent extreme conditions On left, archetypal permanently extreme terrestrial environments and examples. On right, abbreviated extreme conditions among those considered by this review: HS (high salinity), LT (low temperature), HP (high pressure), HT (high temperature). Main extreme constitutive conditions are written in bold while secondary of facultative extreme conditions are indicated in parentheses. These environments may possess additional extreme conditions such as pH. Image credits from top to down: Goddard Space Flight Center NASA (x2), NASA/Dick Ewers, Virginia Edgcomb WHOI/NSF/ROV Jason/©WHOI, Jeremy Bishop on Unsplash, NOAA, James St John on Flicker, Lukas Kloeppel on Pexels, Pierre c 38 on Flicker, Ralf Steinberger on Flickr (all modified). 490x754mm (72 x 72 DPI) Figure 3: Dynamical properties of proteins and solvent Representative timescales of solvent and protein intermolecular and intramolecular processes. Timescale is logarithmic from 1fs to 1s. HB means hydrogen bond. Adapted from (Gáspári and Perczel 2010; Zwier and Chong 2010; Xu and Havenith 2015). 858x530mm (72 x 72 DPI) Figure 4: Phase transitions of lipid membranes This figure represents simple lipid bilayers, not biological membranes. The functional state of lipids in biological membranes is close to a disordered phase, between Lß and L□. Reversible phase transitions can be triggered by low temperature (LT), high pressure (HP) or high temperature (HT). Locally, some types of lipids are found in the ripple phase Pß which is an intermediary between the gel and fluid phases. Bilayer pictures taken from: http://www.vwalter.fr/ressources/scheme/ Adapted from (Jebbar et al. 2015). 785x500mm (72 x 72 DPI) Figure 5: Interactions between ions and proteins The protein here is Pyrococcus abyssi DNA Polymerase B (green) interacting with DNA (orange). Electrostatic interactions between ions and proteins are represented by arrows whose thickness illustrates bond strength. Ions are colored depending on their charge and the thickness of their shell represents their hydration. Adapted from (Okur et al. 2017). 984x581mm (72 x 72 DPI) Figure 6: Theoretical stability/activity thermal curves of three homologous extremophilic enzymes Activity (% of maximum activity measured for the protein) and stability (% of folded protein) theoretical curves for three psychrophilic (blue), mesophilic (green) and thermophilic (red) homologous enzymes are given. Activity is relative to each enzyme. At temperature allowing maximum activity, psychrophilic enzymes are still stable (A) while thermophilic enzymes are largely denatured (B). Adapted from (D'Amico et al. 2003). 155x199mm (300 x 300 DPI) | Interactions and involved residues | | Thermophilic protein | Psychrophilic protein | Halophilic
protein | Piezophilic
protein | |------------------------------------|--|---|--|--|------------------------| | | Hydrophobic effect
Trp, Tyr, Phe, Leu, IIe, Val,
Ala | Overall increased
hydrophobicity,
surface less
hydrophobic | Less
hydrophobic
interactions | Overall
decreased
hydrophobicity | ? | | *** | Salt bridges
Glu or Asp + Arg or Lys (or
occasionally His, Tyr or
Ser) | More abundant,
form ion-pair
networks | Less abundant
in surface,
more abundant
in the core | More abundant,
more Arg-
based | Less abundant | | 235 | Hydrogen bounds
Ser, Thr, Tyr, Lys, Arg,
Trp, His and backbone
+ His, Trp, backbone | Form surface
networks | Less abundant | ? | ? | | | π-π interaction
Trp, Tyr, Phe | More abundant | Less abundant | Less abundant | ? | | The th | π-cation interaction
Trp, Tyr, Phe
+ Arg, His, Lys | More Arg-
based | Less abundant | Less abundant | ? | | | Disulfide bridge
Cys | More abundant
in flexible
regions, buried | ? | ? | ? | Figure 7: Structural features of extremophilic proteins Pictures on the left are graphical representations of protein sites. Residues involved with an interaction are colored.
Adapted from (Alcaide et al. 2015; Pucci and Rooman 2017) 683x464mm (72 x 72 DPI) | Other features | | Thermophilic protein | Psychrophilic protein | Halophilic
protein | Piezophilic
protein | |----------------|-----------------|---|---|--|-----------------------------| | n Ste | Loops | Shorter or
deleted, more
Pro | Longer, more
flexible, less Pro | ? | ? | | | Core | More
hydrophobic,
less cavities | Less dense,
less rigid
more cavities,
less Arg and Pro | Denser, smaller
residues, less
hydrophobic, | Denser, smaller
residues | | | Dynamics | Increased rigidity/resilience | Increased
flexibility | Increased
flexibility | Increased
flexibility | | | Hydration shell | Larger, increased
interaction
between solvent
and residues | Water bounded
by unpaired
charged residues | Saltier, more
structured,
water tightly
bound | Denser,
less dynamic | Figure 7: Structural features of extremophilic proteins Pictures on the left are graphical representations of protein sites. Residues involved with an interaction are colored. Adapted from (Alcaide et al. 2015; Pucci and Rooman 2017) 682x325mm (72 x 72 DPI) Figure 8: Molecular traits of lipids in extreme conditions Adaptive membrane changes in archaea. Lipids may adopt multiple traits at the same time. Traits reducing membrane permeability may also protect against other extreme conditions such as low pH. Adapted from (Jebbar et al. 2015). 801x588mm (72 x 72 DPI)