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The aim of this paper is to provide a new estimator of parameters for LARCH(∞) processes, and thus also for LARCH(p) or GLARCH(p, q) processes. This estimator results from minimising a contrast leading to a least squares estimator for the absolute values of the process. Strong consistency and asymptotic normality are shown, and convergence occurs at the rate √ n as well in short or long memory cases. Numerical experiments confirm the theoretical results and show that this new estimator significantly outperforms the smoothed quasi-maximum likelihood estimators or weighted least squares estimators commonly used for such processes.

Introduction

Linear AutoRegressive Conditional Heteroskedastic (LARCH) processes were introduced by Robinson (1991) to model the long-range dependence of volatility and leverage. They are studied for their stationarity and dependence properties in [START_REF] Robinson | Modelling nonlinearity and long memory in time series[END_REF], [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF], [START_REF] Berkes | Asymptotic results for long memory larch sequences[END_REF], and [START_REF] Giraitis | Larch, leverage and long memory[END_REF]. A LARCH(∞) process (X t ) t∈Z is defined by:

X t = ξ t a 0 + ∞ j=1 a j X t-j
for any t ∈ Z, where (ξ t ) t∈Z is a white noise. In what follows, we will consider a parametric class of such LARCH(∞) processes, i.e. a j = a j (θ) for any j ∈ N with θ ∈ R , where the functions a j (•) are assumed to be known but the true parameter θ * is unknown. This paper is devoted to studying the asymptotic properties of a new estimator of θ * (rather than a component of θ * , such as the location parameter, as was done in [START_REF] Beran | On location estimation for larch processes[END_REF] for LARCH(∞) processes when a trajectory (X 1 , . . . , X n ) is observed (see more details in section 2). LARCH(∞) processes, which conditionally represent heteroskedastic weak white noise, offer new perspectives for modeling financial data. This model has the advantage over GARCH formulations that volatility can be arbitrarily close to 0, which is nevertheless the case for certain financial series (see, for example, the example on CAC40 index returns discussed in section 4). The square of a LARCH(∞) process can also exhibit the long memory property (see below), which is impossible for a stationary ARCH(∞) process (see more theoretical details in Giraitis et al., 2009, and the same illustrative example in section 4).

For numerous affine causal processes, such as ARMA, GARCH, ARMA-GARCH, AR(∞), or ARCH(∞) processes, the Gaussian quasi-maximum likelihood (QML) provides a very accurate estimator (see further details in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Even though a LARCH(∞) process or its special cases LARCH(p) or GLARCH(p, q) (see their definitions in ( 5) and ( 7)) are also causal affine time series, such a contrast cannot be used to estimate the parameter θ * . Indeed, the conditional variance of X t cannot be bounded near 0, and this does not allow asymptotic results for such contrasts (see more details on this point in [START_REF] Beran | On location estimation for larch processes[END_REF]Schützner, 2009, Truquet, 2014, and in particular in [START_REF] Francq | Inconsistency of the mle and inference based on weighted ls for larch models[END_REF]. [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF] and [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF] propose an interesting alternative estimator based on a family of smooth approximations of the QML estimate, and they establish the consistency and asymptotic normality of the estimator of θ * in cases of short or long memory. [START_REF] Francq | Inconsistency of the mle and inference based on weighted ls for larch models[END_REF] preferred to construct weighted least squares estimators, for which they also show consistency and asymptotic normality. Note that they also extend their results to AR(p)-LARCH(q) processes as well as to Truquet.

We propose a new estimator obtained by minimizing a least-squares contrast of the absolute values of (X t ) (see its precise definition in [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF], section 3). Under assumptions that are not too restrictive, especially considering short-and long-term memory, strong consistency and asymptotic normality are established for this estimator. Moreover, only a fourth-order white noise moment is required for asymptotic normality (order 4 in Truquet, 2014, and 5 in Beran and Schützner, 2009, for the smoothed QML estimator, no order condition in Francq and Zakoïan, 2010, for the weighted LS estimator when an appropriate weight family is chosen). A convergence rate √ n for this new estimator is proved for LARCH(∞) processes with short memory as well as for the smoothed QML estimator [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF] and for the weighted LS estimator [START_REF] Francq | Inconsistency of the mle and inference based on weighted ls for larch models[END_REF], but with different asymptotic covariance matrices. This rate of convergence √ n is also established for the LARCH(∞) process with long memory, while for the smoothed QMLE in [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF] only a rate n β with 0 < β < 1/2 is obtained. Note that such a rate of convergence is also obtained with QMLE for generalized quadratic ARCH processes in [START_REF] Grublyte | Quasi-MLE for quadratic ARCH model with long memory[END_REF]. Monte Carlo experiments confirm the asymptotic behavior of the estimator even for trajectories with not very large lengths. The performances of this new estimator are then compared with those obtained with the regularized QMLE (for which the choice of the regularization parameter is a real problem) and with those obtained with the weighted least squares estimator of [START_REF] Francq | Inconsistency of the mle and inference based on weighted ls for larch models[END_REF]. The results of these comparisons undoubtedly show the much faster convergence of this new estimator, especially compared to the smoothed QMLE.

The following section 2 is devoted to the definition and stationarity conditions of the considered LARCH(∞) processes. The main results concerning the definition and the asymptotic behavior of the new estimator are given in section 3. Numerical experiments are proposed in section 4 and proofs are established in section 5.

LARCH(∞) processes

For ∈ N * and u = (u i ) 1≤i≤ ∈ R , denote u = u 2 1 + • • • + u 2 the usual Euclidian norm. More generally, for k ∈ N * , if u = (u i 1 ,...,i k ) 1≤i 1 ,...,i k ≤ ∈ R k , denote u = 1≤i 1 ,...,i k ≤ u 2 i 1 ,...,i k . Denote also Z p = E Z p 1/p for p ≥ 1 where Z is a random vector. For any m ∈ N * , any ∈ N * and ψ : θ ∈ Θ ⊂ R → ψ(θ) ∈ R such as ψ ∈ C m (Θ), the space of m-times continuously differentiable functions on Θ, denote for 1 ≤ k ≤ m:

∂ θ ψ(θ) := ∂ ∂θ i ψ(θ) 1≤i≤ and ∂ k θ k ψ(θ) := ∂ k θ i 1 •••θ i k ψ(θ) 1≤i 1 ,...,i k ≤ = ∂ k ∂θ i 1 • • • ∂θ i k ψ(θ) 1≤i 1 ,...,i k ≤
.

Here we study a LARCH(∞) process introduced in Robinson (1991) and also studied in Assumption A(r):

• (ξ t ) t∈Z is a sequence of symmetric centered independent random variables with continuous distribution such as ξ 0 1 = 1 and ξ 0 r < ∞;

• For any j ∈ N, θ ∈ R → a j (θ) ∈ R are known continuous functions and without loss of generality we will assume a 0 (θ) > 0 for any θ ∈ R .

We will define a LARCH(∞) process (X t ) t∈Z using Assumption A(r) with r ≥ 2. Before this, define:

Θ(2) = θ ∈ R , ξ 0 2 2 ∞ j=1 a 2 j (θ) < 1 . (1) 
Then, under Assumption A(r) with r ≥ 2, for θ * ∈ Θ where Θ is a compact subset of Θ(2), we define a LARCH(∞) process (X t ) t∈Z by:

X t = ξ t a 0 (θ * ) + ∞ j=1 a j (θ * ) X t-j for any t ∈ Z. (2) 
Under these conditions, [START_REF] Giraitis | Larch, leverage and long memory[END_REF] have proved the stationarity of (X t ) and the existence of X 0 2 . From now on we will assume that θ * is unknown Remark 2.1. The case a 0 (θ) = 0 implies X t = 0 a.s. for any t ∈ Z, see [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF]. This explains why, we assume a 0 (θ) > 0 for any θ ∈ R in Assumption A(r).

Remark 2.2. Note that in Assumption A(r) we assume ξ 0 1 = 1 and not ξ 0 2 = 1 as is usually done. This is explained by the expression of the estimator we will consider. However, the difference between these two normalization options is only a new parametrization, because with ξ t = ξ t / ξ 0 2 for any t ∈ Z and using the linearity of its expression, (2) could also be written as

X t = ξ t a 0 (θ * )+ ∞ j=1 a j (θ * ) X t-j
where ξ 0 2 = 1 and a j (θ * ) = ξ 0 2 a j (θ * ) for any j ∈ N.

(3)

In the case of Gaussian white noise, for example, we have ξ 0

2 2 = σ 2 ξ = π/2 when ξ 0 1 = 1.
In the sequel, under Assumption A(r) with r ≥ 4, we will also consider X 0 4 and for this we define

Θ(4) = θ ∈ R , ξ 0 4 4 ∞ j=1 a 4 j (θ) + 6 ξ 0 2 2 ∞ j=1 a 2 j (θ) < 1 . (4) 
Remark 2.3. Unless we consider a particular distribution for the noise, for example and typically the Gaussian N 0, ( π/2) 2 , the moments ξ 0 2 ≤ ξ 0 4 are unknown and can take any value greater than or equal to 1 according to this distribution. So the sets Θ(2) and Θ(4) are indeed unknown if we consider only the hypothesis of a symmetric noise (ξ t ) with a moment of order 4 and satisfying E |ξ 0 | = 1. Note, however, that it is exactly the same when estimating the parameters of a GARCH(p, q) or ARCH(∞) process by quasi-maximum likelihood, e.g. when we define the stationarity set from the Lyapunov exponents depending on the noise distribution, or when we consider a condition of ξ 0 4 for asymptotic normality. Numerically (see section 4), one will use domains of minimisation in θ much larger than Θ(2) or Θ(4), for example 0 ≤ a 1 , a 2 ≤ 1 for a LARCH(2) process, but the condition of belonging to Θ(2) will be able to be checked a posteriori from the value taken by the estimator. The fact that this condition is not verified when applying a longmemory LARCH(∞) model to financial data led us to choose another more complex long-memory LARCH(∞) model.

Three interesting special cases of LARCH(∞) processes can be mentioned:

1. A first special case of LARCH(∞) processes are the LARCH(p) processes defined by:

X t = ξ t σ t with σ t = a 0 + p i=1 a i X t-i , for any t ∈ Z (5) 
Therefore, a LARCH(p) process is a LARCH(∞) process defined in (2) with a k (θ) = a k for 0 ≤ k ≤ p and θ = t a 0 , a 1 , . . . , a p ∈ (0, ∞) × R p . For such a process, the sets Θ(2) defined in (1) and Θ(4) defined in (4) become respectively:

Θ p (2) = θ = t a 0 , a 1 , . . . , a p ∈ (0, ∞) × R p , ξ 0 2 2 p j=1 a 2 j < 1 and Θ p (4) = θ = t a 0 , a 1 , . . . , a p ∈ (0, ∞) × R p , ξ 0 4 4 p j=1 a 4 j + 6 ξ 0 2 2 p j=1 a 2 j < 1 .( 6 
)
2. A natural extension of the LARCH(p) processes under consideration are GLARCH(p, q) processes, which follow the same procedure as the well-known transition from ARCH processes to GARCH processes. A GLARCH(p, q) process is defined by

X t = ξ t σ t with σ t = c 0 + p i=1 c i X t-i + q j=1 d j σ t-j , for any t ∈ Z. (7) 
To study such a process, one defines the polynomials P (x) = 1 -q j=1 d j x j and Q(x) = c 0 + p i=1 c i x i . Then the previous iteration equation ( 7) is equivalent to P (B) σ = Q(B) X where B is the usual backward operator. In the following we assume that P and Q are coprime polynomials for θ = θ * . We define θ = c 0 , c 1 , . . . , d 1 , . . . , d q ∈ (0, ∞) × R p+q and the coefficients a k (θ) decrease exponentially decrease to 0 when k → ∞ (as it is usually known for ARMA(p, q) processes since the roots of P lie outside the unit circle). For GLARCH(p, q) process, the assumption for obtaining a stationary 2nd-order solution of ( 7) is θ ∈ Θ p,q (2), with

Θ p,q (2) = θ ∈ (0, ∞) × (-1, 1) p+q , q i=1 d 2 i + ξ 0 2 p j=1 c 2 j < 1 . (8) 
The calculation of Θ(4) for such GLARCH(p, q) processes is not quite straightforward. In Giraitis et al. (2004) Θ( 4) is simplified for GLARCH(1, 1) and it is established that:

Θ 1,1 (4) = θ = t (c 0 , c 1 , d 1 ) ∈ (0, ∞) × R 2 , ξ 0 4 4 c 4 1 1 -d 4 1 + 6 ξ 0 2 2 c 2 1 1 -d 2 1 < 1 .
3. Another case we will study is that of LARCH(∞) with long memory, i.e. such that there are d(θ) ∈ (0, 1/2) and L θ (•) a slowly varying function such that:

a j (θ) = L θ (j) j d(θ)-1 for j ∈ N * . (9) 
This case was considered in particular in [START_REF] Robinson | Modelling nonlinearity and long memory in time series[END_REF] and [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF]. In this paper, a parametric estimation procedure was studied for the case where a j (θ) = c j d-1 for j ∈ N * and θ = t (a 0 , c, d) (see further details below). Note that in such a case

∞ j=1 |a j (θ)| = ∞ but ∞ j=1 a 2 j (θ) < ∞.
Remark 2.4. For this third type of example we focused on the long memory property and for that the parameter d(θ) (or simply the parameter d in Beran and Schützner's example) is necessarily in (0, 1/2). However, nothing prevents to extend the definition of the process to d(θ) ∈ (-∞, 1/2) or to a compact set included in (-∞, 1/2) when the estimator is applied. We would then lose the exclusive long memory character but we would gain in generality.

3 A new estimator of LARCH parameters

Definition and consistency of the estimator

We consider here a special case of M-estimators for estimating θ * from an observed trajectory (X 1 , . . . , X n ) of a stationary solution of (2). For this purpose, let the following contrast function Φ for x ∈ R N and θ ∈ R be defined by

Φ(x, θ) = |x 1 | -a 0 (θ) + ∞ j=1 a j (θ) x j+1 2 . ( 10 
)
Remark 3.1. The choice of this contrast function Φ follows from the fact that under a classical identifiability assumption (see Assumption Id(Θ) below), θ * is the unique minimum in Θ of E Φ (X -k ) k≥0 , θ under the normalization condition ξ 0 1 = 1 (see the proof of Proposition 3.1, Part 3.).

Other contrast functions satisfy this property, such as

Φ 4 (x, θ) = x 2 1 -a 0 (θ)+ ∞ j=1 a j (θ)x j+1 2 2
under the usual normalization condition ξ 0 2 = 1. Such M-estimators defined from Φ 4 require moments of order 8 to preserve their asymptotic normality, while for Φ a moment of order 4 is sufficient. Note that weighted quadratic contrast Φ F Z derived from Φ 4 (see its definition in (25)) was defined in Francq and Zakoïan (2010) and allows, with appropriate weights, to obtain the asymptotic normality without a moment condition (except r ≥ 1). However, Monte Carlo experiments show that the convergence rate of the estimator defined by Φ is faster than that of the estimator defined by Φ 4 or Φ F Z . Note, however, that contrast functions such as

Φ 2 (x, θ) = x 1 -a 0 (θ) + ∞ j=1 a j (θ)x j+1 2 or Φ 1 (x, θ) = x 1 -a 0 (θ) + ∞ j=1 a j (θ)x j+1
are not such that E Φ (X -k ) k≥0 , θ has a unique minimum in θ * on the set Θ. For example, quick calculations show that:

E Φ 2 (X -k ) k≥0 , θ = ξ 0 2 2 -1 E a 0 (θ * ) + ∞ j=1 a j (θ * )X -j 2 + E a 0 (θ) + ∞ j=1 a j (θ)X -j 2 -a 0 (θ * ) + ∞ j=1 a j (θ * )X -j 2 ,
which in general does not have a minimum at θ * .

Remark 3.2. Unlike, in particular, the papers by [START_REF] Francq | Inconsistency of the mle and inference based on weighted ls for larch models[END_REF] or [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF], the case of an AR(p )-LARCH(p) process or, more generally, an AR(p )-LARCH(∞) process is not treated here. Based on the Φ contrast chosen, it would also have been possible to extend the study to AR(p )-LARCH(∞) processes by considering the Φ contrast such that:

Φ (x, θ ) = x 1 - p k=1 b k x 1+k -a 0 (θ) + ∞ j=1 a j (θ) x j+1 - p k=1 b k x j+1+k 2 ,
where θ = t b 1 , . . . , b p , t θ . The convergence and asymptotic normality proofs for LARCH(∞)processes proposed in the rest of the manuscript could then be extended to AR(p )-LARCH(∞) processes, but this would make them even more technical and difficult to follow.

Now we define the process ( X) t∈Z by:

X t = X t for t ≥ 1 0 for t ≤ 0 . ( 11 
)
From now on, let us consider Θ as a compact subset of Θ(2), implying that (X t ) t∈Z is a stationary ergodic process satisfying X 0 2 < ∞. Then define the following estimator:

θ n = Argmin θ∈Θ 1 n n t=1 Φ ( X t-k ) k≥0 , θ . (12) 
In the sequel, we add an assumption about the derivatives of functions θ ∈ Θ → a k (θ) for k ∈ N (we use the convention

∂ 0 θ 0 a k (•) = a k (•)). So for i ∈ N define:
Assumption C i (Θ): For any k ∈ N, the functions a k ∈ C i (Θ) and there exist C a > 0 and

d < 1/2 satisfying sup θ∈Θ i j=0 ∂ j θ j a k (θ) ≤ C a k d-1 for any k ∈ N * . ( 13 
)
As already mentioned in [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF], to prove the consistency and asymptotic normality of θ n , it is necessary to take the derivatives in θ of θ ∈ Θ → M θ (t) for t ∈ Z, where

M θ (t) = a 0 (θ) + ∞ k=1 a k (θ) X t-k for t ∈ Z and θ ∈ Θ. ( 14 
)
Note that the convergence of this infinite sum in the L 2 (Ω)-norm is done using a Volterra decomposition, as in [START_REF] Giraitis | A model for long memory conditional heteroscedasticity[END_REF] or [START_REF] Giraitis | Larch, leverage and long memory[END_REF]. However, the existence of M θ (t)derivatives could be problematic, since the sequence (a k (θ)) is not summable in the case of a long memory. We therefore consider the assumption:

Assumption (S): For every t ∈ Z, (M θ (t)) θ∈Θ is a separable stochastic process on Θ.

Note that this assumption is not really restrictive, since a stochastic process can always be replaced by a separable version (see Remark 1 in [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF]. Moreover, as proved in Proposition 2 of [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF], Assumption (S) combined with Assumption

C 1 (Θ) (resp. C 2 (Θ)), where Θ is a compact set of the Θ(2) ⊂ R , implies that θ ∈ Θ → M θ (t) is almost surely is differentiable once (resp. twice).
We add a classical identification condition:

Assumption Id(Θ): If θ, θ ∈ Θ, a i (θ) = a i ( θ) for all i ∈ N =⇒ θ = θ . (15) 
Then we obtain the following conditions for the consistency of the two estimators:

Proposition 3.1. Under Assumption A(2), if θ * ∈ Θ is an unknown parameter, where Θ is a compact subset of Θ(2) ⊂ R defined in (1)
, consider (X t ) t∈Z as a stationary solution of ( 2) and (X 1 , . . . , X n ) an observed trajectory of (X t ). Assume also Assumption C (Θ), (S) and Id(Θ). Then θ n a.s.

-→

n→∞ θ *
where θ n is defined in [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF].

Proposition 3.1 can be specified for the special cases considered earlier, starting with the LARCH(p) processes.

Corollary 3.1. Under Assumption A(2), with p ≥ 1, let (X t ) be a LARCH(p) process, solution of

X t = ξ t σ t with σ t = a * 0 + p i=1 a * i X t-i , for any t ∈ Z, (16) 
where θ * = t a * 0 , a * 1 , . . . , a * p ∈ Θ, a compact subset of Θ p (2) defined in [START_REF] Billingsley | Probability and Measure[END_REF]. Let (X 1 , . . . , X n ) be an observed trajectory of (X t ). Then

θ n = t a (n) 0 , a (n) 1 , . . . , a (n) p a.s.
-→ n→∞ θ * where θ n is defined in [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF] Note that since the functions a k considered in the Corollary 3.1 are constant functions, the Assumptions Id(Θ), C (Θ) and (S) are satisfied. The same is true if we consider the case of GLARCH(p, q) processes: Corollary 3.2. Under Assumption A(2), with p ≥ 1, q ≥ 1, let (X t ) be a GLARCH(p, q) process, solution of

X t = ξ t σ t with σ t = c * 0 + p i=1 c * i X t-i + q j=1 d * j σ t-j , for any t ∈ Z, (17) 
where

θ * = t c * 0 , . . . , c * p , d * 1 , . . . , d * q ∈ Θ, a compact subset of Θ p,q (2 
) defined in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]. Let (X 1 , . . . , X n ) be an observed trajectory of (X t ). Then

θ n = t c (n) 0 , . . . , c (n) p , d (n) 1 , . . . , d (n) q a.s.
-→ n→∞ θ * where θ n is defined in [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF].

The consistency of θ n for long memory LARCH(∞) can also be derived from Proposition 3.1:

Corollary 3.3. Assume A(2)
where the sequence (a k (θ)) k∈N satisfies ( 9), let θ * ∈ Θ where Θ is a compact subset of Θ(2) defined in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Let (X 1 , . . . , X n ) be an observed trajectory of (X t ), which is a stationary long memory LARCH(∞) solution of (2). Then, under Assumptions C (Θ), Id(Θ) and (S), θ n a.s.

-→ n→∞ θ * where θ n is defined in [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF]. [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF]. Suppose that (ξ t ) t∈Z is a sequence of symmetric centered independent random variables, such as ξ 0 1 = 1 and ξ 0 2 < ∞. Consider θ = t (a 0 , c, d) and the sequence (a j (θ)) j∈N with a 0 (θ) = a 0 and a j (θ) = c j d-1 for j ≥ 1. Define

Corollary 3.4 (Example of long memory LARCH(∞) studied in
Θ = t (a 0 , c, d) ∈ [a m , a M ] × [-c M , c M ] × [0, d M ], c 2 M ξ 0 2 2 ∞ k=1 k 2 d M -2 < 1 , (18) 
where 0

< a m ≤ a M < ∞, 0 ≤ d M < 1/2 and 0 ≤ c M < ∞. Let (X 1 , .
. . , X n ) be an observed trajectory of (X t ) t∈Z which is a stationary long-memory LARCH(∞) solution of (2) with parameter θ * ∈ Θ. Then under Assumption (S), θ n a.s.

-→ n→∞ θ * where θ n is defined in [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF].

Remark 3.3. The condition ξ 0 2 < ∞ required in Proposition 3.1 and Corollaries 3.1, 3.2, 3.3, and 3.4 can be compared with the conditions required in other works dealing with parametric estimation of LARCH processes. In Theorem 4.2. of Francq and Zakoïan (2010), θ * is estimated using a weighted LS estimator (see its definition in (25)) and the consistency of this LS estimator is established under the condition ξ 0 4 < ∞, except for appropriate weights for which ξ 0 1 < ∞ is sufficient. In Theorem 4 of Beran and Schützner (2009), θ * is estimated using a smoothed QML estimator (see its definition in (24)) and the condition ξ 0 3 < ∞ is required for L 1 consistency of this QML estimator. Finally, in [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF], the strong consistency of a smoothed QML estimator for LARCH(p) processes is obtained under the condition ξ 0 s < ∞ with s > 0.

Asymptotic normality of the estimator

Under Assumption A(4), if θ * ∈ o Θ, the interior of Θ where Θ is a compact subset of Θ(4), and under Assumption (S) and C 2 (Θ), define, if they exist, the following matrices:

Γ * 1 := E ∂ θ M θ * (0) t ∂ θ M θ * (0) = ∂ θ a 0 (θ * ) t ∂ θ a 0 (θ * ) + σ 2 X ∞ k=1 ∂ θ a k (θ * ) t ∂ θ a k (θ * ) with σ 2 X := E X 2 0 = a 2 0 (θ * ) σ 2 ξ 1 -σ 2 ξ ∞ k=1 a 2 k (θ * ) (19) 
and

Γ * 2 := E M θ * (0) 2 ∂ θ M θ * (0) × t ∂ θ M θ * (0) . ( 20 
)
Then the asymptotic normality of θ n can be established:

Theorem 3.1. Under Assumption A(4), if θ * ∈ o Θ
, is an unknown parameter, where Θ is a compact subset of Θ(4) ⊂ R , which is defined in (4), consider (X t ) t∈Z as a stationary LARCH(∞) solution of ( 2) and (X 1 , . . . , X n ) an observed trajectory of (X t ). Assume that Assumption (S) is satisfied as well as Assumption C +2 (Θ) and Id(Θ). Then, if the matrices Γ * 1 and Γ * 2 defined in ( 19) and ( 20) are positive definite,

√ n θ n -θ * L -→ n→∞ N 0 , (σ 2 ξ -1) Γ * 1 -1 Γ * 2 Γ * 1 -1 (21) 
Remark 3.4. The expression of Γ * 2 is not easy to simplify even in the simplest cases. This is not really a problem since, as usual, one can use the Slutsky Lemma, after defining the following estimators of σ 2 ξ , Γ * 1 and Γ * 2 by

σ 2 ξ := 1 n n t=1 X 2 t a 0 ( θ n ) + t-1 k=1 a k ( θ n ) X t-k 2 ; Γ 1 := 1 n n t=1 ∂ θ a 0 ( θ n ) + t-1 k=1 ∂ θ a k ( θ n ) X t-k t ∂ θ a 0 ( θ n ) + t-1 k=1 ∂ θ a k ( θ n ) X t-k ; Γ 2 := 1 n n t=1 a 0 ( θ n ) + t-1 k=1 a k ( θ n ) X t-k 2 ∂ θ a 0 ( θ n ) + t-1 k=1 ∂ θ a k ( θ n ) X t-k × × t ∂ θ a 0 ( θ n ) + t-1 k=1 ∂ θ a k ( θ n ) X t-k .
Note that the consistency of σ 2 ξ was proved in Francq and Zakoïan (2010). The matrix Γ 1 and Γ 2 are also consistent estimators of Γ * 1 and Γ * 2 (see the proof in section 5), and therefore

√ n σ 2 ξ -1 -1/2 Γ 1 1/2 Γ 2 -1/2 Γ 1 1/2 θ n -θ * L -→ n→∞ N 0 , I d . ( 22 
)
Such a central limit theorem (22), satisfied by θ n allows the computation of asymptotic confidence intervals or test thresholds on θ.

The special case of GLARCH(p, q) processes can be considered under simplified assumptions:

Corollary 3.5. Assume the conditions of Corollary 3.2, and also assume ξ 0 4 < ∞ Let Θ be a compact set included in Θ p,q (4) and

θ * = t c * 0 , . . . , c * p , d * 1 , . . . , d * q ∈ o Θ. Then, with θ n = t c (n) 0 , . . . , c (n) p , d (n) 1 , . . . , d (n) q
, the central limit theorems [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF] and ( 22) hold.

In the case of LARCH(p) processes, which are particular cases of GLARCH(p, q) processes, we can go further into the details of the conditions for asymptotic normality: Corollary 3.6. Assume the conditions of Corollary 3.1, and suppose also ξ 0 4 < ∞, Θ defined by

Θ = t (a 0 , a 1 , . . . , a p ) ∈ [a, a] × R p with ξ 0 4 4 p j=1 a 4 j + 6 ξ 0 2 2 p j=1 a 2 j ≤ r , (23) 
where 0 < a < a and 0 < r < 1, and

θ * = t (a * 0 , a * 1 , . . . , a * p ) ∈ o Θ. Then, with θ n = t a (n) 0 , a (n) 1 , . . . , a (n) p 
, the central limit theorems ( 21) and ( 22) hold.

As an example of computation of the asymptotic covariance, if we consider the case of a LARCH(1) process, we obtain:

Γ * 1 = 1 0 0 σ 2 X and Γ * 2 = a 2 0 + σ 2 X 2 a 0 a 1 σ 2 X 2 a 0 a 1 σ 2 X a 2 0 σ 2 X + E[X 4 0 ]
.

This implies Γ * 1 -1 Γ * 2 Γ * 1 -1 = a * 2 0 + σ 2 X 2 a * 0 a * 1 2 a * 0 a * 1 a * 2 0 σ 2 X + E[X 4 0 ] σ 4 X , where σ 2 X = a * 2 0 σ 2 ξ 1 -σ 2 ξ a * 2 1 -1 E[X 4 0 ] = a * 4 0 E[ξ 4 0 ] 1 + 5 σ 2 ξ a * 2 1 1 -σ 2 ξ a * 2 1 -1 1 -E[ξ 4 0 ]a * 4 1 -1 .
The asymptotic normality of the estimator θ n can also be obtained in the case of long-memory LARCH(∞): Remark 3.5. To our knowledge, the only result for estimating the memory parameter d in the case of LARCH(∞) processes with long memory was obtained in Beran and Schützner (2009) using the smoothed QML estimator. However, the expression of this estimator uses only a small part of the sample (X 1 , . . . , X n ), namely the last n β observations, where β < 1 -2d, while d is unknown to account for the long memory of the process. This leads to a convergence rate of n β/2 for this truncated QML estimator, which is far less interesting than the convergence rate of √ n obtained with θ n . Monte Carlo experiments (see section 4) will also show that θ n performs numerically better than these other estimators in terms of convergence rate, especially when compared to estimators based on QML.

Numerical experiments 4.1 Monte Carlo experiments

In this section, we report the results of Monte Carlo experiments conducted with different LARCH processes. More specifically, we considered:

• Three different LARCH processes: • Choice of Θ for minimisation [START_REF] Giraitis | ARCH(∞) Models and Long Memory Properties[END_REF] and calculation of θ n : as already mentioned in the Remark 2.3, the set Θ(2) depends on the distribution of the noise, and an "extended" condition will be used in the minimisation algorithm. Hence, for the LARCH(2) process this means 0 ≤ a 1 , a 2 ≤ 1, for the GLARCH(1, 1) process it will be 0 ≤ c 1 , d 1 ≤ 1 and for the long memory LARCH(∞) process, c < 1 and 0 ≤ d ≤ 0.5. After computing the estimator, and using the empirical variance of the residuals ξ t as an estimator of ξ 0 For each choice of process, length n and noise distribution, 1000 replications of independent trajectories of the LARCH process are generated, except for the long memory LARCH(∞) where only 300 replications are used due to the computational time of the estimator. Note that in this case, an algorithm based on the Fast Fourier Transform (FFT) has been developed in Nielsen and Noël (2021, section 2.2), which could have been used to speed up the computations significantly, or if we had applied the estimators to series larger than 10 4 . Two other estimators are to be compared with θ n :

1. Following [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF] and [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF], the first is the smooth approximation of the QMLE, which for h > 0 is given by

θ QM L (h) := Argmin θ∈Θ 1 n n t=1 h + X 2 t h + (M θ (t)) 2 + log h + (M θ (t)) 2 . ( 24 
)
The a priori choice of h or data-driven h is not a straightforward task, although Truquet has provided some guidance in [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF]. Therefore, we will present the results obtained for 2 different values of h that give the best performances. In the case of the considered LARCH(∞) process with long memory, [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF] proposed a modified version of θ QM L (h) and we will use their results.

2. Following Francq and Zakoïan (2010), the second is the weighted least squares estimator defined by:

θ F Z := Argmin θ∈Θ 1 n n t=1 τ t X 2 t -(M θ (t)) 2 2 , ( 25 
)
where the weights (τ t ) are obtained for LARCH(p) or GLARCH(p, q) using an empirical rule proposed in [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for armagarch/igarch models[END_REF]:

τ t = max 1 , 1 C p i=1 |X t-i | I 1 |X t-i |>C -4
, where C is computed as the 90% quantile of the absolute values |X 1 |, . . . , |X n | . In case of long memory LARCH(∞), we replace p by t -1 in the definition of τ t .

Remark 4.1. The estimator θ n can also be defined as a nonlinear least squares estimator for the regression (|X t |) 1≤t≤n on a 0 (θ) + ∞ j=1 a j (θ) X t-j 1≤t≤n

. As it was already done by Francq and Zakoïan (2010) (see the estimator defined in (25)), a weighted version of θ n could also be considered:

θ w n = Arg min θ∈Θ 1 n n t=1 w t |X t | -a 0 (θ) + ∞ j=1 a j (θ) X t-j 2 ,
where w t = W (X t-k ) 1≤k≤t-1 > 0, defining a sequence of selected weights. Inspired by their work, it seems that using weights of the form

w t = max 1 , 1 C p i=1 |X t-i | I 1 |X t-i |>C -2 would allow,
in particular, remove the condition r = 4 from the assumptions of asymptotic normality of θ n by requiring only r = 1 for θ w n . To improve the convergence rate of the θ n , taking into account Remark 4.2 of Francq and Zakoïan (2010), one might think that w t = M θ * (t)

-2 would be the ideal sequence of weights, but infeasible in practice.

Remark 4.2. The estimator θ n is obtained with parameters defined under the normalization condition ξ 0 1 = 1, while the estimators θ QM L (h) or θ F Z are basically defined under the normalization condition ξ 0 2 = 1. After remark 2.2, a suitable renormalization of the parameters of the LARCH process allows the transition from one condition to the other. So, for reference, consider the LARCH(p) equation with parameter θ = t (a 0 , . . . , a p ) under condition ξ 0 1 = 1, θ n is an estimator of θ, but θ QM L (h) or θ F Z are estimators of θ/ ξ 0 2 . Therefore, a comparison of the accuracies of the estimators is possible by considering θ n , ξ 0 2 θ QM L (h) and ξ 0 2 θ F Z . If the law of ξ 0 is unknown, the comparison with the estimator σ ξ defined in (22) is still possible. 1: Square roots of the MSE computed for each estimator of parameters a 0 = 5, a 1 = -0.2 and a 2 = 0.4 of a LARCH(2) process computed from 1000 independent replications.

θ n θ F Z θ QM L (2) θ QM L (1) ξ 0 law n a 0 a 1 a 2 a 0 a 1 a 2 a 0 a 1 a 2 a
The results are presented in tables 1, 2 and 3.

Conclusions of the Monte Carlo experiments:

• Looking at the decay of the square root of the MSE of the θ n components towards 0 as n increases from 200 to 5000 (or from 1000 to 10000), we see that this decay is approximately 1/ √ n, which corresponds to the theoretical convergence rate established in Theorem 3.1. This is true for a LARCH(2) process as well as for a GLARCH(1, 1) or a LARCH(∞) process with long memory, regardless of whether we consider a white noise with a Gaussian or Student distribution t(6).

• In general, the square root of the MSE of θ n converges to 0 twice as fast as that of θ F Z when the white noise follows a Gaussian or Student t(6) distribution, for the three processes considered. We note that θ F Z gives convincing results in the case of a LARCH(∞) process with long memory, while this was not shown in Francq and Zakoïan (2010), although they are far outperformed by those of θ n . However, the numerical results for the convergence of the MSE of θ F Z towards 0 become much worse when the white noise distribution of the LARCH processes is a Student t(6) distribution.

• Finally, θ QM L gives satisfactory performances comparable to those of θ n only in one case, namely for the LARCH(1, 1) process with Gaussian white noise, and this after choosing an optimal regularisation parameter. It should be noted, however, that the choice of this parameter can easily be made in the context of Monte Carlo experiments, but this would otherwise require a data-driven procedure that does not currently exist. For the estimation than 1% of the standard deviation) and even twice exactly 0, which would be very unlikely with a GARCH process often used to model this data, for which the conditional variance is always greater than a positive constant. Moreover, as already pointed out in Giraitis i.e. (2004) with the S&P500 returns data since 1928, we can observe a particular behaviour of the leverage estimate: it is negative for almost all lags and follows a power-law type distribution (see Figure 2). A non-linear least squares approximation gives the value of this power -0.55. If we note h t the leverage, this would mean that h t ∼ C t d-1 with d 0.45 and C < 0. Now, if the CAC40 returns follow the example of LARCH(∞) processes with long memory (X t ) studied in Beran and Schützner (2009), i.e. a j (θ) = c j d-1 for j ≥ 1, then we have:

θ n θ F Z θ QM L (1) θ QM L (0.5) ξ 0 law n c 0 c 1 b 1 c 0 c 1 b 1 c 0 c 1 b 1 c 0 c 1 b 1 N 0.
Cov (X 0 , X t ) = 0, h t = Cov (X 0 , X 2 t ) C t d-1 and Cov (X 2 0 , X 2 t ) c t 2d-1 ,
with 0 < d < 1/2, C < 0 and c > 0 (see again Giraitis i.e., 2004, or [START_REF] Robinson | Modelling nonlinearity and long memory in time series[END_REF].

We check that this last asymptotic behaviour is well verified by plotting the correlogram of the squares of the process, which is done in figure 3. Again we observe a power law type behaviour, and a non-linear least squares estimation of this power gives the result -0.09. However, if we use the value of d = 0.445 obtained numerically from h t , we find that 2d -1 -0.11, a value very close to -0.09. There seems to be a good fit of a long memory LARCH(∞) model with these return data.

Fitting the returns of CAC40 index with two models of long memory LARCH(∞) a. We first fitted these data with the long memory LARCH(∞) process studied in [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF], i.e., such that a 0 (θ) = a 0 and a j (θ) = c j d-1 for j ≥ 1.

For this model, we considered the estimator θ n = t a 0 , c, d used in the results of Table 3 and we obtain a 0 0.010 , c -0.159 and d 0.488. This is quite consistent with the values of d previously obtained by nonlinear least squares. Note that we also obtained θ F Z = t 0.007, -0.143, 0.497 , a value quite close to that of θ n , confirming the long memory property of this time series. Note also that using (22) an estimate of the covariance matrix of these estimators can be computed. And we obtained the following 95% confidence intervals from θ n : a 0 ∈ 0.00999 , 0.0110 , c ∈ -0.192 , -0.125 and d ∈ 0.433 , 0.544 .

However, we notice that ∞ j=1 a 2 j ( θ n ) (0.159) 2 ζ(1.024) 1.068 > 1 and also ∞ j=1 a 2 j ( θ F Z ) (-0.143) 2 ζ(1.006) > 1.
Thus, whatever the distribution of the noise, the second order stationarity condition is not verified. The long memory model LARCH(∞) process such as a j (θ) = c j d-1 for j ≥ 1 does not seem appropriate. This is also confirmed by the correlograms of the residuals ξ t = X t /( a 0 + c t-1 j=1 j d-1 X t-j ) and their absolute values | ξ t | plotted in Figure 4. Indeed, and it is particularly clear with the correlogram of | ξ t |, ( ξ t ) could not appear almost as white noise (note that Francq and Zakoïan, 2010, also proposed a goodness-of-fit test based on ( ξ 2 t ), but only for AR(q)-LARCH(p) processes). Modelling these data with this model is therefore problematic. In contrast to the previous model, now ∞ j=1 a 2 j ( θ n ) (-0.302) 0.222 < 1, and the second order stationary condition is generally satisfied (except when ξ 0 2 ≥ 4.5). And using ( 22), an estimate of the covariance matrix of these estimators can be computed, and the following 95% confidence intervals of the parameters are obtained: a 0 ∈ 0.0099 , 0.0110 , c ∈ -0.383 , -0.221 , d ∈ 0.275 , 0.416 and c ∈ -0.885 , -0.472 .

Finally, to visualise the goodness-of-fit of this second long memory LARCH(∞) model, the correlograms of the residuals and the absolute values of the residuals are plotted in Figure 5. Conclusion: For these financial data, as observed by other authors, modelling by a long memory LARCH(∞) process seems relevant. However, we point out that the model studied by [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF], i.e. a j (θ) = c j d-1 for j ≥ 1, is not appropriate for these data, while a model with a slightly more complex behaviour with an additional parameter, i.e. a j (θ) = c j d-1 1 + c j for j ≥ 1, provides a quite satisfactory fit.

Proofs

In the sequel, with m j=1 • = 0 for m ≤ 0 by convention, for t ∈ Z, we will many times consider

M θ (t) := a 0 (θ) + ∞ j=1 a j (θ) X t-j and M θ (t) := a 0 (θ) + t-1 j=1 a j (θ) X t-j . ( 26 
)
Lemma 5.1. Under the assumptions of Proposition 3.1 and with d < 1/2 defined in (13), we obtain:

1. There exists C > 0, such as for any t ≥ 1 and θ ∈ Θ:

E M θ (t) 2 < ∞, E M θ (t) 2 < ∞ and E M θ (t) -M θ (t) 2 ≤ C t 2d-1 . ( 27 
)
2. There exists C > 0, such as for any t ≥ 1 and θ ∈ Θ:

E ∂ θ M θ (t) 2 < ∞, E ∂ θ M θ (t) 2 < ∞ and E ∂ θ M θ (t) -∂ θ M θ (t) 2 ≤ C t 2d-1 . (28) 
3. There exists C > 0, such as for any t ≥ 1,

E sup θ∈Θ M θ (t) -M θ (t) 2 ≤ C t 2d-1 . ( 29 
)
Proof of Lemma 5.1. 1. Since (X t ) t∈Z is a weak white noise, it can be written directly that

E M θ (t) 2 = E[X 2 0 ] ∞ k=1 a 2 k (θ) ≤ E[X 2 0 ] ∞ k=1 sup θ∈Θ a 2 k (θ). From Assumption C (Θ), sup θ∈Θ a k (θ) ≤ C a k d-1 implying ∞ k=1 sup θ∈Θ a 2 k (θ) ≤ C 2 a ∞ k=1 k 2d-2 < ∞, since 2d -2 < -1. And therefore E M θ (t) 2 < ∞.
Using the same reasoning,

E M θ (t) 2 = E[X 2 0 ] t-1 k=1 a 2 k (θ) ≤ E M θ (t) 2 < ∞.
Finally,

E M θ (t)-M θ (t) 2 = E[X 2 0 ] ∞ k=t a 2 k (θ) ≤ C 2 a E[X 2 0 ] ∞ k=t k 2d-2 always from Assumption C (Θ). But for f a positive decreasing function, n 1 k=n 0 f (k) ≤ f (n 0 ) + n 1
n 0 f (t)dt for any integer numbers n 0 and n 1 such as 0

≤ n 0 < n 1 ≤ ∞. Therefore, for any t ≥ 1, ∞ k=t k 2d-2 ≤ t 2d-2 + ∞ t x 2d-2 dx ≤ t 2d-2 + 1 1 -2d t 2d-1 ≤ 2 -2d 1 -2d t 2d-1 .
Therefore, for any θ ∈ Θ and t ≥ 1,

E M θ (t) -M θ (t) 2 ≤ C 2 a E[X 2 0 ] 2 -2d 1 -2d t 2d-1 ≤ C t 2d-1 .
2. Using Assumptions (S) and C (Θ), θ ∈ Θ → ∂ θ M θ (t) exists a.s., and for any θ ∈ Θ and t ≥ 1,

∂ θ M θ (t) = ∂ θ a 0 (θ) + ∞ k=1 ∂ θ a k (θ)X t-k and ∂ θ M θ (t) = ∂ θ a 0 (θ) + t-1 k=1 ∂ θ a k (θ)X t-k a.s. (30) 
Then

E ∂ θ M θ (t) 2 = j=1 E ∂ θ j M θ (t) 2 .
By replacing a k (θ) by ∂ θ j a k (θ) that also satisfies (13) for j = 1, . . . , , we can use the same reasoning as in 1. for obtaining

E ∂ θ j M θ (t) 2 < ∞.
And this can also be done for

∂ θ M θ (t) and ∂ θ M θ (t) -∂ θ M θ (t)
and we obtain (28).

3. We use here ideas already present in Lemmas 1 and 2 of [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF]. The result will be easily generalized, but to facilitate the writing of the proof, we restrict ourselves to the case where = 2 and θ [START_REF] Parzen | Stochastic processes[END_REF], we can write that for any t ≥ 1 and (θ

= (θ 1 , θ 2 ) ∈ Θ ⊂ [θ 1 , θ 1 ] × [θ 2 , θ 2 ]. Denote Z θ = M θ (t) -M θ (t). Using Theorem 3.B of
1 , θ 2 ) ∈ [θ 1 , θ 1 ] × [θ 2 , θ 2 ], Z 2 (θ 1 ,θ 2 ) ≤ 1 2 Z 2 (θ 1 ,θ 2 ) + Z 2 (θ 1 ,θ 2 ) + θ 1 θ 1 Z 2 (u 1 ,θ 2 ) + ∂ θ 1 Z (u 1 ,θ 2 ) 2 du 1 .
By applying again this theorem, and after computations, we finally obtain for any (θ

1 , θ 2 ) ∈ [θ 1 , θ 1 ]× [θ 2 , θ 2 ], 4 Z 2 (θ 1 ,θ 2 ) ≤ Z 2 (θ 1 ,θ 2 ) + Z 2 (θ 1 ,θ 2 ) + Z 2 (θ 1 ,θ 2 ) + Z 2 (θ 1 ,θ 2 ) + θ 2 θ 2 Z 2 (θ 1 ,u 2 ) + Z 2 (θ 1 ,u 2 ) + ∂ θ 2 Z (θ 1 ,u 2 ) 2 + ∂ θ 2 Z (θ 1 ,u 2 ) 2 du 2 + θ 1 θ 1 Z 2 (u 1 ,θ 2 ) + Z 2 (u 1 ,θ 2 ) + ∂ θ 1 Z (u 1 ,θ 2 ) 2 + ∂ θ 1 Z (u 1 ,θ 2 ) 2 du 1 + θ 1 θ 1 θ 2 θ 2 Z 2 (u 1 ,u 2 ) + ∂ θ 1 Z (u 1 ,u 2 ) 2 + ∂ θ 2 Z (u 1 ,u 2 ) 2 + ∂ 2 θ 1 θ 2 Z (u 1 ,u 2 ) 2 du 1 du 2 .
After taking expectations, we finally obtain that there exist positive real numbers C 0 (Θ), C 1 (Θ), C 2 (Θ) and C 12 (Θ) depending only on Θ such as

E sup (θ 1 ,θ 2 )∈Θ Z 2 (θ 1 ,θ 2 ) ≤ C 0 (Θ) sup (θ 1 ,θ 2 )∈Θ E Z 2 (θ 1 ,θ 2 ) + C 1 (Θ) sup (θ 1 ,θ 2 )∈Θ E ∂ θ 1 Z (θ 1 ,θ 2 ) 2 + C 2 (Θ) sup (θ 1 ,θ 2 )∈Θ E ∂ θ 2 Z (θ 1 ,θ 2 ) 2 + C 12 (Θ) sup (θ 1 ,θ 2 )∈Θ E ∂ 2 θ 1 θ 2 Z (θ 1 ,θ 2 ) 2 . (31)
Now, using the previous point 1., we obtain that for any t ≥ 1:

sup (θ 1 ,θ 2 )∈Θ E Z 2 (θ 1 ,θ 2 ) = sup (θ 1 ,θ 2 )∈Θ E M t (θ 1 ,θ 2 ) -M t (θ 1 ,θ 2 ) 2 ≤ C t 2d-1 .
From point 2., the same bound can be established as well for sup

(θ 1 ,θ 2 )∈Θ E ∂ θ 1 Z (θ 1 ,θ 2 ) 2 and for sup (θ 1 ,θ 2 )∈Θ E ∂ θ 1 Z (θ 1 ,θ 2 ) 2 .
From a straightforward extension to ∂ 2 θ 1 θ 2 Z (θ 1 ,θ 2 ) , (31) implies that there exists C > 0:

E sup (θ 1 ,θ 2 )∈Θ M t (θ 1 ,θ 2 ) -M t (θ 1 ,θ 2 ) 2 ≤ C t 2d-1 .
Proof of Proposition 3.1. For θ ∈ Θ, denote:

I n (θ) := 1 n n t=1 Φ (X t-k ) k≥0 , θ and I n (θ) := 1 n n t=1 Φ ( X t-k ) k≥0 , θ , (32) 
where Φ is defined in [START_REF] Giraitis | Larch, leverage and long memory[END_REF]. The proof will be stepped in 3 points:

1. We prove here that sup θ∈Θ I n (θ) -I(θ) a.s.

-→ n→∞ 0, with

I(θ) := E Φ (X -k ) k≥0 , θ for θ ∈ Θ. (33) 
Indeed, from [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], there exists a function H : R N → R such as for any t ∈ Z, X t = H((ξ t-j ) j≥0 ) and therefore (X t ) t∈Z is a second order ergodic stationary sequence since r = 2. Then, for θ ∈ Θ, there exists

H Φ : R N → [0, ∞) such that Φ (X -k ) k≥0 , θ = Φ (H(ξ k-j )) j≥0 k≥0 , θ = H Φ (ξ -j ) j≥0 ,
with also E Φ (X -k ) k≥0 , θ < ∞. Then using Theorem 36.4 in [START_REF] Billingsley | Probability and Measure[END_REF], Φ (X -k ) k≥0 , θ t∈Z is an ergodic stationary sequence for any θ ∈ Θ. As a consequence, for any θ ∈ Θ,

I n (θ) a.s. -→ n→∞ I(θ).
Moreover, since Θ is a compact set, using Theorem 2.2.1. in [START_REF] Straumann | Estimation in conditionally heteroscedastic time series models[END_REF], we deduce that Φ (X t-k ) k≥0 , θ t∈Z also follows a uniform ergodic theorem and we obtain sup θ∈Θ I n (θ) -I(θ) a.s.

-→ n→∞ 0.

2. We also have sup θ∈Θ I n (θ) -I n (θ) a.s.

-→ n→∞ 0. We have

I n (θ) -I n (θ) ≤ 1 n n t=1 Φ (X t-k ) k≥0 , θ -Φ ( X t-k ) k≥0 , θ , (34) 
and for any θ ∈ Θ,

Φ (X t-k ) k≥0 , θ -Φ ( X t-k ) k≥0 , θ = |X t | -M θ (t) 2 -|X t | -M θ (t) 2 ≤ M θ (t) -M θ (t) 2 |X t | + M θ (t) + M θ (t) ,
with M θ (t) and M θ (t) defined in (26). Therefore, using Cauchy-Schwarz and Minkowski inequalities,

E sup θ∈Θ Φ (X t-k ) k≥0 , θ -Φ ( X t-k ) k≥0 , θ ≤ E sup θ∈Θ M θ (t) -M θ (t) 2 |X t | + sup θ∈Θ M θ (t) + M θ (t) ≤ E sup θ∈Θ M θ (t) -M θ (t) 2 1/2 2 X t 2 + E sup θ∈Θ M θ (t) 2 1/2 + E sup θ∈Θ M θ (t) 2 1/2 . (35)
Now, since Θ is a compact set included in Θ(2), we have X t 2 < ∞. Moreover, using Lemma 5.1, point 3., for t = 1, we have E sup θ∈Θ M θ (1)

2 = E sup θ∈Θ M θ (t) 2 ≤ C. With M θ (t) 2 ≤ 2 M θ (t) -M θ (t) 2 + 2 M θ (t) 2 , this also implies that E sup θ∈Θ M θ (t) 2 ≤ 4 C.
Therefore, there exists C > 0 such as for any t ≥ 1,

2 X t 2 + E sup θ∈Θ M θ (t) 2 1/2 + E sup θ∈Θ M θ (t) 2 1/2 ≤ C. (36) 
Therefore, from (35), (36) and Lemma 5.1, point 3., we deduce that there exists C > 0 such as:

E sup θ∈Θ Φ (X t-k ) k≥0 , θ -Φ ( X t-k ) k≥0 , θ ≤ C t 2d-1 for any t ≥ 1.
Then, using this bound and since d < 1/2, there exists C > 0 such as:

n t=1 1 t E sup θ∈Θ Φ (X t-k ) k≥0 , θ -Φ ( X t-k ) k≥0 , θ ≤ C n t=1 t 2d-2 ≤ C ∞ t=1 t 2d-2 < ∞. (37) 
In Corollary 1 of [START_REF] Kounias | An inequality and almost sure convergence[END_REF], it is established that

∞ t=1 E |Z t | b t < ∞ implies 1 b n n t=1 Z t a.s.
-→ n→∞ 0 for a L -→ n→∞ 0 from (34).

3. The two previous points show us that sup θ∈Θ I n (θ) -I(θ) a.s.

-→ n→∞ 0 with I defined in (33).

The proof is achieved if we establish that θ * is the unique minimum of θ ∈ Θ → I(θ). This is induced by the following computations:

I(θ) = E Φ (X -k ) k≥0 , θ = E |ξ 0 | a 0 (θ * ) + ∞ j=1 a j (θ * ) X -j -a 0 (θ) + ∞ j=1 a j (θ) X -j 2 = E ξ 2 0 -1 E a 0 (θ * ) + ∞ j=1 a j (θ * ) X -j 2 +E a 0 (θ) + ∞ j=1 a j (θ) X -j -a 0 (θ * ) + ∞ j=1 a j (θ * ) X -j 2 ,
using the assumption ξ 0 1 = 1 and because (X t ) is a causal time series implying that ξ 0 independent to σ (X -k ) k≥1 . The first term of the previous relationship does not depend on θ. The second one vanishes when θ = θ * . It is also non negative and it vanishes if

a 0 (θ) + ∞ j=1 a j (θ) X -j = a 0 (θ * ) + ∞ j=1
a j (θ * ) X -j a.s.

As we assumed that a 0 (•) is a positive function, using also Assumption Id(Θ), we deduce that θ = θ * is the only solution of the previous equality. As a consequence, θ * is the unique minimizer of I(•) and since sup θ∈Θ I n (θ) -I(θ) a.s.

-→ n→∞ 0 and θ n = θ n = Argmin θ∈Θ I n (θ), we deduce that θ n a.s.

-→ n→∞ θ * .

Proof of Corollary 3.1. In such a case, θ = t (a 0 , . . . , a p ) and therefore a i (θ) = a i for any 0 ≤ i ≤ p and a i (θ) = 0 for i ≥ p + 1. Then, θ ∈ Θ → a k (θ) are C ∞ functions on Θ for any k ∈ N. Moreover, since sup θ∈Θ |a k (θ)| = 0 for k ≥ p+1 as well as sup θ∈Θ ∂ j θ j a k (θ) = 0 for any 1 ≤ j ≤ p+1, therefore ( 13) is satisfied and Assumption C p+1 (Θ) holds. Since ∞ k=1 sup θ∈Θ |a k (θ)| < ∞, Assumption (S) is also satisfied. Finally, Assumption Id(Θ) is obviously satisfied: a i (θ) = a i ( θ) implies a i = a i , which implies θ = t (a 0 , . . . , a p ) = θ = t ( a 0 , . . . , a p ) for any i ∈ N. Then the strong consistency of θ n is established from Proposition 3.1.

Proof of Corollary 3.2. Denote θ = θ P , θ Q ∈ Θ where θ P = t c 0 , c 1 , . . . , c p ∈ (0, ∞) × R p , θ Q = t d 1 , . . . , d q ∈ R q . Then σ = P -1 θ P (B) Q θ Q (B)X.
It is clear that θ P → P θ P is an injective function, and it is the same for θ P → P -1 θ P and θ Q → Q θ Q . Finally it is also the same for θ = t θ P , θ Q → P -1 θ P × Q θ Q , because P θ P and Q θ Q are not zero polynomial and because we assume that the p + 1 components of θ P are free of the q components θ Q , i.e. there are no supposed links between (c i ) 0≤i≤p and (d j ) 1≤j≤q . Therefore, [START_REF] Ling | Self-weighted and local quasi-maximum likelihood estimators for armagarch/igarch models[END_REF] and Assumption Id(Θ) are satisfied for GLARCH(p, q) process.

Moreover, as it is well known for GARCH(p, q) processes, since q j=1 |d j | ≤ ρ with 0 ≤ ρ < 1 from the expression of Θ p,q (2), the roots z j (θ) of the characteristic polynomial ξ(z) = z qq j=1 b j z q-j satisfies sup θ max j |z j (θ)| < 1: (a k (θ)) k decreases exponentially fast towards 0. Then ∞ k=1 sup θ∈Θ |a k (θ)| < ∞ and Assumption (S) is satisfied. Moreover, there exists c 0 > 0 such as sup θ∈Θ |a k (θ)| ≤ c 0 k -3/4 for any k ≥ 1. By considering the derivatives of equation ( 7), we also have sup θ∈Θ ∂ j θ j a k (θ) ≤ c j k -3/4 with c j > 0 for any k, j ≥ 1 and Assumption C p+q+1 (Θ) holds. [START_REF] Robinson | Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression[END_REF]. For k ≥ 3, easy computations imply that:

k : θ → c k d-1 is a C ∞ function on Θ, with θ defined in
sup θ∈Θ ∂ j θ j a k (θ) ≤ c 2 M + j × log k × k d M -1 for 1 ≤ j ≤ 3.
Therefore, by considering for instance d = d M /2 + 1/2 ∈ (d M , 1/2), it is clear that there exists C a > 0 such as ( 13) is satisfied and Assumption C 3 (Θ) holds. It remains to prove Assumption Id(Θ). This one will be verified by considering the equality a j (θ) = a j ( θ) for any j ∈ N where θ = t (a 0 , c, d) and θ = t ( a 0 , c, d). This implies a 0 = a 0 and c j d-1 = c j d-1 for any j ∈ N, leading to θ = θ: Assumption Id(Θ) is also satisfied.

Proof of Theorem 3.1. Let I n (θ) and I n (θ) be defined in (32). We follow a proof that is similar to the one of Theorem 2 in [START_REF] Davis | Least absolute deviation estimation for regression with ARMA errors[END_REF].

Let v = √ n(θ -θ * ) ∈ R and define W n (v) = n t=1 Φ (X t-k ) k≥0 , θ * + n -1/2 v -Φ (X t-k ) k≥0 , θ * = n I n (θ) -I n (θ * ) and W n (v) = n t=1 Φ ( X t-k ) k≥0 , θ * + n -1/2 v -Φ ( X t-k ) k≥0 , θ * = n I n (θ) -I n (θ * ) .
Then we are going to prove first that minimizing I n (θ) with respect to θ ∈ Θ is equivalent to minimize W n (v) with respect to v ∈ R , which is also equivalent to minimize W n (v) with respect to v ∈ R . Secondly, we will provide a limit theorem satisfied by W n (v) for any v ∈ R . Then we are going to prove in 3. that (W n (•)) n converges as a process of C(R ) (space of continuous functions on R ) to a limit process W . Hence the sequence of minimum of W n , i.e

( v n ) n with v n = √ n( θ n -θ * ),
will converge in distribution to the distribution of the minimum of W (•).

1. For any v ∈ R and n ≥ 1, we have:

W n (v) = n t=1 X t -M θ * +n -1/2 v (t) 2 -X t -M θ * (t) 2 = n t=1 X t -M θ * (t) - 1 √ n t v ∂ θ M θ (n) t (t)) 2 -X t -M θ * (t) 2 = n t=1 X t -M θ * (t) - 1 √ n t v ∂ θ M θ (n) t (t) × sgn(M θ * (t)) 2 -X t -M θ * (t) 2 = - 2 √ n n t=1 X t -M θ * (t) × sgn(M θ * (t)) × t v ∂ θ M θ (n) t (t) + 1 n n t=1 t v ∂ θ M θ (n) t (t)) 2 = J (n) 1 (v) + J (n) 2 (v) (38) 
with θ

(n) t = α (n) t θ * + (1 -α (n) t ) θ * + n -1/2 v where α (n) t ∈ [0, 1] is given from the Taylor-Lagrange expansion. Term J (n) 2 (v): For any v ∈ R , θ (n) t a.s. -→ n→∞ θ * and then ∂ θ M θ (n) t (t) -∂ θ M t θ * ) a.s. -→ n→∞ 0 for any t ∈ N, (39) 
since the functions θ ∈ Θ → ∂ θ a i (θ) are supposed to be continuous functions for any i ∈ N. Then we obtain for any v ∈ R :

J (n) 2 (v) -E t v ∂ θ M θ * (0) 2 ≤ 1 n n t=1 t v ∂ θ M θ * (t) 2 -t v ∂ θ M θ (n) t (t) 2 + 1 n n t=1 t v ∂ θ M θ * (t) 2 -E t v ∂ θ M θ * (0) 2 .
Now using Cesaro Lemma we obtain from (39),

1 n n t=1 t v ∂ θ M θ * (t) 2 -E t v ∂ θ M θ * (0) 2 a.s. -→ n→∞ 0. (40) 
Moreover, we have seen that there exist a function H such as X t = H((ξ t-j ) j≥0 ) for any t ∈ Z, and therefore (X t ) t∈Z is a second order ergodic stationary sequence. Then, for any v ∈ R , there exists a function H v : R N → [0, ∞) such as

t v ∂ θ M θ * (t) 2 = H v (ξ -j ) j≥0 ,
with also 

E t v ∂ θ M θ * (t) 2 < ∞ (
), t v ∂ θ M θ * (t) 1995 
t∈Z is an ergodic stationary sequence implying to:

1 n n t=1 t v ∂ θ M θ * (t) 2 -E t v ∂ θ M θ * (0) 2 a.s. -→ n→∞ 0. (41) 
Finally, with (40) and (41), we obtain for any v ∈ R ,

J (n) 2 (v) a.s. -→ n→∞ E t v ∂ θ M θ * (0) 2 = t v Γ * 1 v where Γ * 1 := E ∂ θ M θ * (0) × t ∂ θ M θ * (0) , (42) 
where Γ * 1 is as in [START_REF] Robinson | Modelling nonlinearity and long memory in time series[END_REF].

Term J

(n) 1 (v): We also have

J (n) 1 (v) = - 2 √ n n t=1 M θ * (t) ξ t -M θ * (t) × sgn(M θ * (t)) × t v ∂ θ M θ (n) t (t) = t v - 2 √ n n t=1 ξ t -1 M θ * (t) × ∂ θ M θ * (t) + 2 n n t=1 ξ t -1 M θ * (t) × √ n ∂ θ M θ * (t) -∂ θ M θ (n) t (t) = t v K (n) 1 (v) + K (n) 2 (v) .
We have

ξ t -1 M θ * (t) × ∂ θ M θ * (t)
t∈N that is a stationary ergodic martingale difference since with the σ-algebra

F t = σ (X t-k ) k≥1 , E ξ t -1 M θ * (t) × ∂ θ M θ * (t) F t = E ξ t -1 E M θ * (t) × ∂ θ M θ * (t) = 0, because (X t ) is a causal process and ξ t is independent of F t and E ξ 0 = 1. Now since Γ * 2 := E M θ * (0) 2 ∂ θ M θ * (0) × t ∂ θ M θ * ( 
0) is supposed to be a finite definite positive matrix (see also its expression in [START_REF] Straumann | Estimation in conditionally heteroscedastic time series models[END_REF]),

E ξ 0 -1 2 M θ * (0) × ∂ θ M θ * (0) 2 = (σ 2 ξ -1) E M θ * (0) × ∂ θ M θ * (0) 2 < ∞.
Then the central limit for stationary ergodic martingale difference, Theorem 18.3 of Billingsley (1968) can be applied and we obtain for any v ∈ R :

K (n) 1 (v) L -→ n→∞ K 1 L ∼ N 0 , 4 (σ 2 ξ -1) Γ * 2 . (43) 
For any t ∈ Z, by the definition of θ

(n) t , we have √ n (θ (n) t -θ * ) = (1 -α (n) t ) v with α (n) t (t) = 0. (45) 
Finally, for any v ∈ R , since

J (n) 1 (v) = t v K (n) 1 (v) + K (n) 2 (v) , then J (n) 1 (v) L -→ n→∞ t v K 1 from (43)
and (45), and with (42) this implies,

W n (v) L -→ n→∞ t v Γ * 1 v + t v K 1 with K 1 L ∼ N 0 , 4 (σ 2 ξ -1) Γ * 2 . ( 46 
)
2. Asymptotically, for any v ∈ R , from 1., we know that the law of W n (v) is the same as the law of:

W n (v) = - 2 √ n n t=1 ξ t -1 M θ * (t) × t v ∂ θ M θ * (t) + 1 n n t=1 t v ∂ θ M θ * (t) 2
and we deduce the same kind of result for the law of W n (v), which is asymptotically equivalent to the one of:

W n (v) = - 2 √ n n t=1 ξ t -1 M θ * (t) × t v ∂ θ M θ * (t) + 1 n n t=1 t v ∂ θ M θ * (t) 2 .
Therefore we obtain:

W n (v) -W n (v) = - 2 √ n n t=1 ξ t -1 t v M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t) + t v 1 n n s=1 ∂ θ M s θ * t ∂ θ M s θ * -∂ θ M s θ * t ∂ θ M s θ * v (47) = L (n) 1 + L (n) 2 . ( 48 
)
Term L

(n)

1 : Using the causality of (X t ), i.e. ξ t independent to σ{X t-1 , X t-2 , . . .} for any t ∈ Z, we deduce that:

E 1 √ n n t=1 ξ t -1 t v M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t) = 0, (49) 
since E[|ξ t |] = 1. Moreover, we have for any t ≥ 1:

M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t) = M θ * (t) ∂ θ M θ * (t) -∂ θ M θ * (t) + ∂ θ M θ * (t) M θ * (t) -M θ * (t) .
Using 1. and 2. of Lemma 5.1, we have for any t ≥ 1:

E M θ * (t) -M θ * (t) 2 ≤ C t 2d-1 and E ∂ θ M θ * (t) -∂ θ M θ * (t) 2 ≤ C t 2d-1 .
As a consequence, using Cauchy-Schwarz and Minkowski inequalities,

M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t) 2 ≤ C M θ * (0) 2 + ∂ θ M θ * (0) 2 t d-1/2 . ( 50 
)
Therefore, there exists C > 0 such as for any n ≥ 1,

E 1 √ n n t=1 ξ t -1 t v M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t) 2 = 1 n (σ 2 ξ -1) v 2 n t=1 M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t) 2 2 ≤ C n (σ 2 ξ -1) v 2 n t=1 t 2d-1 ≤ C n (σ 2 ξ -1) v 2 1 + n 1 x 2d-1 dx ≤ C v 2 n 2d-1
with C > 0 and for n large enough, using again the fact that for f a positive decreasing function Using the same computations than those required for establishing (53), we have for any θ ∈ Θ: 

∂ θ M θ (s) × t ∂ θ M θ (s) -∂ θ M θ (s) × t ∂ θ M θ (s) 2 ≤ C s d-

Corollary 3 . 7 . 4 ∞ 2 ∞

 3742 Assume the conditions of Corollary 3.3, and further assume that ξ 0 4 < ∞, Θ is a compact set included in Θ(4) ⊂ R and θ * ∈ o Θ. Then, under Assumption C max( ,2) (Θ). and if Γ * 1 and Γ * 2 are positive definite matrices, the central limit theorems (21) and (22) hold. Corollary 3.8 (Example of long memory LARCH(∞) studied in Beran and Schützner, 2009). Under the assumptions of Corollary 3.4 and if c 4 ξ 0 4 i=1 j 4d-4 +6c 2 ξ 0 2 i=1 j 2d-2 < 1, then the central limit theorems (21) and (22) hold.

  1. A LARCH(2) process, with parameters a 0 = 5, a 1 = -0.2 and a 2 = 0.4; 2. A GLARCH(1, 1) process, with parameters c 0 = 2, c 1 = 0.3 and d 1 = -0.6; 3. A long memory LARCH(∞) process, with θ = t (a 0 , c, d) and a 0 (θ) = a 0 and a k (θ) = c k d-1 . We choose a 0 = 1, c = 0.2 and d = 0.1, 0.2, 0.3 and 0.4, using the same example studied in Beran and Schützner (2009) for its numerical illustrations. To define numerically the trajectory of such processes, whose theoretical definition involves an infinite sum, a truncation of this infinite sum has been used by taking a sum of one million terms in the computation of M θ (t), which also requires the generation of one million additional realizations of the white noise. • Several trajectory lengths: n = 200, 500, 1000, 2000 and 5000 for LARCH(2) and GLARCH(1, 1) processes, and n = 1000, 2500, 5000 and 10000 for the LARCH(∞) process (as in Beran and Schützner, 2009); • Two distributions for ξ 0 such as E[|ξ 0 |] = 1: a Gaussian N (0, π/2) distribution denoted N and a normalized Student t(6) distribution with 6 freedom degrees.

2 2

 2 , the condition θ n ∈ Θ(2) can be checked from the equation σ 2 ξt ∞ j=1 a 2 j ( θ n ) < 1, which means for example that σ 2 ξt c 2 ζ(2 -2 d) < 1 for the long memory LARCH(∞) process, where ζ is the Riemann zeta function.

4. 2 Figure 1 :

 21 Figure 1: Financial returns of CAC40 index, between November 15, 2002 and November 15, 2022

Figure 2 :Figure 3 :

 23 Figure 2: Leverage estimate of the financial returns of CAC40 index, between November 15, 2002 and November 15, 2022

Figure 4 :

 4 Figure 4: Correlograms of residuals and absolute values of residuals for the returns of CAC40 index, between November 15, 2002 and November 15, 2022, using a j (θ) = c j d-1 for j ≥ 1

Figure 5 :

 5 Figure 5: Correlograms of residuals and absolute values of residuals for the returns of CAC40 index, between November 15, 2002 and November 15, 2022, using a j (θ) = c j d-1 1 + c j for j ≥ 1

Proof of Corollary 3 . 3 .

 33 The assumptions of Corollary 3.3 are exactly the same as those of Proposition 3.1. It remains for us to prove that (13) could be satisfied under the condition (9), i.e. there exists d(θ) ∈ (0, 1/2) and L θ (•) a slowly varying function such that a j (θ) = L θ (j) j d(θ)-1 for j ∈ N * . Since θ ∈ Θ a compact set, there exists D ∈ (0, 1/2) such that d(θ) ≤ D for any θ ∈ Θ. Moreover, since L θ (•) is a slow varying function and θ ∈ Θ a compact subset of R , there exists C L > 0 such that sup θ∈Θ L θ (j) ≤ C L j 1/4-D/2 for any j ∈ N * , with 1/4 -D/2 > 0. As a consequence,sup θ∈Θ a j (θ) ≤ C L j 1/4-D/2 j D-1 ≤ C L j D/2-3/4 for any j ∈ N * . With d = D/2 + 1/4 < 1/2, Assumption C 0 (Θ) is verified and Corollary 3.3 is established.Proof of Corollary 3.4. We have to prove that the assumptions of Corollary (3.3) are satisfied in this particular case of long memory LARCH(∞) process. First, we have θ = t (a 0 , c, d) ∈ Θ ⊂ R 3 and Assumption C 3 (Θ) has to be verified. It is clear that a

n k=1 f (k) ≤ f ( 1 ) + n 1 f 2 :∂W 1 L 3 . 1 - 1 K 1 L∼ N 0 , (σ 2 ξ - 1 ) Γ * 1 - 1 Γ * 2 Γ * 1 - 1 ∂

 1121311102111211 (t)dt. Therefore, for any v ∈ R,1 t v M θ * (t) ∂ θ M θ * (t) -M θ * (t) ∂ θ M θ * (t)this implies that for any v ∈ R , Using the same method, we also obtain that there exist C > 0 such as for any s ∈ {1, . . . , n},∂ θ M s θ * t ∂ θ M s θ * -∂ θ M s θ * t ∂ θ M s θ * 2 ≤ C s d-1/2 . (53)Now with (53), we can use again the result established in part 2. of the proof of Proposition 3.1 based on the Corollary 1 of Kounias and Weng (1969) and obtain for anyn ∈ N * , θ M s θ * t ∂ θ M s θ * -∂ θ M s θ * t ∂ θ M s θ *a.s. 48), (52) and (55), we deduce that for any v ∈ R ,W n (v) -W n (v) (v) := t v Γ * 1 v + t v K 1with K Now, using the same arguments than in the proof of Theorem 2 of Davis and Dunsmuir (1997), we deduce that finite distributions (W n (v 1 ), • • • , W n (v k )) converge to (W (v 1 ), • • • , W (v k )) for any (v 1 , • • • , v k ) ∈ (R ) k .Moreover, always following the proof of Theorem 2 of Davis and Dunsmuir (1997), (W n (v)) v converges to (W (v)) v as a process on the continuous function space C 0 (R). As a consequence, a maximum v = √ n θ n -θ * of W n (v) converges in distribution to the maximumof t v Γ * 1 v + t v K 1 ,which is v := -and this implies (21). Proof of Remark 3.4. Using the notations of the proof of Theorem 3.1, we have: θ M θn (s) t ∂ θ M θn (s) and Γ 2 := 1 n n s=1 M θn (s) 2 ∂ θ M θn (s) t ∂ θ M θn (s).

Table 2 :

 2 Square roots of the MSE computed for each estimator of parameters c 0 = 2, c 1 = 0.3 and d 1 = -0.6 of a GLARCH(1, 1) process computed from 1000 independent replications.

		172 0.044 0.096 0.238 0.094 0.135 0.179 0.045 0.099 0.190 0.052 0.105
		0.108 0.028 0.057 0.158 0.068 0.081 0.102 0.031 0.055 0.114 0.040 0.061
		0.071 0.019 0.039 0.113 0.050 0.055 0.066 0.018 0.034 0.081 0.029 0.048
		0.052 0.013 0.028 0.087 0.040 0.039 0.045 0.012 0.023 0.050 0.019 0.024
		0.033 0.008 0.017 0.065 0.030 0.025 0.028 0.007 0.014 0.027 0.006 0.012
	t(6)	0.233 0.061 0.145 0.367 0.113 0.232 0.335 0.085 0.191 0.349 0.094 0.181
		0.142 0.042 0.081 0.196 0.077 0.116 0.255 0.072 0.156 0.275 0.095 0.156
		0.091 0.029 0.051 0.147 0.063 0.082 0.207 0.064 0.125 0.261 0.096 0.144
		0.064 0.020 0.033 0.096 0.043 0.052 0.153 0.059 0.097 0.214 0.092 0.119
		0.039 0.013 0.022 0.071 0.029 0.037 0.116 0.036 0.095 0.184 0.073 0.119
				θ n			θ F Z		d QM L
	d	n	a 0	c	d	a 0	c	d	d
	d = 0.1 1000	0.035 0.024 0.089 0.092 0.054 0.160 0.357
		2500	0.020 0.015 0.048 0.089 0.059 0.119 0.292
		5000	0.016 0.010 0.036 0.040 0.031 0.084 0.217
		10000 0.013 0.010 0.021 0.033 0.029 0.053 0.198
	d = 0.2 1000	0.041 0.023 0.060 0.103 0.059 0.147 1.449
		2500	0.028 0.017 0.043 0.052 0.033 0.088 0.733
		5000	0.016 0.010 0.024 0.033 0.027 0.050 0.559
		10000 0.014 0.008 0.017 0.032 0.024 0.045 0.257
	d = 0.3 1000	0.060 0.024 0.053 0.119 0.054 0.110	-
		2500	0.045 0.017 0.037 0.091 0.035 0.087	-
		5000	0.026 0.011 0.022 0.057 0.029 0.050	-
		10000 0.016 0.008 0.017 0.039 0.024 0.042	-
	d = 0.4 1000	0.100 0.025 0.047 0.189 0.051 0.081	-
		2500	0.071 0.017 0.030 0.158 0.041 0.074	-
		5000	0.041 0.011 0.018 0.122 0.032 0.057	-
		10000 0.034 0.009 0.015 0.067 0.024 0.036	-

Table 3 :

 3 the long memory parameter d in the case of a LARCH(∞) process, the QML estimator proposed in[START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF] has truly disastrous performances compared to those obtained with θ F Z and in particular those of θ n .

Square roots of the MSE computed for estimators θ n and θ F Z of parameters a 0 = 1, c = 0.2 and d = 0.1, 0.2, 0.3 and 0.4 of the LARCH(∞) process computed from 300 independent replications, and for d QM L (h) already computed in Beran and Schützner (2009) for d = 0.1 and 0.2.

of

  1/2 . M θn (s)× t ∂ θ M θn (s) -∂ θ M θn (s) × t ∂ θ M θn (s) Moreover, for any θ ∈ Θ, since the process ∂ θ M θ (s) × t ∂ θ M θ (s) s is a stationary causal sequence such as E ∂ θ M θ (0) × t ∂ θ M θ (0) < ∞, Theorem 36.4 in[START_REF] Billingsley | Probability and Measure[END_REF] implies :

	And following (54), we obtain for any θ ∈ Θ
		1 n	n s=1	∂ -→	0
						n→∞
	and this implies				
	1 n	n s=1	n→∞ ∂ θ a.s. -→	0.	(57)
					1 n	n s=1	∂ θ M θ

θ M θ (s) × t ∂ θ M θ (s) -∂ θ M θ (s) × t ∂ θ M θ (s) a.s.

-→ n→∞ 0 Using Theorem 2.2.1. in

[START_REF] Straumann | Estimation in conditionally heteroscedastic time series models[END_REF]

, we deduce that:

sup θ∈Θ 1 n n s=1 ∂ θ M θ (s) × t ∂ θ M θ (s) -∂ θ M θ (s) × t ∂ θ M θ (s) a.s. * (s) × t ∂ θ M θ * (s) a.s. -→ n→∞ Γ * 1 .

But for any s ∈ {1, . . . , n}, θ ∈ Θ → ∂ θ M θ (s) is a continuous function and since θ n a.s.

-→

n→∞ θ * , 1 n n s=1 ∂ θ M θn (s) × t ∂ θ M θn (s)

a.s.

-→ n→∞ Γ * 1 .

(58)
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Using (57) and (58), we deduce that Γ 1 a.s.

-→ n→∞ Γ * 1 .

Using the same reasoning as well as (50), we also deduce that Γ 2 a.s.

-→ n→∞ Γ * 2 .

Proof of Corollary 3.5. Using exactly the same arguments as in the proof of Corollary 3.2 for establishing that Assumption C (Θ) holds with = p + q + 1, Assumption C +2 (Θ) also holds. Moreover, for any GLARCH(p, q) process, the matrix Γ * 1 and Γ * 2 are positive definite matrix. Indeed, following the same reasoning as in the proof of Lemma 5 of [START_REF] Beran | On approximate pseudo-maximum likelihood estimation for LARCH-processes[END_REF], we have for any

Using relation [START_REF] Davis | Least absolute deviation estimation for regression with ARMA errors[END_REF], we deduce that:

Then:

. . , X -p , M θ * (-1), . . . , M θ * (-q) v = 0. Such equation has no solution since a linear relationship [START_REF] Davis | Least absolute deviation estimation for regression with ARMA errors[END_REF] relies all these random variables to M θ * (0) (or these means that (X t ) would be a GLARCH(p -1, q -1) process which is not possible since we have assumed that P θ * 1 and Q θ * 2 are coprime polynomials). Hence, t v ∂ θ M θ * (0) = 0 implies v = 0: Γ * 1 is a positive definite matrix (and a similar reasoning leads to the same property satisfied by Γ * 2 ).

Proof of Corollary 3.6. As we had already written, in the case of a LARCH(p) process, we must have Θ ⊂ Θ p (4), which is defined in [START_REF] Billingsley | Probability and Measure[END_REF]. Therefore, choosing Θ as defined in (23) guarantees that it is a compact subset of Θ p (4). Moreover, since a LARCH(p) process is a particular case of a GLARCH(p, q) process, Corollary 3.5 is satisfied under the conditions of Corollary 3.6.

Proof of Corollary 3.7. In the proof of Corollary 3.3, it was established that ( 13) could be satisfied under the condition (9), i.e. there exists d(θ) ∈ (0, 1/2) and L θ (•) a slowly varying function such that a j (θ) = L θ (j) j d(θ)-1 for j ∈ N * . The various assumptions required for the establishment of the central limit theorem [START_REF] Truquet | On a family of contrasts for parametric inference in degenerate arch models[END_REF] are also present in the assumptions of the Corollary 3. Aknowledgments The author is very grateful to the referees and the editor for many relevant suggestions, corrections and comments that helped to notably improve the paper.