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This paper aims at providing a new semi-parametric estimator for LARCH(∞) processes, and therefore also for

LARCH(p) or GLARCH(p, q) processes. This estimator is obtained from the minimization of a contrast leading to

a least squares estimator of the absolute values of the process. The strong consistency and the asymptotic normality

are showed, and the convergence happens with rate
√
n as well in cases of short or long memory. Numerical

experiments confirm the theoretical results, and show that this new estimator clearly outperforms the smoothed

quasi-maximum likelihood estimators or the weighted least square estimators often used for such processes.

MSC 2010 subject classifications: Primary 62F12; 62M10; secondary 91B84

1. Introduction

This paper is devoted to study the asymptotic properties of a new semi-parametric estimator for

LARCH(∞) processes. Such processes were first defined in [13] and also studied concerning their

stationarity and dependence properties in [14], [9], [4] and [10]. LARCH(∞) processes, which are con-

ditionally heteroskedastic weak white noises, provide new perspectives for modelling financial data.

Indeed, this model has the advantage over GARCH formulations to allow the volatility to be arbitrarily

close to 0 and to may be long memory process.

Since this case will also be considered in this paper, we will use a semi-parametric class of LARCH(∞)

defined in (1) and assume that a trajectory (X1, . . . ,Xn) is observed, but the parameter θ∗ that defines

the model is unknown (see more details in Section 2). Our goal will be to propose an estimator al-

lowing to estimate θ∗ (and not a component of θ∗ such as the location parameter as it was done using

M-estimator in [2]).

For numerous affine causal process, such as ARMA, GARCH, ARMA-GARCH, AR(∞) or ARCH(∞)
processes, the Gaussian quasi-maximum likelihood (QML) provides a very accurate estimator (see

more details in [1]). Even if a LARCH(∞) process or its particular cases LARCH(p) or GLARCH(p, q)
(see their definitions in (5) and (6)) are also causal affine time series, such a contrast cannot be used as is

to estimate the parameter θ∗. Indeed, the conditional variance of Xt can not be bounded close to 0 and

this does not allow asymptotic results for such contrasts (see more details on this point in [3], [16] and

especially in [8]). Beran and Schützner in [3] and Truquet in [16] proposed an interesting alternative of

estimation based on a family of smooth approximations of the QML estimation and they establish the

consistency and asymptotic normality of the estimator of θ∗ in cases of short or long memory. Franck

and Zakoïan in [8] prefered to construct weighted least squares estimators, for which they also show

consistency and asymptotic normality. Note that they also extend their results to AR(p)-LARCH(q)
processes, as well as Truquet.

We propose a new estimator which is obtained by minimizing a least squares contrast of the abso-

lute values of (Xt) (see its precise definition in (11), Section 3). A strong consistency and asymptotic

normality are established for this estimator, under not too restrictive assumptions, which notably allow
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to consider as well short and long memory. Moreover, only a fourth order moment of the white noise

is required for the asymptotic normality (order 4 in [16] and 5 in [3] for the smoothed QML estimator,

and 8 in [8], Assumption A12, for the weighted LS estimator). The convergence happens with rate√
n as well for short and long memory LARCH(∞) process, while it is nβ with 0 < β < 1/2 for the

smoothed QMLE defined in [3] in this last case.

Monte-Carlo experiments confirm the asymptotic behavior of the estimator even for trajectories of not

very large lengths. The performances of this new estimator are then compared to those obtained with

the regularized QMLE (for which the choice of the regularization parameter is a real problem) and

to those obtained with the weighted least squares estimator of [8]. The results of these comparisons

show without any doubt the much faster convergence of this new estimator, especially compared to the

smoothed QMLE.

The forthcoming Section 2 will be devoted to the definition and stationarity conditions of the consid-

ered LARCH(∞) processes. The main results concerning the definition and the asymptotic behavior of

the new estimator are stated in Section 3. Numerical experiments are proposed in Section 4 and proofs

are established in Section 5.

2. Semi-parametric LARCH(∞) processes

Denote ‖ · ‖ the usual Euclidian norm for vectors or matrix and denote ‖Z‖p = E
[
‖Z‖p

]1/p
for p≥ 1

where Z is a random vector valued in R
m, m ∈ N

∗. Here we consider a LARCH(∞) process intro-

duced in [13] and also studied in [9], [10], [3], [8] or [16], which is defined by:

Xt = ξt

(
a0(θ

∗) +

∞∑

j=1

aj(θ
∗)Xt−j

)
for any t ∈ Z, (1)

where:

• (ξt)t∈Z is a sequence of symmetric centered independent random variables such as ‖ξ0‖1 = 1
and ‖ξ0‖r <∞ with r ≥ 2;

• θ∗ ∈R
d, is an unknown vector of parameters but d ∈N

∗ is known;

• For any j ∈N, θ ∈R
d 7→ aj(θ) ∈ R are known continuous functions and without lose of gener-

ality we will assume a0(θ)> 0 for any θ ∈R
d (the case a0(θ) = 0 impliesXt = 0 for any t ∈ Z,

see [9]).

For insuring the stationarity of (Xt) and the existence of ‖Xt‖2 (see also [9]), assume that θ∗ ∈Θ(2),
with

Θ(2) =
{
θ ∈R

d, ‖ξ0‖22
∞∑

j=1

a2j (θ)< 1
}
. (2)

Remark 2.1. Note that we assume ‖ξ0‖1 = 1 and not ‖ξ0‖2 = 1 as it is usually done. This will be

explained by the expression of the estimator we will consider. However, the difference between those

normalization choice only consists on a new parametrization, since, with ξ′t = ξt/‖ξ0‖2 for any t ∈ Z
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and using the linearity of its expression, (1) could also be written

Xt = ξ′t

(
a′0(θ

∗) +

∞∑

j=1

a′j(θ
∗)Xt−j

)
where ‖ξ′0‖2 = 1 and a′j(θ

∗) = ‖ξ0‖2 aj(θ∗) for any j ∈N.

(3)

For instance, in case of a Gaussian white noise, we have ‖ξ0‖22 = σ2ξ = π/2 when ‖ξ0‖1 = 1.

In the sequel, we will also consider ‖X0‖4 and for this we define

Θ(4) =
{
θ ∈R

d, ‖ξ0‖44
∞∑

j=1

a4j (θ) + 6 ‖ξ0‖22
∞∑

j=1

a2j (θ)< 1
}
. (4)

Three interesting special cases of LARCH(∞) processes can be mentioned:

1. The first one is composed by LARCH(p) processes, which are defined by

Xt = ξt σt with σt = a0 +

p∑

i=1

aiXt−i, for any t ∈ Z, (5)

and therefore a LARCH(p) process is a LARCH(∞) process defined in (1) with ak(θ) = ak for

0≤ k ≤ p and θ =
(
a0, a1, . . . , ap

)
∈ (0,∞)×R

p. For such LARCH(p), the sets Θ(2) and Θ(4)
are directly deduced from their definitions.

2. A natural extension of LARCH(p) processes to be considered are GLARCH(p, q) processes, fol-

lowing the same procedure as the known transition from ARCH processes to GARCH processes.

A GLARC(p, q) process is defined by

Xt = ξt σt with σt = c0 +

p∑

i=1

ciXt−i +

q∑

j=1

dj σt−j , for any t ∈ Z. (6)

For studying such a process, define the polynomials P (x) = 1 −∑q
j=1 dj x

j and Q(x) =

c0 +
∑p

i=1 ci x
i. Then the previous iterative equation (6) is equivalent to P (B)σ = Q(B)X

where B is the usual backward operator. In the sequel we will assume that P and Q are coprime

polynomials for θ = θ∗.

We define θ = t
(
c0, c1, . . . , d1, . . . , dq

)
∈ (0,∞) × R

p+q and the coefficients ak(θ) exponen-

tially decrease to 0 when k→∞ (as it is usually known for ARMA(p, q) processes since the

roots of P lie outside the unit circle).

For GLARCH(p, q) process, the assumption for obtaining a stationary 2nd-order solution of (6)

is θ ∈Θp,q(2), with

Θp,q(2) =
{
θ ∈ (0,∞)×R

p+q,

q∑

i=1

d2i + ‖ξ0‖2
p∑

j=1

c2j < 1
}
. (7)

The computation ofΘ(4) for such GLARCH(p, q) processes is not straightforward. In [10], Θ(4)
is simplified for GLARCH(1,1) and it is established that:

Θ1,1(4) =
{
θ ∈ (0,∞)×R

2, ‖ξ0‖44
c41

1− d41
+6 ‖ξ0‖22

c21
1− d21

< 1
}
.
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3. Another case we will study is that of LARCH(∞) with long memory, i.e. such that there exists

d(θ) ∈ (0,1/2) and Lθ(·) a slowly varying function such that:

aj(θ) = Lθ(j) j
d(θ)−1 for j ∈N

∗. (8)

This case has been especially considered in [14] and [3]. In this article, a semi-parametric es-

timation procedure has been studied when aj(θ) = c j1−d for j ∈ N
∗ and θ = (a0, c, d) (see

more details hereafter). Note also that in such a case
∑∞

j=1 |aj(θ)| =∞ but
∑∞

j=1 a
2
j (θ) <∞

or
∑∞

j=1 a
4
j (θ)<∞.

3. A new estimator of LARCH parameters

3.1. Definition and consistency of the estimator

We consider here a particular case of M-estimators for estimating θ∗ from an observed trajectory

(X1, . . . ,Xn) of a stationary solution of (1). For this, let the following contrast function Φ be defined

for x ∈R
∞ and θ ∈R

d by

Φ(x, θ) =
(
|x1| −

∣∣a0(θ) +
∞∑

j=1

aj(θ)xj+1

∣∣
)2
. (9)

Now, define the process (X̃)t∈Z by:

X̃t =
{Xt for t≥ 1
0 for t≤ 0

. (10)

Then define the following estimator:

θ̂n = Argmin
θ∈Θ

1

n

n∑

t=1

Φ
(
(X̃t−k)k≥0, θ

)
. (11)

We add a classical identification condition:

Assumption Id(Θ): If θ, θ′ ∈Θ,

(
ai(θ) = ai(θ

′) for all i ∈N
)

=⇒
(
θ = θ′

)
. (12)

Then, we obtain the following conditions of the consistency of both the estimators:

Proposition 3.1. Assume that (Xt) is a stationary solution of (1) with θ∗ ∈Θ a compact set of Θ(2).
Under Assumption Id(Θ) and if

∞∑

k=1

logk× sup
θ∈Θ

{
a2k(θ)

}
<∞, (13)

then θ̂n
a.s.−→

n→∞
θ∗.
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In case of LARCH(p) or GLARCH(p, q) process, Assumption Id(Θ) as well as condition (13) are

automatically satisfied and therefore:

Corollary 3.1. Assume that (Xt) is a stationary solution of a LARCH(p) or a GLARCH(p, q) pro-

cess, respectively defined in (5) and (6) with θ∗ ∈Θ a compact set of Θ(2). Then θ̂n
a.s.−→

n→∞
θ∗.

The consistency of θ̂n for long-memory LARCH(∞) can also be deduced from Proposition 3.1, since

condition (13) is satisfied in such a case:

Corollary 3.2. Assume that (Xt) is a stationary solution of a LARCH(∞) defined in (1) where θ∗ ∈
Θ a compact set of Θ(2) and (aj(θ)) satisfying (8) with 0≤ d(θ)≤ d < 1/2 for any θ ∈Θ. Then under

Assumption Id(Θ), θ̂n
a.s.−→

n→∞
θ∗.

Corollary 3.3 (Example of long memory LARCH(∞) studied in [3]). Let a0(θ) = a0 and aj(θ) =

c jd−1 for j ≥ 1, set θ = (a0, c, d) with 0 < a ≤ a0 ≤ a <∞, 0 ≤ d ≤ d < 1/2 and |c| ≤ c with

c2 ‖ξ0‖22
∑∞

i=1 j
2d−2 < 1. Then θ̂n

a.s.−→
n→∞

θ∗.

Remark 3.1. The conditions required for Proposition 3.1 and Corollaries 3.1 and 3.3 are weaker

to those stated in Theorem 4.2. of [8] for a weighted LS estimator (see its definition in (22)) where

‖ξ0‖4 <∞ is required, and in Theorem 4 of [3] for a smoothed QML estimator (see its definition in

(21)) where ‖ξ0‖3 <∞ is required for L
1 consistency. However, in [16], the strong consistency of

smoothed QML estimator is obtained for LARCH(p) processes under weaker conditions (there exists

s > 0 such as ‖ξ0‖s <∞).

3.2. Asymptotic normality of the estimator

In the sequel, for ψ : θ ∈Θ⊂R
d 7→ ψ(θ) ∈R such as ψ ∈ C1(Θ), denote:

∂θψ(θ) :=
( ∂

∂θi
ψ(θ)

)
1≤i≤d

and ∂2θ2ψ(θ) :=
( ∂2

∂θi∂θj
ψ(θ)

)
1≤i,j≤d

.

As it was already mentionned in [3], for establishing the asymptotic normality of θ̂n, it is required to

consider the derivatives in θ of

M t
θ = a0(θ) +

∞∑

k=1

ak(θ)Xt−k for t ∈ Z and θ ∈Θ. (14)

But the existence of M t
θ derivatives could be problematic since the sequence (ak(θ)) is not summable

in case of long memory. Hence we will consider the following assumption:

Assumption (S): For every t ∈ Z, (M t
θ)θ∈Θ is a separable stochastic process on Θ.

Note that this assumption is not really restrictive since a stochastic process can always be replaced

by a separable version (see Remark 1 in [3]). Then:
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Theorem 3.1. Assume that (Xt) is a stationary solution of (1) with θ∗ ∈Θ, where Θ is in the interior

of a compact set included in Θ(4). Assume that Assumption S is satisfied and for any k ∈ N, the

functions ak ∈ C2(Θ) and such as there exist Ca > 0 and d < 1/2 satisfying

sup
θ∈Θ

{
|ak(θ)|+ ‖∂θak(θ∗)‖

}
≤Ca k

d−1 for any k ∈N
∗ (15)

and such as the following matrix Γ∗
1 and Γ∗

2 are positive symmetric with

Γ∗
1 := E

[
∂θM

0
θ∗

t∂θM
0
θ∗

]
= ∂θa0(θ

∗) t∂θa0(θ
∗) + σ2X

∞∑

k=1

∂θak(θ
∗) t∂θak(θ

∗)

with σ2X := E
[
X2

0

]
=

a20(θ
∗)σ2ξ

1− σ2ξ
∑∞

k=1 a
2
k(θ

∗)
; (16)

and Γ∗
2 := E

[(
M0

θ∗
)2
∂θM

0
θ∗ × t∂θM

0
θ∗

]
. (17)

Then, under Assumption Id(Θ),

√
n
(
θ̂n − θ∗

) L−→
n→∞

N
(
0 , (σ2ξ − 1)

(
Γ∗
1

)−1
Γ∗
2

(
Γ∗
1

)−1
)
. (18)

The expression of Γ∗
2 is not easy to simplify, even in the simplest cases. This is not really a problem,

since, as is usual, it is possible to use Slutsky’s Lemma, to define the following estimators of Γ∗
1 and

Γ∗
2:





Γ̂1 :=
1

n

n∑

t=1

(
∂θa0(θ̂n) +

t−1∑

k=1

∂θak(θ̂n)Xt−k

)
t
(
∂θa0(θ̂n) +

t−1∑

k=1

∂θak(θ̂n)Xt−k

)

Γ̂2 :=
1

n

n∑

t=1

(
a0(θ̂n) +

t−1∑

k=1

ak(θ̂n)Xt−k

)2(
∂θa0(θ̂n) +

t−1∑

k=1

∂θak(θ̂n)Xt−k

)
×

×t
(
∂θa0(θ̂n) +

∑t−1
k=1 ∂θak(θ̂n)Xt−k

)

,

which are consistent estimators of Γ∗
1 and Γ∗

2 (ergodic theorem),

√
n
(
σ̂2ξ − 1

)−1/2(
Γ̂1
)1/2(

Γ̂2
)−1/2 (

Γ̂1
)1/2(

θ̂n − θ∗
) L−→
n→∞

N
(
0 , Id

)
,

with σ̂2ξ :=
1

n

n∑

t=1

X2
t(

a0(θ̂n) +
∑t−1

k=1 ak(θ̂n)Xt−k

)2 . (19)

Note that the consistency of σ̂2ξ has been established in [8]. Such asymptotic normality of θ̂n allows

the computation of asymptotic confidence intervals or test’s thresholds on θ.

In case of LARCH(p) processes, Theorem 3.1 is satisfied under very simple assumptions:
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Corollary 3.4. Assume that (Xt) is a stationary solution of a LARCH(p) defined in (5) with 0 <
a∗0 < a where 0< a <∞ and (a∗1, . . . , a

∗
p) such as

‖ξ0‖44
p∑

j=1

a∗4j (θ) + 6 ‖ξ0‖22
p∑

j=1

a∗2j (θ)< 1.

Then, the central limit theorems (18) and (19) hold. Moreover, for LARCH(p) processes, considering

the usual representation (3) described in Remark 2.1, we obtain:

√
n
(
σ̂4ξ − σ̂2ξ

)−1/2(
Γ̂1 Γ̂

−1
2 Γ̂1

)1/2(t(â′0, . . . , â′p
)
− t(a′∗0 , . . . , a

′∗
p

)) L−→
n→∞

N
(
0 , Ip+1

)
. (20)

As an example of computation of the asymptotic covariance, if we consider the case of a LARCH(1)

process, we obtain:

Γ∗
1 =

(
1 0
0 σ2X

)
, Γ∗

2 =

(
a20 + σ2X 2a0a1σ

2
X

2a0a1σ
2
X a20σ

2
X +E[X4

0 ]

)

=⇒
(
Γ∗
1

)−1
Γ∗
2

(
Γ∗
1

)−1
=

(
a∗20 + σ2X 2a∗0a

∗
1

2a∗0a
∗
1

a∗2
0

σ2

X

+
E[X4

0
]

σ4

X

)
,

where

{
σ2X = a∗20 σ2ξ

(
1− σ2ξa

∗2
1

)−1

E[X4
0 ] = a∗40 E[ξ40 ]

(
1 + 5σ2ξa

∗2
1

)(
1− σ2ξa

∗2
1

)−1(
1−E[ξ40 ]a

∗4
1

)−1 .

The case of GLARCH(p, q) processes can also be considered under simplified assumptions:

Corollary 3.5. Assume that (Xt) is a stationary solution of GLARCH(p, q) process defined in (6)

with θ∗ = t(c∗0, c
∗
1, . . . , c

∗
p, d

∗
1, . . . , d

∗
q

)
∈ Θ the interior of a compact set of Θp,q(4). Then the central

limit theorems (18) and (19) hold.

The asymptotic normality of the estimator θ̂n can also be obtained in case of long-memory LARCH(∞):

Corollary 3.6. Assume the conditions of Corollary 3.2 with θ∗ ∈ Θ, where Θ is in the interior of a

compact set included in Θ(4). Assume also that for any j ∈ N
∗, θ ∈ R

d 7→ aj(θ) = Lθ(j) j
d(θ)−1 as

well as θ ∈ R
d 7→ a0(θ) are C2(Θ) functions such as (15) is satisfied. Then, under Assumption S and

if Γ∗
1 and Γ∗

2 are positive definite matrix, the central limit theorems (18) and (19) hold.

Corollary 3.7 (Example of long memory LARCH(∞) studied in [3]). Under the assumptions of

Corollary 3.3 and if c4 ‖ξ0‖44
∑∞

i=1 j
4d−4 + 6 c2 ‖ξ0‖22

∑∞
i=1 j

2d−2 < 1, under Assumption S, then

the central limit theorems (18) and (19) hold.

Remark 3.2. To our knowledge, the only result obtained for the estimation of the memory parameter

d in the case of long memory LARCH(∞) processes was obtained in [3] using the smoothed QML esti-

mator. However, the expression of this estimator actually uses only a small part of the trajectory (whose

size also depends on the parameter d!) to account for the strong memory. This leads to a rate of con-

vergence in nβ with 0<β < 1/2, which is much less interesting than the rate in
√
n obtained with θ̂n.

The Monte-Carlo experiments will confirm these theoretical results and the much better performance

of θ̂n.
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4. Numerical experiments

In this Section, we report the results of Monte-Carlo experiments realized on several LARCH pro-

cesses. More precisely, we considered:

• Three different LARCH processes:

1. A LARCH(2) process, with parameters a0 = 5, a1 =−0.2 and a2 = 0.4;

2. A GLARCH(1,1) process, with parameters c0 = 2, c1 = 0.3 and d1 =−0.6;

3. A long memory LARCH(∞) process, with θ = t(a0, c, d) and a0(θ) = a0 and ak(θ) =
c kd−1. We choose a0 = 1, c= 0.2 and d= 0.1, 0.2, using the same example studied in [3]

for its numerical illustrations.

• Several trajectory lengths:n= 200, 500, 1000, 2000 and 5000 for LARCH(2) and GLARCH(1,1)
processes, and n= 1000, 2500, 5000 and 10000 for the LARCH(∞) process (as in [3]);

• Two distributions for ξ0 such as E[|ξ0|] = 1: a Gaussian N (0, π/2) distribution denoted N and

a renormalized Student t(6) distribution with 6 freedom degrees.

For each choice of process, of length n and noise distribution, 1000 replications of independent trajec-

tories of the LARCH process are generated.

Two other estimators will be compared to θ̂n:

1. Following [3] and [16], the smooth approximation of the QMLE defined for h > 0 by

θ̂QML(h) := Argmin
θ∈Θ

1

n

n∑

t=1

h+X2
t

h+ (M t
θ)

2
+ log

(
h+ (M t

θ)
2). (21)

A priori choice of h or data-driven ĥ is not an easy task, even if Truquet in [16] have given some

indications. Hence, we will make appear the results obtained for 2 different values of h that

provide the best performances. In case of the considered long memory LARCH(∞) process, [3]

proposed a modified version of θ̂QML(h) and we will use its results.

2. Following [8], the weighted least square estimator defined by:

θ̂FZ := Argmin
θ∈Θ

1

n

n∑

t=1

τt
(
X2

t − (M t
θ)

2)2, (22)

where the weights (τt) are obtained for LARCH(p) or GLARCH(p, q) using an empirical rule

proposed in [12]:

τt =
(
max

(
1 ,

1

C

p∑

i=1

|Xt−i| I1|Xt−i|>C

))−4
,

where C is computed as the 90% quantile of the absolute values
(
|X1|, . . . , |Xn|

)
. In case of

long memory LARCH(∞), we replace p by t− 1 in the definition of τt.

Remark 4.1. Following Remark 2.1, the comparisons between θ̂n, obtained with parameters defined

under the normalization condition ‖ξ0‖1 = 1, and θ̂QML(h) or θ̂FZ , for which the normalization

condition is ‖ξ0‖2 = 1, require to modified certain estimators. Hence, for LARCH(2) process, we

consider ‖ξ0‖2 θ̂QML(h) and ‖ξ0‖2 θ̂FZ , for GLARCH(1,1) process, the same except for d1 where
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θ̂n θ̂FZ θ̂QML(2) θ̂QML(1)

ξ0 law n a0 a1 a2 a0 a1 a2 a0 a1 a2 a0 a1 a2

N 200 0.326 0.047 0.064 0.423 0.092 0.100 1.015 0.136 0.123 1.832 0.248 0.168

500 0.210 0.029 0.043 0.268 0.059 0.065 0.446 0.070 0.086 1.119 0.145 0.121

1000 0.145 0.021 0.030 0.188 0.044 0.047 0.382 0.060 0.082 0.582 0.075 0.084

2000 0.101 0.014 0.021 0.130 0.030 0.033 0.265 0.047 0.059 0.453 0.053 0.080

5000 0.065 0.009 0.013 0.083 0.019 0.021 0.205 0.031 0.048 0.326 0.037 0.061

t(6) 200 0.433 0.061 0.091 1.303 0.163 0.181 1.968 0.263 0.249 2.505 0.346 0.267

500 0.272 0.040 0.061 1.178 0.117 0.145 1.701 0.199 0.239 2.234 0.273 0.249

1000 0.224 0.029 0.051 1.148 0.092 0.126 1.643 0.193 0.259 2.015 0.220 0.231

2000 0.124 0.021 0.031 1.129 0.073 0.109 1.604 0.180 0.256 1.965 0.181 0.225

5000 0.077 0.014 0.021 1.127 0.058 0.100 1.677 0.212 0.311 2.082 0.178 0.245

Table 1. Square roots of the MSE computed for each estimator of parameters a0 = 5, a1 = −0.2 and a2 = 0.4
of a LARCH(2) process computed from 1000 independent replications.

θ̂n θ̂FZ θ̂QML(1) θ̂QML(0.5)

ξ0 law n c0 c1 b1 c0 c1 b1 c0 c1 b1 c0 c1 b1

N 200 0.172 0.044 0.096 0.238 0.094 0.135 0.179 0.045 0.099 0.190 0.052 0.105

500 0.108 0.028 0.057 0.158 0.068 0.081 0.102 0.031 0.055 0.114 0.040 0.061

1000 0.071 0.019 0.039 0.113 0.050 0.055 0.066 0.018 0.034 0.081 0.029 0.048

2000 0.052 0.013 0.028 0.087 0.040 0.039 0.045 0.012 0.023 0.050 0.019 0.024

5000 0.033 0.008 0.017 0.065 0.030 0.025 0.028 0.007 0.014 0.027 0.006 0.012

t(6) 200 0.233 0.061 0.145 0.553 0.165 0.207 0.739 0.101 0.184 0.734 0.107 0.185

500 0.142 0.042 0.081 0.499 0.138 0.125 0.542 0.095 0.162 0.583 0.108 0.158

1000 0.091 0.029 0.051 0.479 0.121 0.091 0.530 0.094 0.153 0.597 0.114 0.151

2000 0.064 0.020 0.033 0.466 0.108 0.065 0.515 0.090 0.116 0.611 0.119 0.152

5000 0.039 0.013 0.022 0.462 0.092 0.059 0.488 0.081 0.107 0.575 0.110 0.120

Table 2. Square roots of the MSE computed for each estimator of parameters c0 = 2, c1 = 0.3 and d1 =−0.6 of

a GLARCH(1,1) process computed from 1000 independent replications.

d̂QML
1 (h) and d̂FZ

1 are considered as they are, and for LARCH(∞) process, the same except for d

where d̂QML(h) and d̂FZ are considered as they are. When the law of ξ0 is unknown, the comparison

is still possible by using the estimator σ̂ξ defined in (19).

The results are presented in Tables 1, 2 and 3.

Conclusions of the Monte-Carlo experiments:

• The convergence of θ̂n happens with a rate
√
n for the 3 types of LARCH processes considered

and the 2 noise distributions. This is also the case for the estimators θ̂QML and θ̂FZ , but only in

the Gaussian framework, the case of a Student distribution t(6), for which the moments of order

6 do not exist, making the convergence much slower.
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θ̂n θ̂FZ d̂QML

d n a0 c d a0 c d d

d= 0.1 1000 0.035 0.024 0.089 0.092 0.054 0.160 0.357

2500 0.020 0.015 0.048 0.089 0.059 0.119 0.292

5000 0.016 0.010 0.036 0.040 0.031 0.084 0.217

10000 0.013 0.010 0.021 0.033 0.029 0.053 0.198

d= 0.2 1000 0.041 0.023 0.060 0.103 0.059 0.147 1.449

2500 0.028 0.017 0.043 0.052 0.033 0.088 0.733

5000 0.016 0.010 0.024 0.033 0.027 0.050 0.559

10000 0.014 0.008 0.017 0.032 0.024 0.045 0.257

Table 3. Square roots of the MSE computed for estimators θ̂n and θ̂FZ of parameters a0 = 1, c = 1 and d =

0.1 or 0.2 of the LARCH(∞) process computed from 300 independent replications, and for d̂QML(h) already

computed in [3].

• Overall we can say that in the framework of a white Gaussian noise, the θ̂n estimator converges

twice as fast as θ̂FZ and this for the 3 processes. We notice that even in the case of long memory,

while this has not been shown in [8], the θ̂FZ estimator provides convincing results, even if

they are largely outperformed by those of θ̂n. However, as already mentioned, the asymptotic

normality of θ̂FZ with rate of convergence
√
n is ensured only under the minimal assumption

of a moment of order 8 for the white noise, which is illustrated by the poor numerical results

performed with a Student’s law t(6).

• Finally, concerning the θ̂QML estimator, it offers satisfactory performances comparable to those

of θ̂n only in one case, that of the GARCH(1,1) with Gaussian noise, and this after the selection

of an optimal regularization parameter (which is easily done in Monte-Carlo experiments, but

which would otherwise require a data-driven procedure which does not exist at the moment). For

the estimator of the long memory parameter d in the case of a LARCH(∞) process, the estimator

proposed in [3] has really catastrophic performances compared to those obtained with θ̂FZ and

especially those of θ̂n.

5. Proofs

Proof of Proposition 3.1. For θ ∈Θ, denote:

In(θ) :=
1

n

n∑

t=1

Φ
(
(Xt−k)k≥0, θ

)
and Ĩn(θ) :=

1

n

n∑

t=1

Φ
(
(X̃t−k)k≥0, θ

)
. (23)

The proof will be stepped in 3 points:

1. We prove here that supθ∈Θ
∣∣In(θ)− I(θ)

∣∣ a.s.−→
n→∞

0, with

I(θ) := E
[
Φ
(
(X−k)k≥0, θ

)]
for θ ∈Θ. (24)

Indeed, from [7], there exists a function H : R∞ → R such as for any t ∈ Z, Xt = H((ξt−k)k≥0)
and therefore (Xt)t∈Z is a second order ergodic stationary sequence since r = 2. Following the same

reasonning, we also have
(
Φ
(
(X−k)k≥0, θ

))
t∈Z that is an ergodic stationary sequence for any θ ∈Θ,
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with E
[∣∣Φ
(
(X−k)k≥0, θ

)∣∣]<∞ for any θ ∈Θ. As a consequence, for any θ ∈Θ,

In(θ)
a.s.−→

n→∞
I(θ).

Now, using Theorem 2.2.1. in [15], we deduce that the previous ergodic theorem is also a uniform

ergodic theorem and we obtain supθ∈Θ
∣∣In(θ)− I(θ)

∣∣ a.s.−→
n→∞

0.

2. We also have supθ∈Θ
∣∣In(θ)− Ĩn(θ)

∣∣ a.s.−→
n→∞

0. For establishing this result, first set:

M t
θ := a0(θ) +

∞∑

j=1

aj(θ)Xt−j and M̃ t
θ := a0(θ) +

t−1∑

j=1

aj(θ)Xt−j . (25)

Then,

∣∣In(θ)− Ĩn(θ)
∣∣ ≤ 1

n

n∑

t=1

∣∣Φ
(
(Xt−k)k≥0, θ

)
−Φ

(
(X̃t−k)k≥0, θ

)∣∣,

and for any θ ∈Θ,

∣∣Φ
(
(Xt−k)k≥0, θ

)
−Φ

(
(X̃t−k)k≥0, θ

)∣∣ =
∣∣∣
(
|Xt| −

∣∣M t
θ

∣∣)2 −
(
|Xt| −

∣∣M̃ t
θ

∣∣)2
∣∣∣

≤
∣∣M t

θ − M̃ t
θ

∣∣
(
2 |Xt|+

∣∣M t
θ

∣∣+
∣∣M̃ t

θ

∣∣
)
.

Therefore, using Cauchy-Schwarz and Minkowski inequalities, we obtain:

E

[
sup
θ∈Θ

∣∣Φ
(
(Xt−k)k≥0, θ

)
−Φ

(
(X̃t−k)k≥0, θ

)∣∣
]

≤ E

[
sup
θ∈Θ

{∣∣M t
θ − M̃ t

θ

∣∣
}(

2 |Xt|+ sup
θ∈Θ

{∣∣M t
θ

∣∣+
∣∣M̃ t

θ

∣∣
})]

≤
(
E

[
sup
θ∈Θ

{(
M t

θ − M̃ t
θ

)2}])1/2(
2 ‖Xt‖2 +

(
E

[
sup
θ∈Θ

∣∣M t
θ

∣∣2
])1/2

+
(
E

[
sup
θ∈Θ

∣∣M̃ t
θ

∣∣2
])1/2)

.

Now, from [9], we know that since Θ is a compact set included in Θ(2), then there existsC > 0 such as(
2 ‖Xt‖2 +

(
E

[
sup
θ∈Θ

∣∣M t
θ

∣∣2
])1/2

+
(
E

[
sup
θ∈Θ

∣∣M̃ t
θ

∣∣2
])1/2)

≤C. Moreover, from the same reasoning

than in Lemma 2, b/ of [3], there exists C′ > 0 such as

E

[
sup
θ∈Θ

{(
M t

θ − M̃ t
θ

)2}]≤C′
∞∑

j=t

sup
θ∈Θ

{
a2j (θ)

}
.

As a consequence, we deduce there exists C > 0 such as:

E
[
sup
θ∈Θ

∣∣Φ
(
(Xt−k)k≥0, θ

)
−Φ

(
(X̃t−k)k≥0, θ

)∣∣]≤C

∞∑

j=t

sup
θ∈Θ

{
a2j (θ)

}
.
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Then, using condition (13),

n∑

t=1

1

t
E
[
sup
θ∈Θ

∣∣Φ
(
(Xt−k)k≥0, θ

)
−Φ

(
(X̃t−k)k≥0, θ

)∣∣]

≤C

n∑

t=1

sup
θ∈Θ

{
a2t (θ)

}( t∑

j=1

1

j

)
<∞.

This induces sup
θ∈Θ

∣∣In(θ) − Ĩn(θ)
∣∣ a.s.−→
n→∞

0 from Corollary 1 of [11], where it is established that

∞∑

t=1

E
[
|Zt|

]

bt
<∞ implies

1

bn

n∑

t=1

Zt
a.s.−→

n→∞
0 for a L1 sequence of r.v. (Zt)t.

3. The two previous points show us that supθ∈Θ
∣∣Ĩn(θ) − I(θ)

∣∣ a.s.−→
n→∞

0 with I defined in (24). The

proof is achieved if we establish that θ∗ is the unique minimum of θ ∈Θ 7→ I(θ). This is induced by

the following computations:

I(θ) = E
[
Φ
(
(X−k)k≥0, θ

)]

= E

[(
|ξ0|

∣∣a0(θ∗) +
∞∑

j=1

aj(θ
∗)X−j

∣∣−
∣∣a0(θ) +

∞∑

j=1

aj(θ)X−j

∣∣
)2]

= E
[
ξ20 − 1

]
E

[(∣∣a0(θ∗) +
∞∑

j=1

aj(θ
∗)X−j

∣∣
)2]

+E

[(∣∣a0(θ) +
∞∑

j=1

aj(θ)X−j

∣∣−
∣∣a0(θ∗) +

∞∑

j=1

aj(θ
∗)X−j

∣∣
)2]

,

using the assumption ‖ξ0‖1 = 1 and because (Xt) is a causal time series implying that ξ0 independent

to σ
{
(X−k)k≥1

}
. The first term of the previous relationship does not depend on θ. The second one

vanishes when θ = θ∗. It is also non negative and it vanishes if

∣∣a0(θ) +
∞∑

j=1

aj(θ)X−j

∣∣=
∣∣a0(θ∗) +

∞∑

j=1

aj(θ
∗)X−j

∣∣ a.s.

As we assumed that a0(·) is a positive function, using also Assumption Id(Θ), we deduce that θ = θ∗

is the only solution of the previous equality. As a consequence, θ∗ is the unique minimizer of I(·) and

since supθ∈Θ
∣∣Ĩn(θ)− I(θ)

∣∣ a.s.−→
n→∞

0 and θ̂n = θ̂n = Argmin
θ∈Θ

Ĩn(θ), we deduce that θ̂n
a.s.−→

n→∞
θ∗.

Proof of Corollary 3.1. In case of LARCH(p) process, ai(θ) = ai for 0≤ i≤ p and therefore (12) and

Assumption Id(Θ) are obviously satisfied.

For a GLARCH(p, q) process, set θP = t
(
c0, c1, . . . , cp

)
∈ (0,∞) × R

p, θQ = t
(
d1, . . . , dq

)
∈ R

q

and therefore θ =
(
θP , θQ

)
. Then σ = P−1

θP
(B)QθQ(B)X . It is clear that θP → PθP is an injec-

tive function, and it is the same for θP → P−1
θP

and θQ → QθQ . Finally it is also the same for

θ = t
(
θP , θQ

)
→ P−1

θP
×QθQ , because PθP and QθQ are not zero polynomial and because θP and
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θQ have not common component. As a consequence, (12) and therefore Assumption Id(Θ) are also

satisfied for GLARCH(p, q) process.

Moreover, for any GLARCH(p, q) process, (ak(θ))k satisfies supθ∈Θ
∑∞

k=0

∣∣ak(θ)
∣∣ <∞. Therefore

(13) is verified for such a process.

Proof of Corollary 3.2. The only required proof concerns (8), which is obviously satisfied.

Proof of Corollary 3.3. In this framework, Assumption Id(Θ) and (8) are obviously satisfied.

Proof of Theorem 3.1. Let In(θ) and Ĩn(θ) be defined in (23). We follow a proof that is similar to the

one of Theorem 2 in [6].

Let v =
√
n(θ− θ∗) ∈R

d and define

Wn(v) =

n∑

t=1

Φ
(
(Xt−k)k≥0, θ

∗ + n−1/2v
)
−Φ

(
(Xt−k)k≥0, θ

∗)= n
(
In(θ)− In(θ

∗)
)

and W̃n(v) =

n∑

t=1

Φ
(
(X̃t−k)k≥0, θ

∗ + n−1/2v
)
−Φ

(
(X̃t−k)k≥0, θ

∗)= n
(
In(θ)− Ĩn(θ

∗)
)
.

Then we are going to prove first that minimizing Ĩn(θ) is equivalent to minimizing W̃n(v), which is

equivalent to minimizing Wn(v) with respect to v. As a consequence, there exists a sequence (v̂n)n
where v̂LAV is a minimizer of Wn(v) such as v̂n =

√
n(θ̂n − θ∗). Secondly, we will provide a limit

theorem satisfied by Wn(v). Then we are going to prove in 3/ that (Wn(·))n converges as a process

of C(Rd) (space of continuous functions on R
d) to a limit process W . Hence (v̂n)n converges to the

minimizer of W̃n.

1. For v ∈R, we have for n large enough and using a Taylor-Lagrange expansion,

Wn(v) =

n∑

t=1

(∣∣Xt
∣∣−
∣∣M t(θ∗ + n−1/2v)

∣∣
)2

−
(∣∣Xt

∣∣−
∣∣M t(θ∗)

∣∣
)2

=
n∑

t=1

(∣∣Xt
∣∣−
∣∣∣M t(θ∗)− 1√

n
tv ∂θM

t(θ
(n)
t ))

∣∣∣
)2

−
(∣∣Xt

∣∣−
∣∣M t(θ∗)

∣∣
)2

=

n∑

t=1

(∣∣Xt
∣∣−
∣∣M t(θ∗)

∣∣− 1√
n

tv ∂θM
t(θ

(n)
t )× sgn(M t(θ∗))

)2
−
(∣∣Xt

∣∣−
∣∣M t(θ∗)

∣∣
)2

= − 2√
n

n∑

t=1

(∣∣Xt
∣∣−
∣∣M t(θ∗)

∣∣)× sgn(M t(θ∗))× tv ∂θM
t(θ

(n)
t ) +

1

n

n∑

t=1

(tv ∂θM t(θ
(n)
t ))

)2

= J
(n)
1 (v) + J

(n)
2 (v) (26)

with θ
(n)
t = α

(n)
t θ∗ + (1− α

(n)
t )

(
θ∗ + n−1/2v

)
. Therefore θ

(n)
t

a.s.−→
n→∞

θ∗ and then for any

∣∣∣∂θM t(θ
(n)
t )− ∂θM

t(θ
∗
)
∣∣∣ a.s.−→
n→∞

0 for any t ∈N, (27)
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since the functions θ ∈Θ 7→ ∂θai(θ) are supposed to be continuous functions for any i ∈ N. Then we

obtain for any v ∈R:

∣∣∣J(n)2 (v)−E
[(tv ∂θM0(θ∗)

)2]∣∣∣≤ 1

n

n∑

t=1

∣∣∣
(tv ∂θM t(θ∗)

)2 −
(tv ∂θM t(θ

(n)
t )

)2∣∣∣

+
∣∣∣ 1
n

n∑

t=1

(tv ∂θM t(θ∗)
)2 −E

[(tv ∂θM0(θ∗)
)2]∣∣∣.

Now using Cesaro Lemma we obtain from (27),

∣∣∣ 1
n

n∑

t=1

(tv ∂θM t(θ∗)
)2 −E

[(tv ∂θM0(θ∗)
)2]∣∣∣ a.s.−→

n→∞
0. (28)

Moreover, using the Ergodic Theorem applied to the stationary process
((

tv ∂θM
t(θ∗)

)2)
t
, we also

have:

1

n

n∑

t=1

∣∣∣
(tv ∂θM t(θ∗)

)2 −E
[(tv ∂θM0(θ∗)

)2]∣∣∣ a.s.−→
n→∞

0. (29)

Finally, with (28) and (29), we obtain for any v ∈R,

J
(n)
2 (v)

a.s.−→
n→∞

E
[(tv ∂θM0(θ∗)

)2]
= tvΓ∗

1 v where Γ∗
1 := E

[
∂θM

0(θ∗)× t∂θM
0(θ∗)

]
, (30)

where the formula of Γ∗
1 is made more explicit in (16). Now, we also have

J
(n)
1 (v) = − 2√

n

n∑

t=1

(∣∣M t(θ∗) ξt
∣∣−
∣∣M t(θ∗)

∣∣)× sgn(M t(θ∗))× tv ∂θM
t(θ

(n)
t )

= tv
(
− 2√

n

n∑

t=1

(∣∣ξt
∣∣− 1

)
M t(θ∗)× ∂θM

t(θ∗)

+
2

n

n∑

t=1

(∣∣ξt
∣∣− 1

)
M t(θ∗)×√

n
(
∂θM

t(θ∗)− ∂θM
t(θ

(n)
t )

))

= tv
(
K

(n)
1 (v) +K

(n)
2 (v)

)
.

We have
((∣∣ξt

∣∣ − 1
)
M t(θ∗) × ∂θM

t(θ∗)
)
t∈N

that is martingale increments process since with the

σ-algebra Ft = σ
{
(Xt−k)k≥1

}
,

E

[(∣∣ξt
∣∣− 1

)
M t(θ∗)× ∂θM

t(θ∗)
∣∣∣Ft

]
= E

[∣∣ξt
∣∣− 1

]
E

[
M t(θ∗)× ∂θM

t(θ∗)
]
= 0,

because (Xt) is a causal process and ξt is independent to Ft and E
[∣∣ξ0

∣∣]= 1.

Now since Γ∗
2 := E

[(
M0(θ∗)

)2
∂θM

0(θ∗)× t∂θM
0(θ∗)

]
is supposed to be a finite definite positive
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matrix (see also its expression in (17)),

E

[(∣∣ξ0
∣∣− 1

)2∥∥M0(θ∗)× ∂θM
0(θ∗)

∥∥2
]
= (σ2ξ − 1)E

[∥∥M0(θ∗)× ∂θM
0(θ∗)

∥∥2
]
<∞.

Then a central limit for increment martingales can be applied (see for instance [5]) and we obtain for

any v ∈R:

K
(n)
1 (v)

L−→
n→∞

K1
L∼N

(
0 , 4 (σ2ξ − 1)Γ∗

2

)
. (31)

Using a Taylor expansion, we also have

E

[(√
n tv

(
∂θM

t(θ∗)− ∂θM
t(θ

(n)
t )

))2]
≤ E

[(
sup
θ∈Θ

∥∥∂θ2M t(θ)
∥∥
)2]

×
∥∥v
∥∥2 <∞.

Moreover, (∂θM
t(θ∗)− ∂θM

t(θ
(n)
t )

)
∈ Ft and from the previous bound,

E

[∣∣∣
(
|ξt| − 1

)
M t(θ∗)×√

n tv
(
∂θM

t(θ∗)− ∂θM
t(θ

(n)
t )

)∣∣∣
]

= E
[∣∣|ξt| − 1

∣∣]×E

[∣∣∣
(
M t(θ∗)×√

n tv
(
∂θM

t(θ∗)− ∂θM
t(θ

(n)
t )

)∣∣∣
]

≤ E
[∣∣|ξt| − 1

∣∣]×E

[(
M t(θ∗)

)2]×E

[(√
n tv

(
∂θM

t(θ∗)− ∂θM
t(θ

(n)
t )

))2]
<∞.

Therefore the ergodic theorem for causal stationary process can be applied and we obtain for any v ∈R,

tvK
(n)
2 (v)

a.s.−→
n→∞

E

[(
|ξt| − 1

)
M t(θ∗)×√

n tv
(
∂θM

t(θ∗)− ∂θM
t(θ

(n)
t )

)]
= 0. (32)

Finally, for any v ∈ R, since J
(n)
1 (v) = tv

(
K

(n)
1 (v) +K

(n)
2 (v)

)
, then J

(n)
1 (v)

L−→
n→∞

tvK1 from (31)

and (32), and with (30) this implies,

Wn(v)
L−→

n→∞
tvΓ∗

1 v+
tvK1 with K1

L∼N
(
0 , 4 (σ2ξ − 1)Γ∗

2

)
. (33)

2/ Asymptotically, from part 1/, we know that the law of Wn(v) is the same as the law of:

W ′
n(v) =− 2√

n

n∑

t=1

(∣∣ξt
∣∣− 1

)
M t(θ∗)× tv ∂θM

t(θ∗) +
1

n

n∑

t=1

(tv ∂θM t(θ∗)
)2

And we deduce the same kind of result for the law of W̃n(v), which is asymptotically equivalent to the

one of:

W̃ ′
n(v) =− 2√

n

n∑

t=1

(∣∣ξt
∣∣− 1

)
M̃ t(θ∗)× tv ∂θM̃

t(θ∗) +
1

n

n∑

t=1

(tv ∂θM̃ t(θ∗)
)2

Therefore we obtain:

W ′
n(v)− W̃ ′

n(v) = − 2√
n

n∑

t=1

(∣∣ξt
∣∣− 1

) tv
(
M t(θ∗)∂θM

t(θ∗)− M̃ t(θ∗)∂θM̃
t(θ∗)

)
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+tv
( 1
n

n∑

t=1

(
∂θM

t(θ∗)t∂θM
t(θ∗)− ∂θM̃

t(θ∗)t∂θM̃
t(θ∗)

))
v. (34)

Now, from their definitions, and since (15) holds, we have:

E
[(
M t(θ∗)− M̃ t(θ∗)

)2]
= σ2X

∞∑

j=t

a2j (θ
∗)

E
[∥∥∂θM t(θ∗)− ∂θM̃

t(θ∗)
∥∥2] = σ2X

∞∑

j=t

∥∥∂θaj(θ∗)
∥∥2,

with σ2X =E
[
X2

0

]
defined in (16). This implies:

M t(θ∗)∂θM
t(θ∗)− M̃ t(θ∗)∂θM̃

t(θ∗) =M t(θ∗)
(
∂θM

t(θ∗)− ∂θM̃
t(θ∗)

)

+∂θM̃
t(θ∗)

(
M t(θ∗)− M̃ t(θ∗)

)

=⇒
∥∥M t(θ∗)∂θM

t(θ∗)− M̃ t(θ∗)∂θM̃
t(θ∗)

∥∥
2 ≤ σX

(∥∥M0(θ∗)‖2
( ∞∑

j=t

∥∥∂θaj(θ∗)
∥∥2
)1/2

+
∥∥∂θM0(θ∗)‖2

( ∞∑

j=t

a2j (θ
∗)
)1/2)

≤ C
(( ∞∑

j=t

∥∥∂θaj(θ∗)
∥∥2
)1/2

+
( ∞∑

j=t

a2j (θ
∗)
)1/2)

, (35)

with a constantC > 0 and using Cauchy-Schwarz and Minkowski inequalities. Then, using the causal-

ity of (Xt), i.e. ξt independent to σ{Xt−1,Xt−2, . . .} for any t ∈ Z, we deduce that:

E

[ 1√
n

n∑

t=1

(∣∣ξt
∣∣− 1

) tv
(
M t(θ∗)∂θM

t(θ∗)− M̃ t(θ∗)∂θM̃
t(θ∗)

)]
= 0,

since E[|ξt|] = 1, and with (35),

E

[( 1√
n

n∑

t=1

(∣∣ξt
∣∣− 1

) tv
(
M t(θ∗)∂θM

t(θ∗)− M̃ t(θ∗)∂θM̃
t(θ∗)

))2]

=
1

n
(σ2ξ − 1)‖v‖2

n∑

t=1

∥∥M t(θ∗)∂θM
t(θ∗)− M̃ t(θ∗)∂θM̃

t(θ∗)
∥∥2
2

≤ 2C2

n
(σ2ξ − 1)‖v‖2

n∑

t=1

∞∑

j=t

(∥∥∂θaj(θ∗)
∥∥2 + a2j (θ

∗)
)

≤ 2C2

n
(σ2ξ − 1)‖v‖2

n∑

t=1

∞∑

j=t

Ca j
2d−2
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≤ 2C2

n
(σ2ξ − 1)‖v‖2 1

1− 2d

n∑

t=1

Ca t
2d−1 ≤C′ ‖v‖2n2d−1,

using classical comparisons between sums and integrals. Therefore, for any v ∈R,

E

[( 1√
n

n∑

t=1

(∣∣ξt
∣∣− 1

) tv
(
M t(θ∗)∂θM

t(θ∗)− M̃ t(θ∗)∂θM̃
t(θ∗)

))2]
−→
n→∞

0.

Using Bienaymé-Tchebytchev Inequality, this implies

1√
n

n∑

t=1

(∣∣ξt
∣∣− 1

) tv
(
M t(θ∗)∂θM

t(θ∗)− M̃ t(θ∗)∂θM̃
t(θ∗)

) P−→
n→∞

0. (36)

Using the same method, we also obtain that there exist C′ > 0 and C′′ > 0 such as:

∥∥∂θM t(θ∗) t∂θM
t(θ∗)− ∂θM̃

t(θ∗) t∂θM̃
t(θ∗)

∥∥
2 ≤C′

( ∞∑

j=t

∥∥∂θaj(θ∗)
∥∥2
)1/2

≤C′′ td−1/2. (37)

Now with (37), we can use again the result established in part 2/ of the proof of Proposition 3.1 based

on the Corollary 1 of [11]:

n∑

i=1

1

t

∥∥∂θM t(θ∗) t∂θM
t(θ∗)− ∂θM̃

t(θ∗) t∂θM̃
t(θ∗)

∥∥
1
≤C′′

n∑

i=1

td−3/2 <∞

since d < 1/2 and therefore:

1

n

n∑

t=1

(
∂θM

t(θ∗)t∂θM
t(θ∗)− ∂θM̃

t(θ∗)t∂θM̃
t(θ∗)

) a.s.−→
n→∞

0. (38)

Finally from (34), (36) and (38), we deduce that for any v ∈R,

∣∣Wn(v)− W̃n(v)
∣∣ P−→
n→∞

0

=⇒ W̃n(v)
L−→

n→∞
W (v) := tvΓ∗

1 v +
tvK1 with K1

L∼N
(
0 , 4 (σ2ξ − 1)Γ∗

2

)
. (39)

3/ Now, using the same arguments than in the proof of Theorem 2 of [6], we deduce that finite distribu-

tions (W̃n(v1), · · · , W̃n(vk)) converge to (W (v1), · · · ,W (vk)) for any (v1, · · · , vk) ∈ (Rd)k . More-

over, always following the proof of Theorem 2 of [6], (Wn(v))v converges to (W (v))v as a process on

the continuous function space C0(R).
As a consequence, a maximum v̂ =

√
n
(
θ̂n − θ∗

)
of Ŵn(v) converges in distribution to the maxi-

mum of tvΓ∗
1 v+

tvK1, which is v :=−1

2

(
Γ∗
1

)−1
K1

L∼N
(
0 , (σ2ξ − 1)

(
Γ∗
1

)−1
Γ∗
2

(
Γ∗
1

)−1
)

and this

implies (18).

Proof of Corollary 3.4. See the proof of Corollary 3.5 for the first part of the corollary (Assumption

Id(Θ) and Assumption S are satisfied, and Γ∗
1 and Γ∗

2 are positive definite matrix).

For establishing (20), we use a′j = σξ aj for 0≤ j ≤ p detailed in Remark 2.1.
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Proof of Corollary 3.5. For any GLARCH(p, q) process, (ak(θ))k satisfies supθ∈Θ
∑∞

k=0

∣∣ak(θ)
∣∣ <

∞. Therefore Assumption S is automatically verified for such a process.

For any GLARCH(p, q) process, the matrix Γ∗
1 and Γ∗

2 are positive definite matrix. Indeed, following

the same reasoning as in the proof of Lemma 5 of [3], we have for any v ∈R
p+q+1

tvΓ∗
1 v = E

[(tv ∂θM0
θ∗
)2]≥ 0.

Assume that tv ∂θM
0
θ∗ = 0. By stationarity, this implies tv ∂θM

k
θ∗ = 0 for any k ∈ Z. Using relation

(6), we deduce that:

∂θM
0
θ∗ = ∂θ

(
c0 + c1X−1 + · · ·+ cpXt−p

)
+ ∂θ

(
d1M

−1
θ∗ + · · ·+ dqM

−q
θ∗
)
.

Then: 



∂c0M
0
θ∗ = 1+ d1 ∂c0M

−1
θ∗ + · · ·+ dq ∂c0M

−q
θ∗

∂ciM
0
θ∗ = X−i + d1 ∂ciM

−1
θ∗ + · · ·+ dq ∂ciM

−q
θ∗ 1≤ i≤ p

∂djM
0
θ∗ =M−j

θ∗ + d1 ∂djM
−1
θ∗ + · · ·+ dq ∂djM

−q
θ∗ 1≤ j ≤ q

Therefore, if tv ∂θM
0
θ∗ = 0, then

(
1,X−1, . . . ,X−p,M

−1
θ∗ , . . . ,M

−q
θ∗
)
v = 0. Such equation has no

solution since a linear relationship (6) relies all these random variables to M0
θ∗ (or these means that

(Xt) would be a GLARCH(p− 1, q − 1) process which is not possible since we have assumed that

Pθ∗
1

and Qθ∗
2

are coprime polynomials). Hence, tv ∂θM
0
θ∗ = 0 implies v = 0: Γ∗

1 is a positive definite

matrix (and a similar reasoning leads to the same property satisfied by Γ∗
2).

Proof of Corollary 3.6. All the assumptions required for satisfying Theorem 3.1 are well stated.

Proof of Corollary 3.7. For k ≥ 1, we have ∂θak(θ) =
t
(
0, kd−1, c log(k)kd−1

)
and therefore we

obtain
∑∞

k=1

∥∥∂θak(θ)
∥∥2 <∞ as it is required in (15).

Moreover, mutatis mutendis, we can use again the proof of Lemma 5 of [3] for proving that Γ∗
1 and Γ∗

2
are two positive definite matrix in this case of long memory LARCH(∞) process.
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