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Abstract

The aim of this paper is to provide a new estimator of parameters for LARCH(∞) processes,

and thus also for LARCH(p) or GLARCH(p, q) processes. This estimator results from minimising

a contrast leading to a least squares estimator for the absolute values of the process. Strong

consistency and asymptotic normality are shown, and convergence occurs at the rate
√
n as

well in short or long memory cases. Numerical experiments confirm the theoretical results and

show that this new estimator significantly outperforms the smoothed quasi-maximum likelihood

estimators or weighted least squares estimators commonly used for such processes.
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1 Introduction

Linear AutoRegressive Conditional Heteroskedastic (LARCH) processes were introduced by Robin-

son (1991) to model the long-range dependence of volatility and leverage. They are studied for their

stationarity and dependence properties in Robinson and Zaffaroni (1997), Giraitis et al. (2000),

Berkes and Horváth (2003), and Giraitis et al. (2004). A LARCH(∞) process (Xt)t∈Z is defined

by:

Xt = ξt

(
a0 +

∞∑
j=1

aj Xt−j

)
for any t ∈ Z,

where (ξt)t∈Z is a white noise. In what follows, we will consider a parametric class of such

LARCH(∞) processes, i.e. aj = aj(θ) for any j ∈ N with θ ∈ R`, where the functions aj(·)
are assumed to be known but the true parameter θ∗ is unknown. This paper is devoted to study-

ing the asymptotic properties of a new estimator of θ∗ (rather than a component of θ∗, such as

the location parameter, as was done in Beran, 2006) for LARCH(∞) processes when a trajectory

(X1, . . . , Xn) is observed (see more details in section 2).

LARCH(∞) processes, which conditionally represent heteroskedastic weak white noise, offer new

perspectives for modeling financial data. This model has the advantage over GARCH formulations

that volatility can be arbitrarily close to 0, which is nevertheless the case for certain financial series

(see, for example, the example on CAC40 index returns discussed in section 4). The square of a

LARCH(∞) process can also exhibit the long memory property (see below), which is impossible

for a stationary ARCH(∞) process (see more theoretical details in Giraitis et al., 2009, and the
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same illustrative example in section 4).

For numerous affine causal processes, such as ARMA, GARCH, ARMA-GARCH, AR(∞), or

ARCH(∞) processes, the Gaussian quasi-maximum likelihood (QML) provides a very accurate

estimator (see further details in Bardet and Wintenberger, 2009). Even though a LARCH(∞) pro-

cess or its special cases LARCH(p) or GLARCH(p, q) (see their definitions in (5) and (7)) are also

causal affine time series, such a contrast cannot be used to estimate the parameter θ∗. Indeed, the

conditional variance of Xt cannot be bounded near 0, and this does not allow asymptotic results

for such contrasts (see more details on this point in Beran and Schützner, 2009, Truquet, 2014,

and in particular in Francq and Zaköıan, 2010). Beran and Schützner (2009) and Truquet (2014)

propose an interesting alternative estimator based on a family of smooth approximations of the

QML estimate, and they establish the consistency and asymptotic normality of the estimator of θ∗

in cases of short or long memory. Francq and Zaköıan (2010) preferred to construct weighted least

squares estimators, for which they also show consistency and asymptotic normality. Note that they

also extend their results to AR(p)-LARCH(q) processes as well as to Truquet.

We propose a new estimator obtained by minimizing a least-squares contrast of the absolute values

of (Xt) (see its precise definition in (12), section 3). Under assumptions that are not too restrictive,

especially considering short- and long-term memory, strong consistency and asymptotic normality

are established for this estimator. Moreover, only a fourth-order white noise moment is required

for asymptotic normality (order 4 in Truquet, 2014, and 5 in Beran and Schützner, 2009, for the

smoothed QML estimator, no order condition in Francq and Zaköıan, 2010, for the weighted LS

estimator when an appropriate weight family is chosen). A convergence rate
√
n for this new es-

timator is proved for LARCH(∞) processes with short memory as well as for the smoothed QML

estimator (Truquet, 2014) and for the weighted LS estimator (Francq and Zaköıan, 2010), but with

different asymptotic covariance matrices. This rate of convergence
√
n is also established for the

LARCH(∞) process with long memory, while for the smoothed QMLE in Beran and Schützner

(2009) only a rate nβ with 0 < β < 1/2 is obtained. Note that such a rate of convergence is also

obtained with QMLE for generalized quadratic ARCH processes in Grublyte et al. (2017).

Monte Carlo experiments confirm the asymptotic behavior of the estimator even for trajectories

with not very large lengths. The performances of this new estimator are then compared with those

obtained with the regularized QMLE (for which the choice of the regularization parameter is a real

problem) and with those obtained with the weighted least squares estimator of Francq and Zaköıan

(2010). The results of these comparisons undoubtedly show the much faster convergence of this

new estimator, especially compared to the smoothed QMLE.

The following section 2 is devoted to the definition and stationarity conditions of the considered

LARCH(∞) processes. The main results concerning the definition and the asymptotic behavior

of the new estimator are given in section 3. Numerical experiments are proposed in section 4 and

proofs are established in section 5.
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2 LARCH(∞) processes

For ` ∈ N∗ and u = (ui)1≤i≤` ∈ R`, denote ‖u‖ =
√
u2

1 + · · ·+ u2
` the usual Euclidian norm. More

generally, for k ∈ N∗, if u = (ui1,...,ik)1≤i1,...,ik≤` ∈ R`k , denote ‖u‖ =
√∑

1≤i1,...,ik≤` u
2
i1,...,ik

. Denote

also ‖Z‖p =
(
E
[
‖Z‖p

])1/p
for p ≥ 1 where Z is a random vector. For any m ∈ N∗, any ` ∈ N∗ and

ψ : θ ∈ Θ ⊂ R` 7→ ψ(θ) ∈ R such as ψ ∈ Cm(Θ), the space of m-times continuously differentiable

functions on Θ, denote for 1 ≤ k ≤ m:

∂θψ(θ) :=
( ∂

∂θi
ψ(θ)

)
1≤i≤`

and ∂kθkψ(θ) :=
(
∂kθi1 ···θik

ψ(θ)
)

1≤i1,...,ik≤`
=
( ∂k

∂θi1 · · · ∂θik
ψ(θ)

)
1≤i1,...,ik≤`

.

Here we study a LARCH(∞) process introduced in Robinson (1991) and also studied in Giraitis

et al. (2000), Giraitis et al. (2004), Beran and Schützner (2009), Francq and Zaköıan (2010) or

Truquet (2014). For r ≥ 2, we will consider the following assumption:

Assumption A(r):

• (ξt)t∈Z is a sequence of symmetric centered independent random variables with continuous

distribution such as ‖ξ0‖1 = 1 and ‖ξ0‖r <∞;

• For any j ∈ N, θ ∈ R` 7→ aj(θ) ∈ R are known continuous functions and without loss of

generality we will assume a0(θ) > 0 for any θ ∈ R`.

We will define a LARCH(∞) process (Xt)t∈Z using Assumption A(r) with r ≥ 2. Before this,

define:

Θ(2) =
{
θ ∈ R`, ‖ξ0‖22

∞∑
j=1

a2
j (θ) < 1

}
. (1)

Then, under Assumption A(r) with r ≥ 2, for θ∗ ∈ Θ where Θ is a compact subset of Θ(2), we

define a LARCH(∞) process (Xt)t∈Z by:

Xt = ξt

(
a0(θ∗) +

∞∑
j=1

aj(θ
∗)Xt−j

)
for any t ∈ Z. (2)

Under these conditions, Giraitis et al. (2004) have proved the stationarity of (Xt) and the existence

of ‖X0‖2. From now on we will assume that θ∗ is unknown

Remark 2.1. The case a0(θ) = 0 implies Xt = 0 a.s. for any t ∈ Z, see Giraitis et al. (2000).

This explains why, we assume a0(θ) > 0 for any θ ∈ R` in Assumption A(r).

Remark 2.2. Note that in Assumption A(r) we assume ‖ξ0‖1 = 1 and not ‖ξ0‖2 = 1 as is usually

done. This is explained by the expression of the estimator we will consider. However, the difference

between these two normalization options is only a new parametrization, because with ξ′t = ξt/‖ξ0‖2
for any t ∈ Z and using the linearity of its expression, (2) could also be written as

Xt = ξ′t

(
a′0(θ∗)+

∞∑
j=1

a′j(θ
∗)Xt−j

)
where ‖ξ′0‖2 = 1 and a′j(θ

∗) = ‖ξ0‖2 aj(θ∗) for any j ∈ N. (3)
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In the case of Gaussian white noise, for example, we have ‖ξ0‖22 = σ2
ξ = π/2 when ‖ξ0‖1 = 1.

In the sequel, under Assumption A(r) with r ≥ 4, we will also consider ‖X0‖4 and for this we define

Θ(4) =
{
θ ∈ R`, ‖ξ0‖44

∞∑
j=1

a4
j (θ) + 6 ‖ξ0‖22

∞∑
j=1

a2
j (θ) < 1

}
. (4)

Remark 2.3. Unless we consider a particular distribution for the noise, for example and typically

the Gaussian N
(
0, (
√
π/2)2

)
, the moments ‖ξ0‖2 ≤ ‖ξ0‖4 are unknown and can take any value

greater than or equal to 1 according to this distribution. So the sets Θ(2) and Θ(4) are indeed

unknown if we consider only the hypothesis of a symmetric noise (ξt) with a moment of order 4 and

satisfying E
[
|ξ0|
]

= 1. Note, however, that it is exactly the same when estimating the parameters

of a GARCH(p, q) or ARCH(∞) process by quasi-maximum likelihood, e.g. when we define the

stationarity set from the Lyapunov exponents depending on the noise distribution, or when we

consider a condition of ‖ξ0‖4 for asymptotic normality. Numerically (see section 4), one will use

domains of minimisation in θ much larger than Θ(2) or Θ(4), for example 0 ≤ a1, a2 ≤ 1 for a

LARCH(2) process, but the condition of belonging to Θ(2) will be able to be checked a posteriori from

the value taken by the estimator. The fact that this condition is not verified when applying a long-

memory LARCH(∞) model to financial data led us to choose another more complex long-memory

LARCH(∞) model.

Three interesting special cases of LARCH(∞) processes can be mentioned:

1. A first special case of LARCH(∞) processes are the LARCH(p) processes defined by:

Xt = ξt σt with σt = a0 +

p∑
i=1

aiXt−i, for any t ∈ Z (5)

Therefore, a LARCH(p) process is a LARCH(∞) process defined in (2) with ak(θ) = ak for

0 ≤ k ≤ p and θ = t
(
a0, a1, . . . , ap

)
∈ (0,∞)× Rp. For such a process, the sets Θ(2) defined

in (1) and Θ(4) defined in (4) become respectively:

Θp(2) =
{
θ = t

(
a0, a1, . . . , ap

)
∈ (0,∞)× Rp, ‖ξ0‖22

p∑
j=1

a2
j < 1

}
and Θp(4) =

{
θ = t

(
a0, a1, . . . , ap

)
∈ (0,∞)× Rp, ‖ξ0‖44

p∑
j=1

a4
j + 6 ‖ξ0‖22

p∑
j=1

a2
j < 1

}
.(6)

2. A natural extension of the LARCH(p) processes under consideration are GLARCH(p, q) pro-

cesses, which follow the same procedure as the well-known transition from ARCH processes

to GARCH processes. A GLARCH(p, q) process is defined by

Xt = ξt σt with σt = c0 +

p∑
i=1

ciXt−i +

q∑
j=1

dj σt−j , for any t ∈ Z. (7)

To study such a process, one defines the polynomials P (x) = 1 −
∑q

j=1 dj x
j and Q(x) =

c0 +
∑p

i=1 ci x
i. Then the previous iteration equation (7) is equivalent to P (B)σ = Q(B)X

where B is the usual backward operator. In the following we assume that P and Q are
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coprime polynomials for θ = θ∗.

We define θ =
(
c0, c1, . . . , d1, . . . , dq

)′ ∈ (0,∞) × Rp+q and the coefficients ak(θ) decrease

exponentially decrease to 0 when k → ∞ (as it is usually known for ARMA(p, q) processes

since the roots of P lie outside the unit circle).

For GLARCH(p, q) process, the assumption for obtaining a stationary 2nd-order solution of

(7) is θ ∈ Θp,q(2), with

Θp,q(2) =
{
θ ∈ (0,∞)× (−1, 1)p+q,

q∑
i=1

d2
i + ‖ξ0‖2

p∑
j=1

c2
j < 1

}
. (8)

The calculation of Θ(4) for such GLARCH(p, q) processes is not quite straightforward. In

Giraitis et al. (2004) Θ(4) is simplified for GLARCH(1, 1) and it is established that:

Θ1,1(4) =
{
θ = t(c0, c1, d1) ∈ (0,∞)× R2, ‖ξ0‖44

c4
1

1− d4
1

+ 6 ‖ξ0‖22
c2

1

1− d2
1

< 1
}
.

3. Another case we will study is that of LARCH(∞) with long memory, i.e. such that there are

d(θ) ∈ (0, 1/2) and Lθ(·) a slowly varying function such that:

aj(θ) = Lθ(j) j
d(θ)−1 for j ∈ N∗. (9)

This case was considered in particular in Robinson and Zaffaroni (1997) and Beran and

Schützner (2009). In this paper, a parametric estimation procedure was studied for the case

where aj(θ) = c jd−1 for j ∈ N∗ and θ = t(a0, c, d) (see further details below). Note that in

such a case
∑∞

j=1 |aj(θ)| =∞ but
∑∞

j=1 a
2
j (θ) <∞.

Remark 2.4. For this third type of example we focused on the long memory property and for that

the parameter d(θ) (or simply the parameter d in Beran and Schützner’s example) is necessarily

in (0, 1/2). However, nothing prevents to extend the definition of the process to d(θ) ∈ (−∞, 1/2)

or to a compact set included in (−∞, 1/2) when the estimator is applied. We would then lose the

exclusive long memory character but we would gain in generality.

3 A new estimator of LARCH parameters

3.1 Definition and consistency of the estimator

We consider here a special case of M-estimators for estimating θ∗ from an observed trajectory

(X1, . . . , Xn) of a stationary solution of (2). For this purpose, let the following contrast function

Φ for x ∈ RN and θ ∈ R` be defined by

Φ(x, θ) =
(
|x1| −

∣∣a0(θ) +
∞∑
j=1

aj(θ)xj+1

∣∣)2
. (10)

Remark 3.1. The choice of this contrast function Φ follows from the fact that under a classi-

cal identifiability assumption (see Assumption Id(Θ) below), θ∗ is the unique minimum in Θ of

E
[
Φ
(
(X−k)k≥0, θ

)]
under the normalization condition ‖ξ0‖1 = 1 (see the proof of Proposition 3.1,

Part 3.).
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Other contrast functions satisfy this property, such as Φ4(x, θ) =
(
x2

1−
(
a0(θ)+

∑∞
j=1 aj(θ)xj+1

)2)2

under the usual normalization condition ‖ξ0‖2 = 1. Such M-estimators defined from Φ4 require

moments of order 8 to preserve their asymptotic normality, while for Φ a moment of order 4 is suf-

ficient. Note that weighted quadratic contrast ΦFZ derived from Φ4 (see its definition in (25)) was

defined in Francq and Zaköıan (2010) and allows, with appropriate weights, to obtain the asymp-

totic normality without a moment condition (except r ≥ 1). However, Monte Carlo experiments

show that the convergence rate of the estimator defined by Φ is faster than that of the estimator

defined by Φ4 or ΦFZ .

Note, however, that contrast functions such as

Φ2(x, θ) =
(
x1 −

(
a0(θ) +

∞∑
j=1

aj(θ)xj+1

))2
or Φ1(x, θ) =

∣∣∣x1 −
(
a0(θ) +

∞∑
j=1

aj(θ)xj+1

)∣∣∣
are not such that E

[
Φ
(
(X−k)k≥0, θ

)]
has a unique minimum in θ∗ on the set Θ. For example, quick

calculations show that:

E
[
Φ2

(
(X−k)k≥0, θ

)]
=
(
‖ξ0‖22 − 1

)
E
[(
a0(θ∗) +

∞∑
j=1

aj(θ
∗)X−j

)2]
+ E

[(
a0(θ) +

∞∑
j=1

aj(θ)X−j
)2 − (a0(θ∗) +

∞∑
j=1

aj(θ
∗)X−j

)2]
,

which in general does not have a minimum at θ∗.

Remark 3.2. Unlike, in particular, the papers by Francq and Zaköıan (2010) or Truquet (2014),

the case of an AR(p′)-LARCH(p) process or, more generally, an AR(p′)-LARCH(∞) process is not

treated here. Based on the Φ contrast chosen, it would also have been possible to extend the study

to AR(p′)-LARCH(∞) processes by considering the Φ′ contrast such that:

Φ′(x, θ′) =
(∣∣∣x1 −

p′∑
k=1

bk x1+k

∣∣∣− ∣∣∣a0(θ) +
∞∑
j=1

aj(θ)
∣∣∣xj+1 −

p′∑
k=1

bk xj+1+k

∣∣∣)2
,

where θ′ = t
(
b1, . . . , bp′ ,

tθ
)
. The convergence and asymptotic normality proofs for LARCH(∞)-

processes proposed in the rest of the manuscript could then be extended to AR(p′)-LARCH(∞)

processes, but this would make them even more technical and difficult to follow.

Now we define the process (X̃)t∈Z by:

X̃t =
{ Xt for t ≥ 1

0 for t ≤ 0
. (11)

From now on, let us consider Θ as a compact subset of Θ(2), implying that (Xt)t∈Z is a stationary

ergodic process satisfying ‖X0‖2 <∞. Then define the following estimator:

θ̂n = Argmin
θ∈Θ

1

n

n∑
t=1

Φ
(
(X̃t−k)k≥0, θ

)
. (12)

In the sequel, we add an assumption about the derivatives of functions θ ∈ Θ 7→ ak(θ) for k ∈ N
(we use the convention ∂0

θ0ak(·) = ak(·)). So for i ∈ N define:
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Assumption Ci(Θ): For any k ∈ N, the functions ak ∈ Ci(Θ) and there exist Ca > 0 and

d < 1/2 satisfying

sup
θ∈Θ

{ i∑
j=0

∥∥∂j
θj
ak(θ)

∥∥} ≤ Ca kd−1 for any k ∈ N∗. (13)

As already mentioned in Beran and Schützner (2009), to prove the consistency and asymptotic

normality of θ̂n, it is necessary to take the derivatives in θ of θ ∈ Θ 7→Mθ(t) for t ∈ Z, where

Mθ(t) = a0(θ) +
∞∑
k=1

ak(θ)Xt−k for t ∈ Z and θ ∈ Θ. (14)

Note that the convergence of this infinite sum in the L2(Ω)-norm is done using a Volterra decomposi-

tion, as in Giraitis et al. (2000) or Giraitis et al. (2004). However, the existence of Mθ(t)derivatives

could be problematic, since the sequence (ak(θ)) is not summable in the case of a long memory.

We therefore consider the assumption:

Assumption (S): For every t ∈ Z, (Mθ(t))θ∈Θ is a separable stochastic process on Θ.

Note that this assumption is not really restrictive, since a stochastic process can always be re-

placed by a separable version (see Remark 1 in Beran and Schützner, 2009). Moreover, as proved

in Proposition 2 of Beran and Schützner (2009), Assumption (S) combined with Assumption C1(Θ)

(resp. C2(Θ)), where Θ is a compact set of the Θ(2) ⊂ R`, implies that θ ∈ Θ 7→ Mθ(t) is almost

surely is differentiable once (resp. twice).

We add a classical identification condition:

Assumption Id(Θ): If θ, θ̃ ∈ Θ,(
ai(θ) = ai(θ̃) for all i ∈ N

)
=⇒

(
θ = θ̃

)
. (15)

Then we obtain the following conditions for the consistency of the two estimators:

Proposition 3.1. Under Assumption A(2), if θ∗ ∈ Θ is an unknown parameter, where Θ is a compact

subset of Θ(2) ⊂ R` defined in (1), consider (Xt)t∈Z as a stationary solution of (2) and (X1, . . . , Xn)

an observed trajectory of (Xt). Assume also Assumption C`(Θ), (S) and Id(Θ). Then θ̂n
a.s.−→
n→∞

θ∗

where θ̂n is defined in (12).

Proposition 3.1 can be specified for the special cases considered earlier, starting with the LARCH(p)

processes.

Corollary 3.1. Under Assumption A(2), with p ≥ 1, let (Xt) be a LARCH(p) process, solution of

Xt = ξt σt with σt = a∗0 +

p∑
i=1

a∗i Xt−i, for any t ∈ Z, (16)

where θ∗ = t
(
a∗0, a

∗
1, . . . , a

∗
p

)
∈ Θ, a compact subset of Θp(2) defined in (6). Let (X1, . . . , Xn) be an

observed trajectory of (Xt). Then θ̂n = t
(
â

(n)
0 , â

(n)
1 , . . . , â

(n)
p

) a.s.−→
n→∞

θ∗ where θ̂n is defined in (12)
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Note that since the functions ak considered in the Corollary 3.1 are constant functions, the Assump-

tions Id(Θ), C`(Θ) and (S) are satisfied. The same is true if we consider the case of GLARCH(p, q)

processes:

Corollary 3.2. Under Assumption A(2), with p ≥ 1, q ≥ 1, let (Xt) be a GLARCH(p, q) process,

solution of

Xt = ξt σt with σt = c∗0 +

p∑
i=1

c∗i Xt−i +

q∑
j=1

d∗j σt−j , for any t ∈ Z, (17)

where θ∗ = t
(
c∗0, . . . , c

∗
p, d
∗
1, . . . , d

∗
q

)
∈ Θ, a compact subset of Θp,q(2) defined in (8). Let (X1, . . . , Xn)

be an observed trajectory of (Xt). Then θ̂n = t
(
ĉ

(n)
0 , . . . , ĉ

(n)
p , d̂

(n)
1 , . . . , d̂

(n)
q

) a.s.−→
n→∞

θ∗ where θ̂n is

defined in (12).

The consistency of θ̂n for long memory LARCH(∞) can also be derived from Proposition 3.1:

Corollary 3.3. Assume A(2) where the sequence (ak(θ))k∈N satisfies (9), let θ∗ ∈ Θ where Θ is a

compact subset of Θ(2) defined in (1). Let (X1, . . . , Xn) be an observed trajectory of (Xt), which

is a stationary long memory LARCH(∞) solution of (2). Then, under Assumptions C`(Θ), Id(Θ)

and (S), θ̂n
a.s.−→
n→∞

θ∗ where θ̂n is defined in (12).

Corollary 3.4 (Example of long memory LARCH(∞) studied in Beran and Schützner,

2009). Suppose that (ξt)t∈Z is a sequence of symmetric centered independent random variables,

such as ‖ξ0‖1 = 1 and ‖ξ0‖2 < ∞. Consider θ = t(a0, c, d) and the sequence (aj(θ))j∈N with

a0(θ) = a0 and aj(θ) = c jd−1 for j ≥ 1. Define

Θ =
{
t(a0, c, d) ∈ [am, aM ]× [−cM , cM ]× [0, dM ], c2

M ‖ξ0‖22
∞∑
k=1

k2 dM−2 < 1
}
, (18)

where 0 < am ≤ aM < ∞, 0 ≤ dM < 1/2 and 0 ≤ cM < ∞. Let (X1, . . . , Xn) be an observed

trajectory of (Xt)t∈Z which is a stationary long-memory LARCH(∞) solution of (2) with parameter

θ∗ ∈ Θ. Then under Assumption (S), θ̂n
a.s.−→
n→∞

θ∗ where θ̂n is defined in (12).

Remark 3.3. The condition ‖ξ0‖2 < ∞ required in Proposition 3.1 and Corollaries 3.1, 3.2,

3.3, and 3.4 can be compared with the conditions required in other works dealing with parametric

estimation of LARCH processes. In Theorem 4.2. of Francq and Zaköıan (2010), θ∗ is estimated

using a weighted LS estimator (see its definition in (25)) and the consistency of this LS estimator

is established under the condition ‖ξ0‖4 < ∞, except for appropriate weights for which ‖ξ0‖1 < ∞
is sufficient. In Theorem 4 of Beran and Schützner (2009), θ∗ is estimated using a smoothed QML

estimator (see its definition in (24)) and the condition ‖ξ0‖3 < ∞ is required for L1 consistency

of this QML estimator. Finally, in Truquet (2014), the strong consistency of a smoothed QML

estimator for LARCH(p) processes is obtained under the condition ‖ξ0‖s <∞ with s > 0.



9

3.2 Asymptotic normality of the estimator

Under Assumption A(4), if θ∗ ∈
o
Θ, the interior of Θ where Θ is a compact subset of Θ(4), and

under Assumption (S) and C2(Θ), define, if they exist, the following matrices:

Γ∗1 := E
[
∂θMθ∗(0) t∂θMθ∗(0)

]
= ∂θa0(θ∗) t∂θa0(θ∗) + σ2

X

∞∑
k=1

∂θak(θ
∗) t∂θak(θ

∗)

with σ2
X := E

[
X2

0

]
=

a2
0(θ∗)σ2

ξ

1− σ2
ξ

∑∞
k=1 a

2
k(θ
∗)

(19)

and Γ∗2 := E
[(
Mθ∗(0)

)2
∂θMθ∗(0)× t∂θMθ∗(0)

]
. (20)

Then the asymptotic normality of θ̂n can be established:

Theorem 3.1. Under Assumption A(4), if θ∗ ∈
o
Θ, is an unknown parameter, where Θ is a compact

subset of Θ(4) ⊂ R`, which is defined in (4), consider (Xt)t∈Z as a stationary LARCH(∞) solution

of (2) and (X1, . . . , Xn) an observed trajectory of (Xt). Assume that Assumption (S) is satisfied

as well as Assumption C`+2(Θ) and Id(Θ). Then, if the matrices Γ∗1 and Γ∗2 defined in (19) and

(20) are positive definite,

√
n
(
θ̂n − θ∗

) L−→
n→∞

N
(

0 , (σ2
ξ − 1)

(
Γ∗1
)−1

Γ∗2
(
Γ∗1
)−1
)

(21)

Remark 3.4. The expression of Γ∗2 is not easy to simplify even in the simplest cases. This is

not really a problem since, as usual, one can use the Slutsky Lemma, after defining the following

estimators of σ2
ξ , Γ∗1 and Γ∗2 by

σ̂2
ξ :=

1

n

n∑
t=1

X2
t(

a0(θ̂n) +
∑t−1

k=1 ak(θ̂n)Xt−k

)2 ;

Γ̂1 :=
1

n

n∑
t=1

(
∂θa0(θ̂n) +

t−1∑
k=1

∂θak(θ̂n)Xt−k

)
t
(
∂θa0(θ̂n) +

t−1∑
k=1

∂θak(θ̂n)Xt−k

)
;

Γ̂2 :=
1

n

n∑
t=1

(
a0(θ̂n) +

t−1∑
k=1

ak(θ̂n)Xt−k

)2(
∂θa0(θ̂n) +

t−1∑
k=1

∂θak(θ̂n)Xt−k

)
×

×t
(
∂θa0(θ̂n) +

t−1∑
k=1

∂θak(θ̂n)Xt−k

)
.

Note that the consistency of σ̂2
ξ was proved in Francq and Zaköıan (2010). The matrix Γ̂1 and Γ̂2

are also consistent estimators of Γ∗1 and Γ∗2 (see the proof in section 5), and therefore

√
n
(
σ̂2
ξ − 1

)−1/2(
Γ̂1

)1/2(
Γ̂2

)−1/2 (
Γ̂1

)1/2(
θ̂n − θ∗

) L−→
n→∞

N
(
0 , Id

)
. (22)

Such a central limit theorem (22), satisfied by θ̂n allows the computation of asymptotic confidence

intervals or test thresholds on θ.

The special case of GLARCH(p, q) processes can be considered under simplified assumptions:
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Corollary 3.5. Assume the conditions of Corollary 3.2, and also assume ‖ξ0‖4 < ∞ Let Θ be

a compact set included in Θp,q(4) and θ∗ = t
(
c∗0, . . . , c

∗
p, d
∗
1, . . . , d

∗
q

)
∈

o
Θ. Then, with θ̂n =

t
(
ĉ

(n)
0 , . . . , ĉ

(n)
p , d̂

(n)
1 , . . . , d̂

(n)
q

)
, the central limit theorems (21) and (22) hold.

In the case of LARCH(p) processes, which are particular cases of GLARCH(p, q) processes, we can

go further into the details of the conditions for asymptotic normality:

Corollary 3.6. Assume the conditions of Corollary 3.1, and suppose also ‖ξ0‖4 <∞, Θ defined by

Θ =
{
t(a0, a1, . . . , ap) ∈ [a, a]× Rp with ‖ξ0‖44

p∑
j=1

a4
j + 6 ‖ξ0‖22

p∑
j=1

a2
j ≤ r

}
, (23)

where 0 < a < a and 0 < r < 1, and θ∗ = t(a∗0, a
∗
1, . . . , a

∗
p) ∈

o
Θ. Then, with θ̂n = t

(
â

(n)
0 , â

(n)
1 , . . . , â

(n)
p

)
,

the central limit theorems (21) and (22) hold.

As an example of computation of the asymptotic covariance, if we consider the case of a LARCH(1)

process, we obtain:

Γ∗1 =

(
1 0

0 σ2
X

)
and Γ∗2 =

(
a2

0 + σ2
X 2 a0a1σ

2
X

2 a0a1σ
2
X a2

0σ
2
X + E[X4

0 ]

)
.

This implies (
Γ∗1
)−1

Γ∗2
(
Γ∗1
)−1

=

(
a∗20 + σ2

X 2 a∗0a
∗
1

2 a∗0a
∗
1

a∗20
σ2
X

+
E[X4

0 ]

σ4
X

)
,

where

{
σ2
X = a∗20 σ2

ξ

(
1− σ2

ξa
∗2
1

)−1

E[X4
0 ] = a∗40 E[ξ4

0 ]
(
1 + 5σ2

ξa
∗2
1

)(
1− σ2

ξa
∗2
1

)−1(
1− E[ξ4

0 ]a∗41

)−1 .

The asymptotic normality of the estimator θ̂n can also be obtained in the case of long-memory

LARCH(∞):

Corollary 3.7. Assume the conditions of Corollary 3.3, and further assume that ‖ξ0‖4 <∞, Θ is a

compact set included in Θ(4) ⊂ R` and θ∗ ∈
o
Θ. Then, under Assumption Cmax(`,2)(Θ). and if Γ∗1

and Γ∗2 are positive definite matrices, the central limit theorems (21) and (22) hold.

Corollary 3.8 (Example of long memory LARCH(∞) studied in Beran and Schützner,

2009). Under the assumptions of Corollary 3.4 and if c4‖ξ0‖44
∑∞

i=1 j
4d−4+6c2‖ξ0‖22

∑∞
i=1 j

2d−2<1,

then the central limit theorems (21) and (22) hold.

Remark 3.5. To our knowledge, the only result for estimating the memory parameter d in the

case of LARCH(∞) processes with long memory was obtained in Beran and Schützner (2009) using

the smoothed QML estimator. However, the expression of this estimator uses only a small part of

the sample (X1, . . . , Xn), namely the last nβ observations, where β < 1 − 2d, while d is unknown

to account for the long memory of the process. This leads to a convergence rate of nβ/2 for this

truncated QML estimator, which is far less interesting than the convergence rate of
√
n obtained

with θ̂n. Monte Carlo experiments (see section 4) will also show that θ̂n performs numerically better

than these other estimators in terms of convergence rate, especially when compared to estimators

based on QML.
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4 Numerical experiments

4.1 Monte Carlo experiments

In this section, we report the results of Monte Carlo experiments conducted with different LARCH

processes. More specifically, we considered:

• Three different LARCH processes:

1. A LARCH(2) process, with parameters a0 = 5, a1 = −0.2 and a2 = 0.4;

2. A GLARCH(1, 1) process, with parameters c0 = 2, c1 = 0.3 and d1 = −0.6;

3. A long memory LARCH(∞) process, with θ = t(a0, c, d) and a0(θ) = a0 and ak(θ) =

c kd−1. We choose a0 = 1, c = 0.2 and d = 0.1, 0.2, 0.3 and 0.4, using the same

example studied in Beran and Schützner (2009) for its numerical illustrations. To define

numerically the trajectory of such processes, whose theoretical definition involves an

infinite sum, a truncation of this infinite sum has been used by taking a sum of one

million terms in the computation of Mθ(t), which also requires the generation of one

million additional realizations of the white noise.

• Several trajectory lengths: n = 200, 500, 1000, 2000 and 5000 for LARCH(2) and GLARCH(1, 1)

processes, and n = 1000, 2500, 5000 and 10000 for the LARCH(∞) process (as in Beran and

Schützner, 2009);

• Two distributions for ξ0 such as E[|ξ0|] = 1: a Gaussian N (0, π/2) distribution denoted N
and a normalized Student t(6) distribution with 6 freedom degrees.

• Choice of Θ for minimisation (12) and calculation of θ̂n: as already mentioned in the Remark

2.3, the set Θ(2) depends on the distribution of the noise, and an ”extended” condition

will be used in the minimisation algorithm. Hence, for the LARCH(2) process this means

0 ≤ a1, a2 ≤ 1, for the GLARCH(1, 1) process it will be 0 ≤ c1, d1 ≤ 1 and for the long

memory LARCH(∞) process, c < 1 and 0 ≤ d ≤ 0.5. After computing the estimator,

and using the empirical variance of the residuals ξ̂t as an estimator of ‖ξ0‖22, the condition

θ̂n ∈ Θ(2) can be checked from the equation σ̂2
ξ̂t

∑∞
j=1 a

2
j (θ̂n) < 1, which means for example

that σ̂2
ξ̂t
ĉ2 ζ(2 − 2 d̂) < 1 for the long memory LARCH(∞) process, where ζ is the Riemann

zeta function.

For each choice of process, length n and noise distribution, 1000 replications of independent trajec-

tories of the LARCH process are generated, except for the long memory LARCH(∞) where only

300 replications are used due to the computational time of the estimator. Note that in this case,

an algorithm based on the Fast Fourier Transform (FFT) has been developed in Nielsen and Noël

(2021, section 2.2), which could have been used to speed up the computations significantly, or if we

had applied the estimators to series larger than 104.

Two other estimators are to be compared with θ̂n:



12

1. Following Beran and Schützner (2009) and Truquet (2014), the first is the smooth approxi-

mation of the QMLE, which for h > 0 is given by

θ̂QML(h) := Argmin
θ∈Θ

1

n

n∑
t=1

h+X2
t

h+ (Mθ(t))2
+ log

(
h+ (Mθ(t))

2
)
. (24)

The a priori choice of h or data-driven ĥ is not a straightforward task, although Truquet has

provided some guidance in Truquet (2014). Therefore, we will present the results obtained

for 2 different values of h that give the best performances. In the case of the considered

LARCH(∞) process with long memory, Beran and Schützner (2009) proposed a modified

version of θ̂QML(h) and we will use their results.

2. Following Francq and Zaköıan (2010), the second is the weighted least squares estimator

defined by:

θ̂FZ := Argmin
θ∈Θ

1

n

n∑
t=1

τt
(
X2
t − (Mθ(t))

2
)2
, (25)

where the weights (τt) are obtained for LARCH(p) or GLARCH(p, q) using an empirical rule

proposed in Ling (2007): τt =
(

max
(
1 ,

1

C

p∑
i=1

|Xt−i| I1|Xt−i|>C
))−4

, where C is computed as

the 90% quantile of the absolute values
(
|X1|, . . . , |Xn|

)
. In case of long memory LARCH(∞),

we replace p by t− 1 in the definition of τt.

Remark 4.1. The estimator θ̂n can also be defined as a nonlinear least squares estimator for the

regression (|Xt|)1≤t≤n on
(∣∣∣a0(θ) +

∑∞
j=1 aj(θ)Xt−j

∣∣∣)
1≤t≤n

. As it was already done by Francq and

Zaköıan (2010) (see the estimator defined in (25)), a weighted version of θ̂n could also be considered:

θ̂wn = Arg min
θ∈Θ

1

n

n∑
t=1

wt

(
|Xt| −

∣∣∣a0(θ) +

∞∑
j=1

aj(θ) X̃t−j

∣∣∣)2
,

where wt = W
(
(Xt−k)1≤k≤t−1

)
> 0, defining a sequence of selected weights. Inspired by their work,

it seems that using weights of the form wt =
(

max
(
1 , 1

C

∑p
i=1 |Xt−i| I1|Xt−i|>C

)−2
would allow,

in particular, remove the condition r = 4 from the assumptions of asymptotic normality of θ̂n by

requiring only r = 1 for θ̂wn . To improve the convergence rate of the θ̂n, taking into account Remark

4.2 of Francq and Zaköıan (2010), one might think that wt =
(
Mθ∗(t)

)−2
would be the ideal sequence

of weights, but infeasible in practice.

Remark 4.2. The estimator θ̂n is obtained with parameters defined under the normalization con-

dition ‖ξ0‖1 = 1, while the estimators θ̂QML(h) or θ̂FZ are basically defined under the normaliza-

tion condition ‖ξ0‖2 = 1. After remark 2.2, a suitable renormalization of the parameters of the

LARCH process allows the transition from one condition to the other. So, for reference, consider

the LARCH(p) equation with parameter θ = t(a0, . . . , ap) under condition ‖ξ0‖1 = 1, θ̂n is an

estimator of θ, but θ̂QML(h) or θ̂FZ are estimators of θ/‖ξ0‖2. Therefore, a comparison of the

accuracies of the estimators is possible by considering θ̂n, ‖ξ0‖2 θ̂QML(h) and ‖ξ0‖2 θ̂FZ . If the law

of ξ0 is unknown, the comparison with the estimator σ̂ξ defined in (22) is still possible.
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θ̂n θ̂FZ θ̂QML(2) θ̂QML(1)

ξ0 law n a0 a1 a2 a0 a1 a2 a0 a1 a2 a0 a1 a2

N 200 0.326 0.047 0.064 0.423 0.092 0.100 1.015 0.136 0.123 1.832 0.248 0.168

500 0.210 0.029 0.043 0.268 0.059 0.065 0.446 0.070 0.086 1.119 0.145 0.121

1000 0.145 0.021 0.030 0.188 0.044 0.047 0.382 0.060 0.082 0.582 0.075 0.084

2000 0.101 0.014 0.021 0.130 0.030 0.033 0.265 0.047 0.059 0.453 0.053 0.080

5000 0.065 0.009 0.013 0.083 0.019 0.021 0.205 0.031 0.048 0.326 0.037 0.061

t(6) 200 0.433 0.061 0.091 0.624 0.130 0.133 2.111 0.268 0.205 1.916 0.258 0.186

500 0.272 0.040 0.061 0.390 0.091 0.094 1.699 0.214 0.186 1.569 0.209 0.167

1000 0.224 0.029 0.051 0.275 0.067 0.071 1.361 0.170 0.191 1.270 0.166 0.155

2000 0.124 0.021 0.031 0.196 0.048 0.051 1.334 0.149 0.175 1.535 0.147 0.151

5000 0.077 0.014 0.021 0.127 0.031 0.033 1.230 0.136 0.211 1.533 0.147 0.188

Table 1: Square roots of the MSE computed for each estimator of parameters a0 = 5, a1 = −0.2

and a2 = 0.4 of a LARCH(2) process computed from 1000 independent replications.

The results are presented in tables 1, 2 and 3.

Conclusions of the Monte Carlo experiments:

• Looking at the decay of the square root of the MSE of the θ̂n components towards 0 as n

increases from 200 to 5000 (or from 1000 to 10000), we see that this decay is approximately

1/
√
n, which corresponds to the theoretical convergence rate established in Theorem 3.1. This

is true for a LARCH(2) process as well as for a GLARCH(1, 1) or a LARCH(∞) process with

long memory, regardless of whether we consider a white noise with a Gaussian or Student

distribution t(6).

• In general, the square root of the MSE of θ̂n converges to 0 twice as fast as that of θ̂FZ

when the white noise follows a Gaussian or Student t(6) distribution, for the three processes

considered. We note that θ̂FZ gives convincing results in the case of a LARCH(∞) process

with long memory, while this was not shown in Francq and Zaköıan (2010), although they are

far outperformed by those of θ̂n. However, the numerical results for the convergence of the

MSE of θ̂FZ towards 0 become much worse when the white noise distribution of the LARCH

processes is a Student t(6) distribution.

• Finally, θ̂QML gives satisfactory performances comparable to those of θ̂n only in one case,

namely for the LARCH(1, 1) process with Gaussian white noise, and this after choosing

an optimal regularisation parameter. It should be noted, however, that the choice of this

parameter can easily be made in the context of Monte Carlo experiments, but this would

otherwise require a data-driven procedure that does not currently exist. For the estimation
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θ̂n θ̂FZ θ̂QML(1) θ̂QML(0.5)

ξ0 law n c0 c1 b1 c0 c1 b1 c0 c1 b1 c0 c1 b1

N 200 0.172 0.044 0.096 0.238 0.094 0.135 0.179 0.045 0.099 0.190 0.052 0.105

500 0.108 0.028 0.057 0.158 0.068 0.081 0.102 0.031 0.055 0.114 0.040 0.061

1000 0.071 0.019 0.039 0.113 0.050 0.055 0.066 0.018 0.034 0.081 0.029 0.048

2000 0.052 0.013 0.028 0.087 0.040 0.039 0.045 0.012 0.023 0.050 0.019 0.024

5000 0.033 0.008 0.017 0.065 0.030 0.025 0.028 0.007 0.014 0.027 0.006 0.012

t(6) 200 0.233 0.061 0.145 0.367 0.113 0.232 0.335 0.085 0.191 0.349 0.094 0.181

500 0.142 0.042 0.081 0.196 0.077 0.116 0.255 0.072 0.156 0.275 0.095 0.156

1000 0.091 0.029 0.051 0.147 0.063 0.082 0.207 0.064 0.125 0.261 0.096 0.144

2000 0.064 0.020 0.033 0.096 0.043 0.052 0.153 0.059 0.097 0.214 0.092 0.119

5000 0.039 0.013 0.022 0.071 0.029 0.037 0.116 0.036 0.095 0.184 0.073 0.119

Table 2: Square roots of the MSE computed for each estimator of parameters c0 = 2, c1 = 0.3 and

d1 = −0.6 of a GLARCH(1, 1) process computed from 1000 independent replications.

θ̂n θ̂FZ d̂QML

d n a0 c d a0 c d d

d = 0.1 1000 0.035 0.024 0.089 0.092 0.054 0.160 0.357

2500 0.020 0.015 0.048 0.089 0.059 0.119 0.292

5000 0.016 0.010 0.036 0.040 0.031 0.084 0.217

10000 0.013 0.010 0.021 0.033 0.029 0.053 0.198

d = 0.2 1000 0.041 0.023 0.060 0.103 0.059 0.147 1.449

2500 0.028 0.017 0.043 0.052 0.033 0.088 0.733

5000 0.016 0.010 0.024 0.033 0.027 0.050 0.559

10000 0.014 0.008 0.017 0.032 0.024 0.045 0.257

d = 0.3 1000 0.060 0.024 0.053 0.119 0.054 0.110 -

2500 0.045 0.017 0.037 0.091 0.035 0.087 -

5000 0.026 0.011 0.022 0.057 0.029 0.050 -

10000 0.016 0.008 0.017 0.039 0.024 0.042 -

d = 0.4 1000 0.100 0.025 0.047 0.189 0.051 0.081 -

2500 0.071 0.017 0.030 0.158 0.041 0.074 -

5000 0.041 0.011 0.018 0.122 0.032 0.057 -

10000 0.034 0.009 0.015 0.067 0.024 0.036 -

Table 3: Square roots of the MSE computed for estimators θ̂n and θ̂FZ of parameters a0 = 1,

c = 0.2 and d = 0.1, 0.2, 0.3 and 0.4 of the LARCH(∞) process computed from 300 independent

replications, and for d̂QML(h) already computed in Beran and Schützner (2009) for d = 0.1 and

0.2.
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of the long memory parameter d in the case of a LARCH(∞) process, the QML estimator

proposed in Beran and Schützner (2009) has truly disastrous performances compared to those

obtained with θ̂FZ and in particular those of θ̂n.

4.2 Application on the returns of a financial index

Let us look at the financial returns of an index called the CAC40, which is the French equivalent of

the FTSE100, with 40 companies instead of 100. These are the closing values between 15 November

2002 and 15 November 2022, i.e. 20 years and n = 5122 data. The correlogram plot shows a weak

white-noise type behaviour, which is also consistent with a conditionally heteroscedastic process.

Firstly, we can see that these returns have values extremely close to 0 (70 are in absolute terms less

2005 2010 2015 2020
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0.10
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Figure 1: Financial returns of CAC40 index, between November 15, 2002 and November 15, 2022

than 1% of the standard deviation) and even twice exactly 0, which would be very unlikely with a

GARCH process often used to model this data, for which the conditional variance is always greater

than a positive constant.

Moreover, as already pointed out in Giraitis i.e. (2004) with the S&P500 returns data since 1928,

we can observe a particular behaviour of the leverage estimate: it is negative for almost all lags

and follows a power-law type distribution (see Figure 2). A non-linear least squares approximation

gives the value of this power ' −0.55. If we note ht the leverage, this would mean that ht ∼ C td−1

with d ' 0.45 and C < 0. Now, if the CAC40 returns follow the example of LARCH(∞) processes

with long memory (Xt) studied in Beran and Schützner (2009), i.e. aj(θ) = c jd−1 for j ≥ 1, then

we have:

Cov (X0, Xt) = 0, ht = Cov (X0, X
2
t ) ' C td−1 and Cov (X2

0 , X
2
t ) ' c′ t2d−1,

with 0 < d < 1/2, C < 0 and c′ > 0 (see again Giraitis i.e., 2004, or Robinson and Zaffaroni, 1997).

We check that this last asymptotic behaviour is well verified by plotting the correlogram of the

squares of the process, which is done in figure 3. Again we observe a power law type behaviour, and

a non-linear least squares estimation of this power gives the result ' −0.09. However, if we use the
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Figure 2: Leverage estimate of the financial returns of CAC40 index, between November 15, 2002

and November 15, 2022
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Figure 3: Correlogram of the squared financial returns of CAC40 index, between November 15,

2002 and November 15, 2022

value of d = 0.445 obtained numerically from ht, we find that 2d− 1 ' −0.11, a value very close to

−0.09. There seems to be a good fit of a long memory LARCH(∞) model with these return data.

Fitting the returns of CAC40 index with two models of long memory LARCH(∞)

a. We first fitted these data with the long memory LARCH(∞) process studied in Beran and

Schützner (2009), i.e., such that

a0(θ) = a0 and aj(θ) = c jd−1 for j ≥ 1.

For this model, we considered the estimator θ̂n = t
(
â0, ĉ, d̂

)
used in the results of Table 3 and we

obtain

â0 ' 0.010 , ĉ ' −0.159 and d̂ ' 0.488.

This is quite consistent with the values of d previously obtained by nonlinear least squares. Note

that we also obtained θ̂FZ = t
(
0.007,−0.143, 0.497

)
, a value quite close to that of θ̂n, confirming
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the long memory property of this time series. Note also that using (22) an estimate of the covari-

ance matrix of these estimators can be computed. And we obtained the following 95% confidence

intervals from θ̂n:

a0 ∈
[
0.00999 , 0.0110

]
, c ∈

[
− 0.192 , −0.125

]
and d ∈

[
0.433 , 0.544

]
.

However, we notice that
∑∞

j=1 a
2
j (θ̂n) ' (0.159)2 ζ(1.024) ' 1.068 > 1 and also

∑∞
j=1 a

2
j (θ̂FZ) '

(−0.143)2 ζ(1.006) > 1. Thus, whatever the distribution of the noise, the second order stationarity

condition is not verified. The long memory model LARCH(∞) process such as aj(θ) = c jd−1

for j ≥ 1 does not seem appropriate. This is also confirmed by the correlograms of the residuals

ξ̂t = Xt/(â0 + ĉ
∑t−1

j=1 j
d̂−1Xt−j) and their absolute values |ξ̂t| plotted in Figure 4. Indeed, and it

is particularly clear with the correlogram of |ξ̂t|, (ξ̂t) could not appear almost as white noise (note

that Francq and Zaköıan, 2010, also proposed a goodness-of-fit test based on (ξ̂2
t ), but only for

AR(q)-LARCH(p) processes). Modelling these data with this model is therefore problematic.
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Figure 4: Correlograms of residuals and absolute values of residuals for the returns of CAC40 index,

between November 15, 2002 and November 15, 2022, using aj(θ) = c jd−1 for j ≥ 1

b. We now consider another model of a long memory LARCH(∞) process. We will thus suppose

that

a0(θ) = a0 and aj(θ) = c jd−1
(
1 +

c′

j

)
for j ≥ 1,

with θ = (a0, c, d, c
′) ∈ (0,∞)×R× (0, 1/2)×R. It is clear that for c′ = 0 we recover the previous

model. For this model, we computed on data the estimator θ̂n = t
(
â0, ĉ, d̂, ĉ

′) and obtained

â0 ' 0.010 , ĉ ' −0.302, d̂ ' 0.346 and ĉ′ ' −0.678.

In contrast to the previous model, now
∑∞

j=1 a
2
j (θ̂n) ' (−0.302)2

(
ζ(1.308) + (0.678)2 ζ(3.308) −

1.356 ζ(2.308)
)
' 0.222 < 1, and the second order stationary condition is generally satisfied (except

when ‖ξ0‖2 ≥ 4.5). And using (22), an estimate of the covariance matrix of these estimators can

be computed, and the following 95% confidence intervals of the parameters are obtained:

a0 ∈
[
0.0099 , 0.0110

]
, c ∈

[
−0.383 , −0.221

]
, d ∈

[
0.275 , 0.416

]
and c′ ∈

[
−0.885 , −0.472

]
.
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Finally, to visualise the goodness-of-fit of this second long memory LARCH(∞) model, the correl-

ograms of the residuals and the absolute values of the residuals are plotted in Figure 5.
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Figure 5: Correlograms of residuals and absolute values of residuals for the returns of CAC40 index,

between November 15, 2002 and November 15, 2022, using aj(θ) = c jd−1
(
1 + c′

j

)
for j ≥ 1

Conclusion: For these financial data, as observed by other authors, modelling by a long memory

LARCH(∞) process seems relevant. However, we point out that the model studied by Beran and

Schützner (2009), i.e. aj(θ) = c jd−1 for j ≥ 1, is not appropriate for these data, while a model

with a slightly more complex behaviour with an additional parameter, i.e. aj(θ) = c jd−1
(
1 + c′

j

)
for j ≥ 1, provides a quite satisfactory fit.

5 Proofs

In the sequel, with
∑m

j=1 · = 0 for m ≤ 0 by convention, for t ∈ Z, we will many times consider

Mθ(t) := a0(θ) +
∞∑
j=1

aj(θ)Xt−j and M̃θ(t) := a0(θ) +
t−1∑
j=1

aj(θ)Xt−j . (26)

Lemma 5.1. Under the assumptions of Proposition 3.1 and with d < 1/2 defined in (13), we obtain:

1. There exists C̃ > 0, such as for any t ≥ 1 and θ ∈ Θ:

E
[(
Mθ(t)

)2]
<∞, E

[(
M̃θ(t)

)2]
<∞ and E

[(
Mθ(t)− M̃θ(t)

)2] ≤ C̃ t2d−1. (27)

2. There exists C̃ > 0, such as for any t ≥ 1 and θ ∈ Θ:

E
[∥∥∂θMθ(t)

∥∥2
]
<∞, E

[∥∥∂θM̃θ(t)
∥∥2
]
<∞ and E

[∥∥∂θMθ(t)− ∂θM̃θ(t)
∥∥2
]
≤ C̃ t2d−1.

(28)

3. There exists C > 0, such as for any t ≥ 1,

E
[

sup
θ∈Θ

(
Mθ(t)− M̃θ(t)

)2] ≤ C t2d−1. (29)
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Proof of Lemma 5.1. 1. Since (Xt)t∈Z is a weak white noise, it can be written directly that

E
[(
Mθ(t)

)2]
= E[X2

0 ]

∞∑
k=1

a2
k(θ) ≤ E[X2

0 ]

∞∑
k=1

sup
θ∈Θ

a2
k(θ).

From Assumption C`(Θ), supθ∈Θ

∣∣ak(θ)∣∣ ≤ Ca kd−1 implying

∞∑
k=1

sup
θ∈Θ

a2
k(θ) ≤ C2

a

∞∑
k=1

k2d−2 <∞,

since 2d− 2 < −1. And therefore E
[(
Mθ(t)

)2]
<∞.

Using the same reasoning,

E
[(
M̃θ(t)

)2]
= E[X2

0 ]

t−1∑
k=1

a2
k(θ) ≤ E

[(
Mθ(t)

)2]
<∞.

Finally, E
[(
Mθ(t)−M̃θ(t)

)2]
= E[X2

0 ]
∑∞

k=t a
2
k(θ) ≤ C2

a E[X2
0 ]
∑∞

k=t k
2d−2 always from Assumption

C`(Θ). But for f a positive decreasing function,
∑n1

k=n0
f(k) ≤ f(n0) +

∫ n1

n0
f(t)dt for any integer

numbers n0 and n1 such as 0 ≤ n0 < n1 ≤ ∞. Therefore, for any t ≥ 1,

∞∑
k=t

k2d−2 ≤ t2d−2 +

∫ ∞
t

x2d−2dx ≤ t2d−2 +
1

1− 2d
t2d−1 ≤

(2− 2d

1− 2d

)
t2d−1.

Therefore, for any θ ∈ Θ and t ≥ 1,

E
[(
Mθ(t)− M̃θ(t)

)2] ≤ C2
a E[X2

0 ]
(2− 2d

1− 2d

)
t2d−1 ≤ C̃ t2d−1.

2. Using Assumptions (S) and C`(Θ), θ ∈ Θ 7→ ∂θMθ(t) exists a.s., and for any θ ∈ Θ and t ≥ 1,

∂θMθ(t) = ∂θa0(θ) +

∞∑
k=1

∂θak(θ)Xt−k and ∂θM̃θ(t) = ∂θa0(θ) +

t−1∑
k=1

∂θak(θ)Xt−k a.s. (30)

Then E
[(
∂θMθ(t)

)2]
=
∑`

j=1 E
[(
∂θjMθ(t)

)2]
. By replacing ak(θ) by ∂θjak(θ) that also satisfies

(13) for j = 1, . . . , `, we can use the same reasoning as in 1. for obtaining E
[(
∂θjMθ(t)

)2]
< ∞.

And this can also be done for ∂θM̃θ(t) and ∂θMθ(t)− ∂θM̃θ(t) and we obtain (28).

3. We use here ideas already present in Lemmas 1 and 2 of Beran and Schützner (2009). The

result will be easily generalized, but to facilitate the writing of the proof, we restrict ourselves to

the case where ` = 2 and θ = (θ1, θ2) ∈ Θ ⊂ [θ1, θ1]× [θ2, θ2]. Denote Zθ = Mθ(t)− M̃θ(t). Using

Theorem 3.B of Parzen (1999), we can write that for any t ≥ 1 and (θ1, θ2) ∈ [θ1, θ1]× [θ2, θ2],

Z2
(θ1,θ2) ≤

1

2

(
Z2

(θ1,θ2) + Z2
(θ1,θ2)

+

∫ θ1

θ1

Z2
(u1,θ2) +

(
∂θ1Z(u1,θ2)

)2
du1

)
.
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By applying again this theorem, and after computations, we finally obtain for any (θ1, θ2) ∈ [θ1, θ1]×
[θ2, θ2],

4Z2
(θ1,θ2) ≤ Z

2
(θ1,θ2) + Z2

(θ1,θ2)
+ Z2

(θ1,θ2)
+ Z2

(θ1,θ2)

+

∫ θ2

θ2

(
Z2

(θ1,u2) + Z2
(θ1,u2)

+
(
∂θ2Z(θ1,u2)

)2
+
(
∂θ2Z(θ1,u2)

)2)
du2

+

∫ θ1

θ1

(
Z2

(u1,θ2) + Z2
(u1,θ2)

+
(
∂θ1Z(u1,θ2)

)2
+
(
∂θ1Z(u1,θ2)

)2)
du1

+

∫ θ1

θ1

∫ θ2

θ2

(
Z2

(u1,u2) +
(
∂θ1Z(u1,u2)

)2
+
(
∂θ2Z(u1,u2)

)2
+
(
∂2
θ1θ2Z(u1,u2)

)2)
du1du2.

After taking expectations, we finally obtain that there exist positive real numbers C0(Θ), C1(Θ),

C2(Θ) and C12(Θ) depending only on Θ such as

E
[

sup
(θ1,θ2)∈Θ

Z2
(θ1,θ2)

]
≤ C0(Θ) sup

(θ1,θ2)∈Θ
E
[
Z2

(θ1,θ2)

]
+ C1(Θ) sup

(θ1,θ2)∈Θ
E
[(
∂θ1Z(θ1,θ2)

)2]
+ C2(Θ) sup

(θ1,θ2)∈Θ
E
[(
∂θ2Z(θ1,θ2)

)2]
+ C12(Θ) sup

(θ1,θ2)∈Θ
E
[(
∂2
θ1θ2Z(θ1,θ2)

)2]
. (31)

Now, using the previous point 1., we obtain that for any t ≥ 1:

sup
(θ1,θ2)∈Θ

E
[
Z2

(θ1,θ2)

]
= sup

(θ1,θ2)∈Θ
E
[(
M t

(θ1,θ2) − M̃
t
(θ1,θ2)

)2] ≤ C̃ t2d−1.

From point 2., the same bound can be established as well for sup(θ1,θ2)∈Θ E
[(
∂θ1Z(θ1,θ2)

)2]
and for

sup(θ1,θ2)∈Θ E
[(
∂θ1Z(θ1,θ2)

)2]
. From a straightforward extension to ∂2

θ1θ2
Z(θ1,θ2), (31) implies that

there exists C > 0:

E
[

sup
(θ1,θ2)∈Θ

(
M t

(θ1,θ2) − M̃
t
(θ1,θ2)

)2] ≤ C t2d−1.

Proof of Proposition 3.1. For θ ∈ Θ, denote:

In(θ) :=
1

n

n∑
t=1

Φ
(
(Xt−k)k≥0, θ

)
and Ĩn(θ) :=

1

n

n∑
t=1

Φ
(
(X̃t−k)k≥0, θ

)
, (32)

where Φ is defined in (10). The proof will be stepped in 3 points:

1. We prove here that supθ∈Θ

∣∣In(θ)− I(θ)
∣∣ a.s.−→
n→∞

0, with

I(θ) := E
[
Φ
(
(X−k)k≥0, θ

)]
for θ ∈ Θ. (33)

Indeed, from Doukhan and Wintenberger (2008), there exists a function H : RN → R such as for

any t ∈ Z, Xt = H((ξt−j)j≥0) and therefore (Xt)t∈Z is a second order ergodic stationary sequence

since r = 2. Then, for θ ∈ Θ, there exists HΦ : RN → [0,∞) such that

Φ
(
(X−k)k≥0, θ

)
= Φ

((
(H(ξk−j))j≥0

)
k≥0

, θ
)

= HΦ

(
(ξ−j)j≥0

)
,
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with also E
[∣∣Φ((X−k)k≥0, θ

)∣∣] <∞. Then using Theorem 36.4 in Billingsley (1995),
(
Φ
(
(X−k)k≥0, θ

))
t∈Z

is an ergodic stationary sequence for any θ ∈ Θ. As a consequence, for any θ ∈ Θ,

In(θ)
a.s.−→
n→∞

I(θ).

Moreover, since Θ is a compact set, using Theorem 2.2.1. in Straumann (2005), we deduce

that
(
Φ
(
(Xt−k)k≥0, θ

))
t∈Z also follows a uniform ergodic theorem and we obtain supθ∈Θ

∣∣In(θ) −
I(θ)

∣∣ a.s.−→
n→∞

0.

2. We also have supθ∈Θ

∣∣In(θ)− Ĩn(θ)
∣∣ a.s.−→
n→∞

0. We have

∣∣In(θ)− Ĩn(θ)
∣∣ ≤ 1

n

n∑
t=1

∣∣Φ((Xt−k)k≥0, θ
)
− Φ

(
(X̃t−k)k≥0, θ

)∣∣, (34)

and for any θ ∈ Θ,∣∣Φ((Xt−k)k≥0, θ
)
− Φ

(
(X̃t−k)k≥0, θ

)∣∣ =
∣∣∣(|Xt| −

∣∣Mθ(t)
∣∣)2 − (|Xt| −

∣∣M̃θ(t)
∣∣)2∣∣∣

≤
∣∣Mθ(t)− M̃θ(t)

∣∣ (2 |Xt|+
∣∣Mθ(t)

∣∣+
∣∣M̃θ(t)

∣∣),
withMθ(t) and M̃θ(t) defined in (26). Therefore, using Cauchy-Schwarz and Minkowski inequalities,

E
[

sup
θ∈Θ

∣∣Φ((Xt−k)k≥0, θ
)
− Φ

(
(X̃t−k)k≥0, θ

)∣∣]
≤ E

[
sup
θ∈Θ

{∣∣Mθ(t)− M̃θ(t)
∣∣} (2 |Xt|+ sup

θ∈Θ

{∣∣Mθ(t)
∣∣+
∣∣M̃θ(t)

∣∣})]
≤
(
E
[

sup
θ∈Θ

{(
Mθ(t)− M̃θ(t)

)2}])1/2(
2 ‖Xt‖2 +

(
E
[

sup
θ∈Θ

∣∣Mθ(t)
∣∣2])1/2

+
(
E
[

sup
θ∈Θ

∣∣M̃θ(t)
∣∣2])1/2)

.(35)

Now, since Θ is a compact set included in Θ(2), we have ‖Xt‖2 <∞. Moreover, using Lemma 5.1,

point 3., for t = 1, we have E
[

supθ∈Θ

∣∣Mθ(1)
∣∣2] = E

[
supθ∈Θ

∣∣Mθ(t)
∣∣2] ≤ C.

With
∣∣M̃θ(t)

∣∣2 ≤ 2
(
Mθ(t)−M̃θ(t)

)2
+2
(
Mθ(t)

)2
, this also implies that E

[
supθ∈Θ

∣∣M̃θ(t)
∣∣2] ≤ 4C.

Therefore, there exists C > 0 such as for any t ≥ 1,(
2 ‖Xt‖2 +

(
E
[

sup
θ∈Θ

∣∣Mθ(t)
∣∣2])1/2

+
(
E
[

sup
θ∈Θ

∣∣M̃θ(t)
∣∣2])1/2)

≤ C. (36)

Therefore, from (35), (36) and Lemma 5.1, point 3., we deduce that there exists C > 0 such as:

E
[

sup
θ∈Θ

∣∣Φ((Xt−k)k≥0, θ
)
− Φ

(
(X̃t−k)k≥0, θ

)∣∣] ≤ C t2d−1 for any t ≥ 1.

Then, using this bound and since d < 1/2, there exists C > 0 such as:

n∑
t=1

1

t
E
[

sup
θ∈Θ

∣∣Φ((Xt−k)k≥0, θ
)
− Φ

(
(X̃t−k)k≥0, θ

)∣∣] ≤ C n∑
t=1

t2d−2 ≤ C
∞∑
t=1

t2d−2 <∞. (37)

In Corollary 1 of Kounias and Weng (1969), it is established that

∞∑
t=1

E
[
|Zt|
]

bt
< ∞ implies

1

bn

n∑
t=1

Zt
a.s.−→
n→∞

0 for a L1 sequence of r.v. (Zt)t and bn −→
n→∞

∞. Therefore, with bt = t for
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t ∈ N∗, (37) leads to

1

n

n∑
t=1

sup
θ∈Θ

∣∣Φ((Xt−k)k≥0, θ
)
− Φ

(
(X̃t−k)k≥0, θ

)∣∣ a.s.−→
n→∞

0,

and therefore to sup
θ∈Θ

∣∣In(θ)− Ĩn(θ)
∣∣ a.s.−→
n→∞

0 from (34).

3. The two previous points show us that supθ∈Θ

∣∣Ĩn(θ) − I(θ)
∣∣ a.s.−→
n→∞

0 with I defined in (33).

The proof is achieved if we establish that θ∗ is the unique minimum of θ ∈ Θ 7→ I(θ). This is

induced by the following computations:

I(θ) = E
[
Φ
(
(X−k)k≥0, θ

)]
= E

[(
|ξ0|

∣∣a0(θ∗) +
∞∑
j=1

aj(θ
∗)X−j

∣∣− ∣∣a0(θ) +
∞∑
j=1

aj(θ)X−j
∣∣)2]

= E
[
ξ2

0 − 1
]
E
[(∣∣a0(θ∗) +

∞∑
j=1

aj(θ
∗)X−j

∣∣)2]
+E
[(∣∣a0(θ) +

∞∑
j=1

aj(θ)X−j
∣∣− ∣∣a0(θ∗) +

∞∑
j=1

aj(θ
∗)X−j

∣∣)2]
,

using the assumption ‖ξ0‖1 = 1 and because (Xt) is a causal time series implying that ξ0 inde-

pendent to σ
{

(X−k)k≥1

}
. The first term of the previous relationship does not depend on θ. The

second one vanishes when θ = θ∗. It is also non negative and it vanishes if

∣∣a0(θ) +
∞∑
j=1

aj(θ)X−j
∣∣ =

∣∣a0(θ∗) +
∞∑
j=1

aj(θ
∗)X−j

∣∣ a.s.

As we assumed that a0(·) is a positive function, using also Assumption Id(Θ), we deduce that θ = θ∗

is the only solution of the previous equality. As a consequence, θ∗ is the unique minimizer of I(·) and

since supθ∈Θ

∣∣Ĩn(θ)− I(θ)
∣∣ a.s.−→
n→∞

0 and θ̂n = θ̂n = Argmin
θ∈Θ

Ĩn(θ), we deduce that θ̂n
a.s.−→
n→∞

θ∗.

Proof of Corollary 3.1. In such a case, θ = t(a0, . . . , ap) and therefore ai(θ) = ai for any 0 ≤ i ≤ p
and ai(θ) = 0 for i ≥ p+ 1. Then, θ ∈ Θ 7→ ak(θ) are C∞ functions on Θ for any k ∈ N. Moreover,

since supθ∈Θ |ak(θ)| = 0 for k ≥ p+1 as well as supθ∈Θ

∥∥∂j
θj
ak(θ)

∥∥ = 0 for any 1 ≤ j ≤ p+1, therefore

(13) is satisfied and Assumption Cp+1(Θ) holds. Since
∑∞

k=1 supθ∈Θ |ak(θ)| < ∞, Assumption (S)

is also satisfied. Finally, Assumption Id(Θ) is obviously satisfied: ai(θ) = ai(θ̃) implies ai = ãi,

which implies θ = t(a0, . . . , ap) = θ̃ = t(ã0, . . . , ãp) for any i ∈ N. Then the strong consistency of

θ̂n is established from Proposition 3.1.

Proof of Corollary 3.2. Denote θ =
(
θP , θQ

)
∈ Θ where θP = t

(
c0, c1, . . . , cp

)
∈ (0,∞) × Rp,

θQ = t
(
d1, . . . , dq

)
∈ Rq. Then σ = P−1

θP
(B)QθQ(B)X. It is clear that θP → PθP is an injective

function, and it is the same for θP → P−1
θP

and θQ → QθQ . Finally it is also the same for θ =
t
(
θP , θQ

)
→ P−1

θP
× QθQ , because PθP and QθQ are not zero polynomial and because we assume

that the p + 1 components of θP are free of the q components θQ, i.e. there are no supposed

links between (ci)0≤i≤p and (dj)1≤j≤q. Therefore, (15) and Assumption Id(Θ) are satisfied for

GLARCH(p, q) process.
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Moreover, as it is well known for GARCH(p, q) processes, since
∑q

j=1 |dj | ≤ ρ with 0 ≤ ρ <

1 from the expression of Θp,q(2), the roots zj(θ) of the characteristic polynomial ξ(z) = zq −∑q
j=1 bjz

q−j satisfies supθ maxj |zj(θ)| < 1: (ak(θ))k decreases exponentially fast towards 0. Then∑∞
k=1 supθ∈Θ |ak(θ)| < ∞ and Assumption (S) is satisfied. Moreover, there exists c0 > 0 such as

supθ∈Θ |ak(θ)| ≤ c0 k
−3/4 for any k ≥ 1. By considering the derivatives of equation (7), we also have

supθ∈Θ

∥∥∂j
θj
ak(θ)

∥∥ ≤ cj k−3/4 with cj > 0 for any k, j ≥ 1 and Assumption Cp+q+1(Θ) holds.

Proof of Corollary 3.3. The assumptions of Corollary 3.3 are exactly the same as those of Propo-

sition 3.1. It remains for us to prove that (13) could be satisfied under the condition (9), i.e. there

exists d(θ) ∈ (0, 1/2) and Lθ(·) a slowly varying function such that aj(θ) = Lθ(j) j
d(θ)−1 for j ∈ N∗.

Since θ ∈ Θ a compact set, there exists D ∈ (0, 1/2) such that d(θ) ≤ D for any θ ∈ Θ. Moreover,

since Lθ(·) is a slow varying function and θ ∈ Θ a compact subset of R`, there exists CL > 0 such

that supθ∈Θ

∣∣Lθ(j)∣∣ ≤ CL j1/4−D/2 for any j ∈ N∗, with 1/4−D/2 > 0. As a consequence,

sup
θ∈Θ

∣∣aj(θ)∣∣ ≤ CL j1/4−D/2jD−1 ≤ CL jD/2−3/4 for any j ∈ N∗.

With d = D/2 + 1/4 < 1/2, Assumption C0(Θ) is verified and Corollary 3.3 is established.

Proof of Corollary 3.4. We have to prove that the assumptions of Corollary (3.3) are satisfied in

this particular case of long memory LARCH(∞) process.

First, we have θ = t(a0, c, d) ∈ Θ ⊂ R3 and Assumption C3(Θ) has to be verified. It is clear that

ak : θ 7→ c kd−1 is a C∞ function on Θ, with θ defined in (18). For k ≥ 3, easy computations imply

that:

sup
θ∈Θ

∥∥∂j
θj
ak(θ)

∥∥ ≤√c2
M + j × log k × kdM−1 for 1 ≤ j ≤ 3.

Therefore, by considering for instance d = dM/2 + 1/2 ∈ (dM , 1/2), it is clear that there exists

Ca > 0 such as (13) is satisfied and Assumption C3(Θ) holds.

It remains to prove Assumption Id(Θ). This one will be verified by considering the equality aj(θ) =

aj(θ̃) for any j ∈ N where θ = t(a0, c, d) and θ̃ = t(ã0, c̃, d̃). This implies a0 = ã0 and c jd−1 = c̃ jd̃−1

for any j ∈ N, leading to θ = θ̃: Assumption Id(Θ) is also satisfied.

Proof of Theorem 3.1. Let In(θ) and Ĩn(θ) be defined in (32). We follow a proof that is similar to

the one of Theorem 2 in Davis and Dunsmuir (1997).

Let v =
√
n(θ − θ∗) ∈ R` and define

Wn(v) =
n∑
t=1

Φ
(
(Xt−k)k≥0, θ

∗ + n−1/2v
)
− Φ

(
(Xt−k)k≥0, θ

∗) = n
(
In(θ)− In(θ∗)

)
and W̃n(v) =

n∑
t=1

Φ
(
(X̃t−k)k≥0, θ

∗ + n−1/2v
)
− Φ

(
(X̃t−k)k≥0, θ

∗) = n
(
In(θ)− Ĩn(θ∗)

)
.

Then we are going to prove first that minimizing Ĩn(θ) with respect to θ ∈ Θ is equivalent to

minimize W̃n(v) with respect to v ∈ R`, which is also equivalent to minimize Wn(v) with respect to

v ∈ R`. Secondly, we will provide a limit theorem satisfied by Wn(v) for any v ∈ R`. Then we are

going to prove in 3. that (Wn(·))n converges as a process of C(R`) (space of continuous functions on

R`) to a limit process W . Hence the sequence of minimum of W̃n, i.e (v̂n)n with v̂n =
√
n(θ̂n− θ∗),
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will converge in distribution to the distribution of the minimum of W (·).

1. For any v ∈ R` and n ≥ 1, we have:

Wn(v) =
n∑
t=1

(∣∣Xt

∣∣− ∣∣Mθ∗+n−1/2v(t)
∣∣)2
−
(∣∣Xt

∣∣− ∣∣Mθ∗(t)
∣∣)2

=

n∑
t=1

(∣∣Xt

∣∣− ∣∣∣Mθ∗(t)−
1√
n
tv ∂θMθ

(n)
t

(t))
∣∣∣)2
−
(∣∣Xt

∣∣− ∣∣Mθ∗(t)
∣∣)2

=
n∑
t=1

(∣∣Xt

∣∣− ∣∣Mθ∗(t)
∣∣− 1√

n
tv ∂θMθ

(n)
t

(t)× sgn(Mθ∗(t))
)2
−
(∣∣Xt

∣∣− ∣∣Mθ∗(t)
∣∣)2

= − 2√
n

n∑
t=1

(∣∣Xt

∣∣− ∣∣Mθ∗(t)
∣∣)× sgn(Mθ∗(t))× tv ∂θMθ

(n)
t

(t) +
1

n

n∑
t=1

(
tv ∂θMθ

(n)
t

(t))
)2

= J
(n)
1 (v) + J

(n)
2 (v) (38)

with θ
(n)
t = α

(n)
t θ∗ + (1− α(n)

t )
(
θ∗ + n−1/2v

)
where α

(n)
t ∈ [0, 1] is given from the Taylor-Lagrange

expansion.

Term J
(n)
2 (v): For any v ∈ R`, θ(n)

t
a.s.−→
n→∞

θ∗ and then

∣∣∣∂θMθ
(n)
t

(t)− ∂θM t
θ∗)

∣∣∣ a.s.−→
n→∞

0 for any t ∈ N, (39)

since the functions θ ∈ Θ 7→ ∂θai(θ) are supposed to be continuous functions for any i ∈ N. Then

we obtain for any v ∈ R`:

∣∣∣J (n)
2 (v)− E

[(
tv ∂θMθ∗(0)

)2]∣∣∣ ≤ 1

n

n∑
t=1

∣∣∣(tv ∂θMθ∗(t)
)2 − (tv ∂θMθ

(n)
t

(t)
)2∣∣∣

+
∣∣∣ 1
n

n∑
t=1

(
tv ∂θMθ∗(t)

)2 − E
[(
tv ∂θMθ∗(0)

)2]∣∣∣.
Now using Cesaro Lemma we obtain from (39),∣∣∣ 1

n

n∑
t=1

(
tv ∂θMθ∗(t)

)2 − E
[(
tv ∂θMθ∗(0)

)2]∣∣∣ a.s.−→
n→∞

0. (40)

Moreover, we have seen that there exist a function H such as Xt = H((ξt−j)j≥0) for any t ∈ Z, and

therefore (Xt)t∈Z is a second order ergodic stationary sequence. Then, for any v ∈ R`, there exists

a function Hv : RN → [0,∞) such as(
tv ∂θMθ∗(t)

)2
= Hv

(
(ξ−j)j≥0

)
,

with also E
[(
tv ∂θMθ∗(t)

)2]
< ∞ (see 1. of Lemma 5.1). Then using Theorem 36.4 in Billingsley

(1995),
((
tv ∂θMθ∗(t)

)2)
t∈Z is an ergodic stationary sequence implying to:

1

n

n∑
t=1

∣∣∣(tv ∂θMθ∗(t)
)2 − E

[(
tv ∂θMθ∗(0)

)2]∣∣∣ a.s.−→
n→∞

0. (41)
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Finally, with (40) and (41), we obtain for any v ∈ R`,

J
(n)
2 (v)

a.s.−→
n→∞

E
[(
tv ∂θMθ∗(0)

)2]
= tv Γ∗1 v where Γ∗1 := E

[
∂θMθ∗(0)× t∂θMθ∗(0)

]
, (42)

where Γ∗1 is as in (19).

Term J
(n)
1 (v): We also have

J
(n)
1 (v) = − 2√

n

n∑
t=1

(∣∣Mθ∗(t) ξt
∣∣− ∣∣Mθ∗(t)

∣∣)× sgn(Mθ∗(t))× tv ∂θMθ
(n)
t

(t)

= tv
(
− 2√

n

n∑
t=1

(∣∣ξt∣∣− 1
)
Mθ∗(t)× ∂θMθ∗(t)

+
2

n

n∑
t=1

(∣∣ξt∣∣− 1
)
Mθ∗(t)×

√
n
(
∂θMθ∗(t)− ∂θMθ

(n)
t

(t)
))

= tv
(
K

(n)
1 (v) +K

(n)
2 (v)

)
.

We have
((∣∣ξt∣∣− 1

)
Mθ∗(t)× ∂θMθ∗(t)

)
t∈N

that is a stationary ergodic martingale difference since

with the σ-algebra Ft = σ
{

(Xt−k)k≥1

}
,

E
[(∣∣ξt∣∣− 1

)
Mθ∗(t)× ∂θMθ∗(t)

∣∣∣Ft] = E
[∣∣ξt∣∣− 1

]
E
[
Mθ∗(t)× ∂θMθ∗(t)

]
= 0,

because (Xt) is a causal process and ξt is independent of Ft and E
[∣∣ξ0

∣∣] = 1.

Now since Γ∗2 := E
[(
Mθ∗(0)

)2
∂θMθ∗(0) × t∂θMθ∗(0)

]
is supposed to be a finite definite positive

matrix (see also its expression in (20)),

E
[(∣∣ξ0

∣∣− 1
)2∥∥Mθ∗(0)× ∂θMθ∗(0)

∥∥2
]

= (σ2
ξ − 1)E

[∥∥Mθ∗(0)× ∂θMθ∗(0)
∥∥2
]
<∞.

Then the central limit for stationary ergodic martingale difference, Theorem 18.3 of Billingsley

(1968) can be applied and we obtain for any v ∈ R`:

K
(n)
1 (v)

L−→
n→∞

K1
L∼ N

(
0 , 4 (σ2

ξ − 1) Γ∗2
)
. (43)

For any t ∈ Z, by the definition of θ
(n)
t , we have

√
n (θ

(n)
t − θ∗) = (1− α(n)

t ) v with α
(n)
t a random

variable of Ft bounded in [0, 1]. Therefore, using a Taylor-Lagrange expansion, we also have∣∣∣√n tv (∂θMθ∗(t)− ∂θMθ
(n)
t

(t)
)∣∣∣ = (1− α(n)

t )tv ∂θ2M
t

θ
(n)

t

v ≤ sup
θ∈Θ

∥∥∂2
θ2Mθ(t)

∥∥∥∥v∥∥2
for any t ∈ Z,

where θ
(n)

t = β
(n)
t θ∗ + (1− β(n)

t )θ
(n)
t and β

(n)
t ∈ [0, 1].

We have E
[(

supθ∈Θ

∥∥∂2
θ2Mθ(t)

∥∥)2]
= E

[
supθ∈Θ

∥∥∂2
θ2Mθ(0)−∂2

θ2M̃θ(0)
∥∥2
]
. Using the same reason-

ing than in 3. of Lemma 5.1, E
[

supθ∈Θ

∥∥∂2
θ2Mθ(0)− ∂2

θ2M̃θ(0)
∥∥2
]
<∞ when Assumption C`+2(Θ)

holds. As a consequence,

E
[(√

n tv
(
∂θMθ∗(t)− ∂θMθ

(n)
t

(t)
))2]

≤ E
[

sup
θ∈Θ

∥∥∂2
θ2Mθ(t)

∥∥2
]
×
∥∥v∥∥4

<∞.
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Moreover, since θ
(n)
t ∈ Ft, we also have (∂θMθ∗(t)−∂θMθ

(n)
t

(t)
)
∈ Ft and from the previous bound,

E
[∣∣∣(|ξt| − 1

)
Mθ∗(t)×

√
n tv

(
∂θMθ∗(t)− ∂θMθ

(n)
t

(t)
)∣∣∣]

= E
[∣∣|ξt| − 1

∣∣]× E
[∣∣∣(Mθ∗(t)×

√
n tv

(
∂θMθ∗(t)− ∂θMθ

(n)
t

(t)
)∣∣∣]

≤ E
[∣∣|ξt| − 1

∣∣]× E
[(
Mθ∗(t)

)2]× E
[(√

n tv
(
∂θMθ∗(t)− ∂θMθ

(n)
t

(t)
))2]

<∞. (44)

Therefore
(
|ξt| − 1

)
Mθ∗(t) ×

√
n tv

(
∂θMθ∗(t) − ∂θMθ

(n)
t

(t)
)
t

is a stationary causal sequence, and

from (44), Theorem 36.4 in Billingsley (1995) implies that for any v ∈ R`,

tv K
(n)
2 (v)

a.s.−→
n→∞

E
[(
|ξt| − 1

)
Mθ∗(t)×

√
n tv

(
∂θMθ∗(t)− ∂θMθ

(n)
t

(t)
)]

= 0. (45)

Finally, for any v ∈ R`, since J
(n)
1 (v) = tv

(
K

(n)
1 (v) +K

(n)
2 (v)

)
, then J

(n)
1 (v)

L−→
n→∞

tv K1 from (43)

and (45), and with (42) this implies,

Wn(v)
L−→

n→∞
tv Γ∗1 v + tv K1 with K1

L∼ N
(
0 , 4 (σ2

ξ − 1) Γ∗2
)
. (46)

2. Asymptotically, for any v ∈ R`, from 1., we know that the law of Wn(v) is the same as the law

of:

W ′n(v) = − 2√
n

n∑
t=1

(∣∣ξt∣∣− 1
)
Mθ∗(t)× tv ∂θMθ∗(t) +

1

n

n∑
t=1

(
tv ∂θMθ∗(t)

)2
and we deduce the same kind of result for the law of W̃n(v), which is asymptotically equivalent to

the one of:

W̃ ′n(v) = − 2√
n

n∑
t=1

(∣∣ξt∣∣− 1
)
M̃θ∗(t)× tv ∂θM̃θ∗(t) +

1

n

n∑
t=1

(
tv ∂θM̃θ∗(t)

)2
.

Therefore we obtain:

W ′n(v)− W̃ ′n(v) = − 2√
n

n∑
t=1

(∣∣ξt∣∣− 1
)
tv
(
Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t)

)
+tv

( 1

n

n∑
s=1

(
∂θM

s
θ∗
t∂θM

s
θ∗ − ∂θM̃ s

θ∗
t∂θM̃

s
θ∗
))
v (47)

= L
(n)
1 + L

(n)
2 . (48)

Term L
(n)
1 : Using the causality of (Xt), i.e. ξt independent to σ{Xt−1, Xt−2, . . .} for any t ∈ Z,

we deduce that:

E
[ 1√

n

n∑
t=1

(∣∣ξt∣∣− 1
)
tv
(
Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t)

)]
= 0, (49)

since E[|ξt|] = 1. Moreover, we have for any t ≥ 1:

Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t) = Mθ∗(t)
(
∂θMθ∗(t)− ∂θM̃θ∗(t)

)
+ ∂θM̃θ∗(t)

(
Mθ∗(t)− M̃θ∗(t)

)
.
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Using 1. and 2. of Lemma 5.1, we have for any t ≥ 1:

E
[(
Mθ∗(t)− M̃θ∗(t)

)2] ≤ C̃ t2d−1 and E
[∥∥∂θMθ∗(t)− ∂θM̃θ∗(t)

∥∥2] ≤ C̃ t2d−1.

As a consequence, using Cauchy-Schwarz and Minkowski inequalities,∥∥Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t)
∥∥

2
≤
√
C̃
(∥∥Mθ∗(0)‖2 +

∥∥∂θMθ∗(0)‖2
)
td−1/2. (50)

Therefore, there exists C > 0 such as for any n ≥ 1,

E
[( 1√

n

n∑
t=1

(∣∣ξt∣∣− 1
)
tv
(
Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t)

))2]
=

1

n
(σ2
ξ − 1) ‖v‖2

n∑
t=1

∥∥Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t)
∥∥2

2

≤ C

n
(σ2
ξ − 1) ‖v‖2

n∑
t=1

t2d−1

≤ C

n
(σ2
ξ − 1) ‖v‖2

(
1 +

∫ n

1
x2d−1dx

)
≤ C ′ ‖v‖2 n2d−1

with C ′ > 0 and for n large enough, using again the fact that for f a positive decreasing function∑n
k=1 f(k) ≤ f(1) +

∫ n
1 f(t)dt. Therefore, for any v ∈ R,

E
[( 1√

n

n∑
t=1

(∣∣ξt∣∣− 1
)
tv
(
Mθ∗(t) ∂θMθ∗(t)− M̃θ∗(t) ∂θM̃θ∗(t)

))2]
−→
n→∞

0. (51)

Therefore, from (49) and (51), we deduce E
[
L

(n)
1

]
= 0 and Var

(
L

(n)
1

)
−→
n→∞

0. Using Bienaymé-

Tchebytchev Inequality, this implies that for any v ∈ R`,

L
(n)
1

P−→
n→∞

0. (52)

Term L
(n)
2 : Using the same method, we also obtain that there exist C ′′ > 0 such as for any

s ∈ {1, . . . , n}, ∥∥∂θM s
θ∗
t∂θM

s
θ∗ − ∂θM̃ s

θ∗
t∂θM̃

s
θ∗
∥∥

2
≤ C ′′ sd−1/2. (53)

Now with (53), we can use again the result established in part 2. of the proof of Proposition 3.1

based on the Corollary 1 of Kounias and Weng (1969) and obtain for any n ∈ N∗,

n∑
s=1

1

s

∥∥∂θM s
θ∗
t∂θM

s
θ∗ − ∂θM̃ s

θ∗
t∂θM̃

s
θ∗
∥∥

1
≤ C ′′

n∑
s=1

sd−3/2 <∞

since d < 1/2. Therefore:

1

n

n∑
s=1

(
∂θM

s
θ∗
t∂θM

s
θ∗ − ∂θM̃ s

θ∗
t∂θM̃

s
θ∗
) a.s.−→
n→∞

0, (54)

implying

L
(n)
2

a.s.−→
n→∞

0 for any v ∈ R`. (55)
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Finally from (48), (52) and (55), we deduce that for any v ∈ R`,∣∣Wn(v)− W̃n(v)
∣∣ P−→
n→∞

0.

Using (46), this implies

W̃n(v)
L−→

n→∞
W (v) := tv Γ∗1 v + tv K1 with K1

L∼ N
(
0 , 4 (σ2

ξ − 1) Γ∗2
)
. (56)

3. Now, using the same arguments than in the proof of Theorem 2 of Davis and Dunsmuir (1997),

we deduce that finite distributions (W̃n(v1), · · · , W̃n(vk)) converge to (W (v1), · · · ,W (vk)) for any

(v1, · · · , vk) ∈ (R`)k. Moreover, always following the proof of Theorem 2 of Davis and Dunsmuir

(1997), (Wn(v))v converges to (W (v))v as a process on the continuous function space C0(R).

As a consequence, a maximum v̂ =
√
n
(
θ̂n−θ∗

)
of Ŵn(v) converges in distribution to the maximum

of tv Γ∗1 v+ tv K1, which is v := −1

2

(
Γ∗1
)−1

K1
L∼ N

(
0 , (σ2

ξ − 1)
(
Γ∗1
)−1

Γ∗2
(
Γ∗1
)−1
)

and this implies

(21).

Proof of Remark 3.4. Using the notations of the proof of Theorem 3.1, we have:

Γ̂1 =
1

n

n∑
s=1

∂θM̃θ̂n
(s) t∂θM̃θ̂n

(s) and Γ̂2 :=
1

n

n∑
s=1

(
M
θ̂n

(s)
)2
∂θM̃θ̂n

(s) t∂θM̃θ̂n
(s).

Using the same computations than those required for establishing (53), we have for any θ ∈ Θ:∥∥∂θMθ(s)× t∂θMθ(s)− ∂θM̃θ(s)× t∂θM̃θ(s)
∥∥

2
≤ C ′′ sd−1/2.

And following (54), we obtain for any θ ∈ Θ

1

n

n∑
s=1

(
∂θMθ(s)× t∂θMθ(s)− ∂θM̃θ(s)× t∂θM̃θ(s)

) a.s.−→
n→∞

0

Using Theorem 2.2.1. in Straumann (2005), we deduce that:

sup
θ∈Θ

∣∣∣ 1
n

n∑
s=1

(
∂θMθ(s)× t∂θMθ(s)− ∂θM̃θ(s)× t∂θM̃θ(s)

)∣∣∣ a.s.−→
n→∞

0

and this implies ∣∣∣ 1
n

n∑
s=1

(
∂θMθ̂n

(s)× t∂θMθ̂n
(s)− ∂θM̃θ̂n

(s)× t∂θM̃θ̂n
(s)
)∣∣∣ a.s.−→

n→∞
0. (57)

Moreover, for any θ ∈ Θ, since the process
(
∂θMθ(s)× t∂θMθ(s)

)
s

is a stationary causal sequence

such as E
[∥∥∂θMθ(0)× t∂θMθ(0)

∥∥] <∞, Theorem 36.4 in Billingsley (1995) implies :

1

n

n∑
s=1

∂θMθ∗(s)× t∂θMθ∗(s)
a.s.−→
n→∞

Γ∗1.

But for any s ∈ {1, . . . , n}, θ ∈ Θ 7→ ∂θMθ(s) is a continuous function and since θ̂n
a.s.−→
n→∞

θ∗,

1

n

n∑
s=1

∂θMθ̂n
(s)× t∂θMθ̂n

(s)
a.s.−→
n→∞

Γ∗1. (58)
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Using (57) and (58), we deduce that Γ̂1
a.s.−→
n→∞

Γ∗1.

Using the same reasoning as well as (50), we also deduce that Γ̂2
a.s.−→
n→∞

Γ∗2.

Proof of Corollary 3.5. Using exactly the same arguments as in the proof of Corollary 3.2 for

establishing that Assumption C`(Θ) holds with ` = p+ q + 1, Assumption C`+2(Θ) also holds.

Moreover, for any GLARCH(p, q) process, the matrix Γ∗1 and Γ∗2 are positive definite matrix. Indeed,

following the same reasoning as in the proof of Lemma 5 of Beran and Schützner (2009), we have

for any v ∈ Rp+q+1

tv Γ∗1 v = E
[(
tv ∂θMθ∗(0)

)2] ≥ 0.

Assume that tv ∂θMθ∗(0) = 0. By stationarity, this implies tv ∂θMθ∗(k) = 0 for any k ∈ Z. Using

relation (7), we deduce that:

∂θMθ∗(0) = ∂θ
(
c0 + c1X−1 + · · ·+ cpXt−p

)
+ ∂θ

(
d1Mθ∗(−1) + · · ·+ dqMθ∗(−q)

)
.

Then: 
∂c0Mθ∗(0) = 1 + d1 ∂c0Mθ∗(−1) + · · ·+ dq ∂c0Mθ∗(−q)
∂ciMθ∗(0) = X−i + d1 ∂ciMθ∗(−1) + · · ·+ dq ∂ciMθ∗(−q) 1 ≤ i ≤ p
∂djMθ∗(0) = Mθ∗(−j) + d1 ∂djMθ∗(−1) + · · ·+ dq ∂djMθ∗(−q) 1 ≤ j ≤ q

Therefore, if tv ∂θMθ∗(0) = 0, then
(
1, X−1, . . . , X−p,Mθ∗(−1), . . . ,Mθ∗(−q)

)
v = 0. Such equation

has no solution since a linear relationship (7) relies all these random variables to Mθ∗(0) (or these

means that (Xt) would be a GLARCH(p − 1, q − 1) process which is not possible since we have

assumed that Pθ∗1 and Qθ∗2 are coprime polynomials). Hence, tv ∂θMθ∗(0) = 0 implies v = 0: Γ∗1 is

a positive definite matrix (and a similar reasoning leads to the same property satisfied by Γ∗2).

Proof of Corollary 3.6. As we had already written, in the case of a LARCH(p) process, we must

have Θ ⊂ Θp(4), which is defined in (6). Therefore, choosing Θ as defined in (23) guarantees that

it is a compact subset of Θp(4). Moreover, since a LARCH(p) process is a particular case of a

GLARCH(p, q) process, Corollary 3.5 is satisfied under the conditions of Corollary 3.6.

Proof of Corollary 3.7. In the proof of Corollary 3.3, it was established that (13) could be satisfied

under the condition (9), i.e. there exists d(θ) ∈ (0, 1/2) and Lθ(·) a slowly varying function such

that aj(θ) = Lθ(j) j
d(θ)−1 for j ∈ N∗. The various assumptions required for the establishment of the

central limit theorem (21) are also present in the assumptions of the Corollary 3.7. And condition

(9) is not in contradiction when Assumption C`+2(Θ) holds.

Proof of Corollary 3.8. In the proof of Corollary 3.4, Assumption C3(Θ) holds. But for k ≥ 3,

we also obtain supθ∈Θ

∥∥∂j
θj
ak(θ)

∥∥ ≤ √c2
M + j × log4 k × kdM−1 for j = 4, 5. Then always with

d = dM/2 + 1/2, Assumption C5(Θ) holds.

Moreover, mutatis mutendis, we can use again the proof of Lemma 5 of Beran and Schützner (2009)

for proving that Γ∗1 and Γ∗2 are two positive definite matrix in this case of long memory LARCH(∞)

process.
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