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SAFE RULES FOR THE IDENTIFICATION OF ZEROS
IN THE SOLUTIONS OF THE SLOPE PROBLEM∗

CLÉMENT ELVIRA† AND CÉDRIC HERZET‡

Abstract. In this paper we propose a methodology to accelerate the resolution of the so-
called “Sorted L-One Penalized Estimation” (SLOPE) problem. Our method leverages the concept
of “safe screening”, well-studied in the literature for group-separable sparsity-inducing norms, and
aims at identifying the zeros in the solution of SLOPE. More specifically, we introduce a family of n!
safe screening rules for this problem, where n is the dimension of the primal variable, and propose
a tractable procedure to verify if one of these tests is passed. Our procedure has a complexity
O(n logn+LT ) where T ≤ n is a problem-dependent constant and L is the number of zeros identified
by the tests. We assess the performance of our proposed method on a numerical benchmark and
emphasize that it leads to significant computational savings in many setups.
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1. Introduction. During the last decades, sparse linear regression has attracted
much attention in the field of statistics, machine learning and inverse problems. It
consists in finding an approximation of some input vector y ∈ Rm as the linear
combination of a few columns of a matrix A ∈ Rm×n (often called dictionary). Un-
fortunately, the general form of this problem is NP-hard and convex relaxations have
been proposed in the literature to circumvent this issue. The most popular instance
of convex relaxation for sparse linear regression is undoubtely the so-called “LASSO”
problem where the coefficients of the regression are penalized by an `1 norm, see [11].
Generalized versions of LASSO have also been introduced to account for some possible
structure in the pattern of the nonzero coefficients of the regression, see [2].

In this paper, we focus on the following generalization of LASSO:

(1.1) min
x∈Rn

P (x) , 1
2‖y −Ax‖22 + λ rslope(x), λ > 0

where

rslope(x) ,
∑
k

γk|x|[k](1.2)

with

γ1 > 0, γ1 ≥ · · · ≥ γn ≥ 0,(1.3)

and |x|[k] is the kth largest element of x in absolute value, that is

(1.4) ∀x ∈ Rn : |x|[1] ≥ |x|[2] ≥ . . . ≥ |x|[n].
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2 CLÉMENT ELVIRA AND CÉDRIC HERZET

Problem (1.1) is commonly referred to as “Sorted L-One Penalized Estimation”
(SLOPE) or “Ordered Weighted L-One Linear Regression” in the literature and has
been introduced in two parallel works [5, 20].1 The first instance of a problem of the
form (1.1) (for some nontrivial choice of the parameters γk’s) is due to Bondell and
Reich in [7]. The authors considered a problem similar to (1.1), named “Octagonal
Shrinkage and Clustering Algorithm for Regression” (OSCAR), where the regulariza-
tion function is a linear combination of an `1 norm and a sum of pairwise `∞ norms
of the elements of x, that is

(1.5) roscar(x) = β1‖x‖1 + β2

∑
j′>j

max(xj′ , xj),

for some β1 ∈ R∗+, β2 ∈ R+. It is not difficult to see that roscar(x) can be expressed as
a particular case of rslope(x) with the following choice γk = β1+β2(n−k+1). We note
that some authors have recently considered “group” versions of the SLOPE problem
where the ordered `2 norm of subsets of x is penalized by a decreasing sequence of
parameters γk, see e.g., [9, 24,25].

SLOPE enjoys several desirable properties which have attracted many researchers
during the last decade. First, it was shown in several works that, for some proper
choices of parameters γk’s, SLOPE promotes sparse solutions with some form of
“clustering”2 of the nonzero coefficients, see e.g., [7, 20, 28, 36]. This feature has been
exploited in many application domains: portfolio optimization [29, 43], genetics [25],
magnetic-resonance imaging [15], subspace clustering [35], deep neural networks [45],
etc. Moreover, it has been pointed out in a series of works that SLOPE has very
good statistical properties: it leads to an improvement of the false detection rate (as
compared to LASSO) for moderately-correlated dictionaries [6, 24] and is minimax
optimal in some asymptotic regimes, see [31,37].

Another desirable feature of SLOPE is its convexity. In particular, it was shown
in [6, Proposition 1.1] and [44, Lemma 2] that rslope(x) is a norm as soon as (1.3)
holds. As a consequence, several numerical procedures have been proposed in the
literature to find the global minimizer(s) of problem (1.1). In [46] and [6], the authors
considered an accelerated gradient proximal implementation for OSCAR and SLOPE,
respectively. In [29], the authors tackled problem (1.1) via an alternating-direction
method of multipliers [8]. An approach based on an augmented Lagrangian method
was considered in [33]. In [44], the authors expressed rslope(x) as an atomic norm
and particularized a Frank-Wolfe minimization procedure [22] to problem (1.1). An
efficient algorithm to compute the Euclidean projection onto the unit ball of the
SLOPE norm was provided in [13]. Finally, in [10] a heuristic “message-passing”
method was proposed.

In this paper, we propose a new “safe screening” procedure to accelerate the
resolution of SLOPE. The concept of “safe screening” is well known in the LASSO
literature: it consists in performing simple tests to identify the zero elements of the
minimizers; this knowledge can then be exploited to reduce the problem dimension-
ality by discarding the columns of the dictionary weighted by the zero coefficients.
Safe screening for LASSO has been first introduced by El Ghaoui et al. in the sem-
inal paper [23] and extended to group-separable sparsity-inducing norm in [34]. Safe
screening has rapidly been recognized as a simple procedure to dramatically accelerate
the resolution of LASSO, see e.g., [12, 19, 26, 27, 32, 39, 41]. The term “safe” refers to

1We will stick to the former denomination in the following.
2More specifically, groups of nonzero coefficients tend to take on the same value.
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the fact that all the elements identified by a safe screening procedure are theoretically
guaranteed to correspond to zeros of the minimizers. In constrast, unsafe versions of
screening for LASSO (often called “strong screening rules”) also exist, see [38]. More
recently, screening methodologies have been extended to detect saturated components
in different convex optimization problems, see [16,17].

In this paper, we derive safe screening rules for SLOPE and emphasize that their
implementation can speed up the running time of standard optimization procedures
by several orders of magnitude. We note that the SLOPE norm is not group-separable
and the methodology proposed in [34] does therefore not trivially apply here. Prior
to this work, we identified two contributions addressing screening for SLOPE. In [30],
the authors proposed an extension of the strong screening rules derived in [38] to the
SLOPE problem. In [3], the authors suggested a simple test to identify some zeros
of the SLOPE solutions. Although the derivations made by these authors have been
shown to contain several technical flaws [18], their test can be cast as a particular
case of our result in Theorem 4.1 (and is therefore quite unexpectedly safe).

The paper is organized as follows. We introduce the notational conventions used
throughout the paper in Section 2 and recall the main concepts of safe screening for
LASSO in Section 3. Section 4 contains our proposed safe screening rules for SLOPE.
Section 5 illustrates the effectiveness of the proposed approach through numerical
simulations. All technical details and mathematical derivations are postponed to Ap-
pendices A and B.

2. Notations. Unless otherwise specified, we will use the following notation
conventions throughout the paper. Vectors are denoted by lowercase bold letters
(e.g., x) and matrices by uppercase bold letters (e.g., A). The “all-zero” vector of
dimension n is written 0n. We use symbol T to denote the transpose of a vector or a
matrix. x(j) refers to the jth component of x. When referring to the sorted entries of
a vector, we use bracket subscripts; more precisely, the notation x[k] refers to the kth
largest value of x. For matrices, we use aj to denote the jth column of A. We use the
notation |x| to denote the vector made up of the absolute value of the components of
x. The sign function is defined for all scalars x as sign (x) = x/|x| with the convention
sign (x) = 0.
Calligraphic letters are used to denote sets (e.g., J ) and card ( · ) refers to their
cardinality. If a < b are two integers, Ja, bK is used as a shorthand notation for the
set {a, a+ 1, . . . , b}.
Given a vector x ∈ Rn and a set of indices J ⊆ J1, nK, we let xJ be the vector of
components of x with indices in J . Similarly, AJ denotes the submatrix of A whose
columns have indices in J . A\` corresponds to matrix A deprived of its `th column.

3. Screening: main concepts. “Safe screening” has been introduced by El
Ghaoui et al. in [23] for `1-penalized problems:

(3.1) min
x∈Rn

P (x) , 1
2f(Ax) + λ ‖x‖1, λ > 0

where f : Rm → R is a closed convex function. It is grounded on the following ideas.
First, it is well-known that `1-regularization favors sparsity of the minimizers of

(3.1). For instance, if f = ‖ · ‖22 and the solution of (3.1) is unique, it can be shown
that the minimizer contains at most m nonzero coefficients, see e.g., [21, Theorem
3.1]. Second, if some zeros of the minimizers are identified, (3.1) can be shown to be
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equivalent to a problem of reduced dimension. More precisely, let L ⊆ J1, nK be a set
of indices such that we have for any minimizer x? of (3.1):

(3.2) ∀` ∈ L : x?(`) = 0

and let L̄ = J1, nK\L. Then the following problem

(3.3) min
z∈Rcard(L̄)

1
2f(AL̄z) + λ ‖z‖1, λ > 0

admits the same optimal value as (3.1) and there exists a simple bijection between
the minimizers of (3.1) and (3.3). We note that x belongs to an n-dimensional space
whereas z is a card

(
L̄
)
-dimensional vector. Hence, solving (3.3) rather than (3.1)

may lead to dramatic memory and computational savings if card (L)� 1.
The crux of screening consists therefore in identifying (some) zeros of the mini-

mizers of (3.1) with marginal cost. El Ghaoui et al. emphasized that this is possible
by relaxing some primal-dual optimality condition of problem (3.1). More precisely,
let

(3.4) u? ∈ arg max
u:‖ATu‖∞≤λ

D(u) , −f∗(−u),

be the dual problem of (3.1), where f∗ denotes the Fenchel conjugate of f . Then, by
complementary slackness, we must have for any minimizer x? of (3.1):

(3.5) ∀` ∈ J1, nK : (|aT
` u

?| − λ)x?(`) = 0.

Since dual feasibility imposes that |aT
` u

?| ≤ λ, we obtain the following implication:

(3.6) |aT
` u

?| < λ =⇒ x?(`) = 0.

Hence, if u? is available, the left-hand side of (3.6) can be used to detect if the `th
components of x? is equal to zero.

Unfortunately, finding a maximizer of dual problem (3.4) is generally as difficult
as solving primal problem (3.1). This issue can nevertheless be circumvented by
identifying some region R of the dual space (commonly referred to as “safe region”)
such that u? ∈ R. Indeed, since

(3.7) max
u∈R
|aT
` u| < λ =⇒ |aT

` u
?| < λ,

the left-hand side of (3.7) constitutes an alternative (weaker) test to detect the zeros
of x?. For proper choices of R, the maximization over u admits a simple analytical
solution. For example, if R is a ball, that is

(3.8) R = S(c, R) , {u ∈ Rm : ‖u− c‖2 ≤ R},

then maxu∈R |aT
` u| = |aT

` c|+R and the relaxation of (3.7) leads to

|aT
` c| < λ−R =⇒ x?(`) = 0.(3.9)

In this case, the screening test is straightforward to implement since it only requires
the evaluation of one inner product between a` and c.

Many procedures have been proposed in the literature to construct safe spheres
[19, 34, 42] or safe regions with refined geometries [12, 40, 41]. If f∗ is a ζ-strongly
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convex function, a popular approach to construct a safe region is the so-called “GAP
sphere” [34] whose center and radius are defined as follows:

(3.10)
c = u

R =
√

2
ζ (P (x)−D(u))

where (x,u) is any primal-dual feasible couple. This approach has gained in popu-
larity because of its good behavior when (x,u) is close to optimality. In particular,
if f is proper lower semi-continuous, x = x? and u = u?, then P (x) − D(u) = 0
by strong duality [4, Proposition 15.22]. In this case, screening test (3.9) reduces to
(3.6) and, except in some degenerated cases, all the zero components of x? can be
identified by the screening test. In practice, this behavior also occurs for sufficiently
small values of the dual gap and has been observed in many numerical experiments,
see e.g., [16, 19,26,34].

4. Safe screening rules for SLOPE. In this section, we propose a new proce-
dure to extend the concept of safe screening to SLOPE. Our exposition is organized as
follows. In Subsection 4.1 we describe our working assumptions and in Subsection 4.2
we present a family of screening tests for SLOPE (see Theorem 4.3). Each test is de-
fined by a set of parameters {pq}q∈J1,nK and takes the form of a series of inequalities.
We show that a simple test of the form (3.9) can be recovered for some particular value
of the parameters {pq}q∈J1,nK, although this choice does not correspond to the most
effective test in the general case. In Subsection 4.3, we finally propose an efficient
numerical procedure to verify simultaneously all the proposed screening tests.

4.1. Working hypotheses. In this section, we present two working assump-
tions which are assumed to hold in the rest of the paper even when not explicitly
mentioned.

We first suppose that the regularization parameter λ satisfies

(4.1) 0 < λ < λmax , max
q∈J1,nK

(
q∑

k=1

|ATy|[k]/

q∑
k=1

γk

)
.

This hypothesis implies that y /∈ ker(AT) which prevents the vector 0n from being a
minimizer of the SLOPE problem (1.1). More precisely, it can be shown that under
condition (1.3),

(4.2) λ and {γk}nk=1 verify (4.1)⇐⇒ 0n is not a minimizer of (1.1).

A proof of this result is provided in Appendix A.2.
Second, we assume that the columns of the dictionary A are unit-norm, i.e.,

(4.3) ∀j ∈ J1, nK : ‖aj‖2 = 1.

Assumption (4.3) greatly simplifies the statement of our results in the next subsection.
However, we mention that all our subsequent derivations can easily be extended to
the general case where (4.3) does not hold.

4.2. Safe screening rules. In this section, we derive a family of safe screening
rules for SLOPE.

Let us first note that (1.1) admits at least one minimizer and our screening prob-
lem is therefore well-posed. Indeed, the primal cost function in (1.1) is continuous and
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coercitive since rslope( · ) is a norm (see e.g., [6, Proposition 1.1] or [44, Lemma 2]); the
existence of a minimizer then follows from Weierstrass theorem [4, Theorem 1.29]. In
the following, we will assume that the minimizer is unique to simplify our statements.
Nevertheless, all our results extend to the general case where there exist more than
one minimizer by replacing “x?(`) = 0” by “x?(`) = 0 for any minimizer of (1.1)” in all
our subsequent statements.

Our starting point to derive our safe screening rules is the following primal-dual
optimality condition:

Theorem 4.1. Let

(4.4) u? = arg max
u∈U

D(u) , 1
2‖y‖

2
2 − 1

2‖y − u‖22,

where

(4.5) U =

{
u :

q∑
k=1

|ATu|[k] ≤ λ
q∑

k=1

γk, q ∈ J1, nK

}
.

Then, for all integers ` ∈ J1, nK:

(4.6) ∀q ∈ J1, nK : |aT
` u

?|+
q−1∑
k=1

|AT
\`u

?|[k] < λ

q∑
k=1

γk =⇒ x?(`) = 0.

A proof of this result is provided in Appendix B.1. We note that (4.4) corresponds to
the dual problem of (1.1), see e.g., [6, Section 2.5]. Moreover, u? exists and is unique
because D is a continuous strongly-concave function and U a closed set. The equality
in (4.4) is therefore well-defined.

Theorem 4.1 provides a condition similar to (3.6) relating the dual optimal solu-
tion u? to the zero components of the primal minimizer x?. Unfortunately, comput-
ing the dual solution u? requires a comparable computational burden as solving the
SLOPE problem (1.1). Similarly to `1-penalized problems, tractable screening rules
can nevertheless be devised if “easily-computable” upper bounds on the left-hand side
of (4.6) can be found. In particular, for any set {Bq,` ∈ R}q∈J1,nK verifying

∀q ∈ J1, nK : |aT
` u

?|+
q−1∑
k=1

|AT
\`u

?|[k] ≤ Bq,`,(4.7)

we readily have that

∀q ∈ J1, nK : Bq,` < λ

q∑
k=1

γk =⇒ x?(`) = 0.(4.8)

The next lemma provides several instances of such upper bounds:

Lemma 4.2. Let u? ∈ S(c, R). Then ∀` ∈ J1, nK and ∀q ∈ J1, nK, we have that

Bq,` , |aT
` c|+

q−1∑
k=p

∣∣∣AT
\`c
∣∣∣
[k]

+ (q − p+ 1)R+ λ

p−1∑
k=1

γk

verifies (4.7) for any p ∈ J1, qK.
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A proof of this result is available in Appendix B.2.
Defining

κq,p , λ

 q∑
k=p

γk

− (q − p+ 1)R,(4.9)

a straightforward particularization of (4.8) then leads to the following safe screening
rules for SLOPE:

Theorem 4.3. ∀q ∈ J1, nK, let pq ∈ J1, qK. Then,

(4.10) ∀q ∈ J1, nK :
∣∣aT
` c
∣∣+

q−1∑
k=pq

∣∣∣AT
\`c
∣∣∣
[k]
< κq,pq =⇒ x?(`) = 0.

We note that each parameter pq can take on q different values in Theorem 4.3. Since
q ∈ J1, nK, (4.10) thus defines n! different screening tests for SLOPE. We discuss two
particular choices of parameters {pq}q∈J1,nK below and propose a polynomial-time
procedure to evaluate all n! tests defined by Theorem 4.3 in the next section.

Let us first consider the case where

∀q ∈ J1, nK : pq = 1.(4.11)

Screening test (4.10) then particularizes as

∀q ∈ J1, nK :
∣∣aT
` c
∣∣+

q−1∑
k=1

∣∣∣AT
\`c
∣∣∣
[k]
< λ

(
q∑

k=1

γk

)
− qR =⇒ x?(`) = 0.(4.12)

Interestingly, (4.12) shares the same mathematical structure as optimality condition
(4.6). In particular, (4.12) reduces to (4.6) when c = u? and R = 0. In this case, it
is easy to see that (4.12) is the best3 screening test within the family of tests defined
in Theorem 4.3 since an equality occurs in (4.7).

In practice, we may expect this conclusion to remain valid when R is “sufficiently”
close to zero. This behavior is illustrated in Figure 1. The figure represents the pro-
portion of zeros entries of x? detected by screening test (4.10) for different “qualities”
of the safe region and different choices of parameters {pq}q∈J1,nK. We refer the reader
to Subsection 5.1 for a detailed description of the simulation setup. The center of
the safe sphere used to apply (4.10) is assumed to be equal (up to machine preci-
sion) to u? and the x-axis of the figure represents the radius R of the sphere region.
The green curve corresponds to test (4.12); the orange curve represents the screen-
ing performance achieved when test (4.10) is implemented for all possible choices for
{pq}q∈J1,nK. We note that, as expected, the green curve attains the best screening
performance as soon as R becomes close to zero.

At the other extreme of the spectrum, another case of interest reads as:

∀q ∈ J1, nK : pq = q.(4.13)

Screening test (4.10) then reduces to∣∣aT
` c
∣∣ < λγn −R =⇒ x?(`) = 0.(4.14)

3In the following sense: if test (4.10) passes for some choice of the parameters {pq}q∈J1,nK, then
test (4.12) also necessarily succeeds.
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Fig. 1. Percentage of zero entries in x? detected by the safe screening tests as a function of
R, the radius of the safe sphere. Each curve corresponds to a different implementation of the safe
screening test (4.10): pq = 1 ∀q, see (4.12) (green curve), pq = q ∀q, see (4.14) (blue curve), and
all possible choices for {pq}q∈J1,nK (orange curve). The results are generated by using the OSCAR-1
sequence for {γk}nk=1, the Tœplitz dictionary and the ratio λ/λmax = 0.5.

Interestingly, this test has the same mathematical structure as (3.9) with the exception
that λ is multiplied by the value of the smallest weighting coefficient γn. In particular,
if γk = 1 ∀k, SLOPE reduces to LASSO and test (4.14) is equivalent to (3.9); The-
orem 4.3 thus encompasses standard screening rule (3.9) for LASSO as a particular
case. The following result emphasizes that (4.14) is in fact the best screening rule
within the family of tests defined by Theorem 4.3 when γk = 1 ∀k:

Lemma 4.4. Let γk = 1 ∀k. If test (4.10) passes for some choice of parameters
{pq}q∈J1,nK, then test (4.14) also succeeds.

A proof of this result is available in Appendix B.3.
As a final remark, let us mention that, although we just emphasized that some

choices of parameters {pq}q∈J1,nK can be optimal (in terms of screening performance)
in some situations, no conclusion can be drawn in the general case. In particular, we
found in our numerical experiments that the best choice for {pq}q∈J1,nK depends on
many factors: the weights {γk}nk=1, the radius of the safe sphere R, the nature of the
dictionary, the atom to screen, etc. This is illustrated in Fig. 1: we see that the blue
and green curves deviate from the orange curve for certain values of R, that is the
best screening performance is not necessarily achieved for pq = 1 or pq = q ∀q.

4.3. Efficient implementation of the n! tests. Since the best values for
{pq}q∈J1,nK cannot be foreseen beforehand, it is desirable to evaluate the screening
rule (4.10) for any choice of these parameters. Formally, this ideal test reads:

∀q ∈ J1, nK,∃p ∈ J1, qK :
∣∣aT
` c
∣∣+

q−1∑
k=p

∣∣∣AT
\`c
∣∣∣
[k]
< κq,p =⇒ x?(`) = 0.(4.15)

Since verifying this test for a given index ` involves the evaluation of O(n2) inequali-
ties, a brute-force evaluation of (4.15) for all atoms of the dictionary requires O(n3)
operations. In this section, we present a procedure to perform this task with a com-
plexity scaling as O(n log n+ TL) where T ≤ n is some problem-dependent constant
(to be defined later on) and L is the number of atoms of the dictionary passing test
(4.15). Our procedure is summarized in Algorithms 4.1 and 4.2, and is grounded on
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Algorithm 4.1 Fast implementation of SLOPE screening test (4.15)
Require: radius R ≥ 0, sorted elements {|ATc|[k]}nk=1

1: L = ∅ {Set of screened atoms: init}
2: ` = n {Index of atom under testing: init}
3: Evaluate {f(k)}nk=1, {p?(k)}nk=1, {q?(k)}nk=1

4: run = 1

5: while run == 1 and ` > 0 do
6: test = Algorithm 4.2(R,`,{f(k)}nk=1,{p?(k)}nk=1,{q?(k)}nk=1)
7: if test == 1 then
8: L = L ∪ {`}
9: ` = `− 1

10: else
11: run = 0 {Stop testing as soon as one atom does not pass the test}
12: end if
13: end while
14: return L (Set of indices passing test (4.15))

the following nesting properties.

Nesting of the tests for different atoms. We first emphasize that there exists an
implication between the failures of test (4.15) for some group of indices. In particular,
the following result holds:

Lemma 4.5. Let Bq,` be defined as in Lemma 4.2 and assume that∣∣aT
1 c
∣∣ ≥ . . . ≥ ∣∣aT

nc
∣∣.(4.16)

Then ∀q ∈ J1, nK:

` < `′ =⇒ Bq,` ≥ Bq,`′ .(4.17)

A proof of this result is provided in Appendix B.4. Lemma 4.5 has the following
consequence: if (4.16) holds, the failure of test (4.15) for some `′ ∈ J2, nK implies the
failure of the test for any index ` ∈ J1, `′ − 1K. This immediately suggests a backward
strategy for the evaluation of (4.15), starting from ` = n and going backward to
smaller indices. This is the sense of the main recursion in Algorithm 4.1.

We note that hypothesis (4.16) can always be verified by a proper reordering of
the elements of |ATc|. This can be achieved by state-of-the-art sorting procedures
with a complexity of O(n log n). Therefore, in the sequel we will assume that (4.16)
holds even if not explicitly mentioned.

Nesting of some inequalities. We next show that the number of inequalities to be
verified may possibly be substantially smaller than O(n2). We first focus on the case
“` = n” and then extend our result to the general case “` < n”.

Let us first note that under hypothesis (4.16):

∀k ∈ J1, n− 1K : |AT
\nc|[k] = |AT

\nc|(k),(4.18)

that is the kth largest element of |AT
\nc| is simply equal to its kth component. The

particularization of (4.15) to ` = n can then be rewritten as:

∀q ∈ J1, nK,∃p ∈ J1, qK :
∣∣aT
nc
∣∣ < τq,p(4.19)
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where

τq,p , κq,p −
q−1∑
k=p

∣∣ATc
∣∣
(k)

=

q−1∑
k=p

(λγk −
∣∣ATc

∣∣
(k)
−R) + (λγq −R).(4.20)

We show hereafter that (4.19) can be verified by only considering a “well-chosen”
subset of thresholds T ⊆ {τq,p : q ∈ J1, nK, p ∈ J1, qK}, see Lemma 4.6 below.

If

p?(q) , arg max
p∈J1,qK

τq,p,(4.21)

we obviously have ∣∣aT
nc
∣∣ < τq,p?(q) ⇐⇒ ∃p ∈ J1, qK :

∣∣aT
nc
∣∣ < τq,p.(4.22)

In other words, for each q ∈ J1, nK, satisfying the inequality “
∣∣aT
nc
∣∣ < τq,p” for p =

p?(q) is necessary and sufficient to ensure that it is verified for some p ∈ J1, qK.
Motivated by this observation, we show the following items below: i) p?(q) can be
evaluated ∀q ∈ J1, nK with a complexity O(n); ii) similarly to p, only a subset of
values of q ∈ J1, nK are of interest to implement (4.19).

Let us define the function:

f : J1, nK→ R
p 7→

∑n
k=p(λγk −

∣∣ATc
∣∣
(k)
−R) .(4.23)

We then have ∀q ∈ J1, nK and p ∈ J1, qK:

τq,p = f(p)− (f(q)− λγq)−R.(4.24)

In view of (4.24), the optimal value p?(q) can be computed as

p?(q) = arg max
p∈J1,qK

f(p).(4.25)

Considering (4.23), we see that the evaluation of f(p) ∀p ∈ J1, nK (and therefore p?(q)
∀q ∈ J1, nK) can be done with a complexity scaling as O(n). This proves item i).

Let us now show that only some specific indices q ∈ J1, nK are of interest to
implement (4.19). Let

q?(k) , arg max
q∈J1,kK

f(q)− λγq,(4.26)

and define the sequence {q(t)}t as{
q(1) = q?(n)

q(t) = q?(p?(q(t−1))− 1)
(4.27)

where the recursion is applied as long as p?(q(t−1)) > 1.4 We then have the following
result whose proof is available in Appendix B.5:

4We note that the sequence {q(t)}t is strictly decreasing and thus contains at most n elements.
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Algorithm 4.2 Check if test (4.15) is passed for ` if it is passed for `′ > `

Require: radius R ≥ 0, index ` ∈ J1, nK, {f(k)}nk=1,{p?(k)}nk=1,{q?(k)}nk=1

1: q = q?(`)
2: test = 1
3: run = 1

4: while run == 1 do
5: τ = f(p?(q))− f(q) + (λγq −R) {Evaluation of current threshold, see (4.24)}
6: if |aT

` c| ≥ τ then
7: test = 0 {Test failed}
8: run = 0 {Stops the recursion}
9: end if

10: if p?(q) > 1 then
11: q = q?(p?(q)− 1) {Next value of q to test, see (4.27)}
12: else
13: run = 0 {Stops the recursion}
14: end if
15: end while
16: return test (= 1 if test passed and 0 otherwise)

Lemma 4.6. Let T ,
{
τq,p?(q) : q ∈ {q(t)}t

}
where {q(t)}t is defined in (4.27).

Test (4.19) is passed if and only if

∀τ ∈ T : |aT
nc| < τ.(4.28)

Lemma 4.6 suggests the procedure described in Algorithm 4.2 (with ` = n) to verify if
(4.19) is passed. In a nutshell, the lemma states that only a subset of card (T ) inequal-
ities need to be taken into account to implement (4.19). We note that card (T ) ≤ n
since only one value of p (that is p?(q)) has to be considered for any q ∈ J1, nK. This
is in constrast with a brute-force evaluation of (4.19) which requires the verification
of O(n2) inequalities.

We finally emphasize that the procedure described in Algorithm 4.2 also applies
to ` < n as long as the screening test is passed for all `′ > `. More specifically, if test
(4.15) is passed for all `′ ∈ J`+ 1, nK, then its particularization to atom a` reads

∀τ ∈ T ′ :
∣∣aT
` c
∣∣ < τ(4.29)

for some T ′ ⊆ T .
Indeed, if screening test (4.15) is passed for all `′ ∈ J`+ 1, nK, the corresponding

elements can be discarded from the dictionary and we obtain a reduced problem only
involving atoms {a`′}`′∈J1,`K. Since (4.16) is assumed to hold, a` attains the smallest
absolute inner product with c and we end up with the same setup as in the case “` = n”.
In particular, if screening test (4.15) is passed for all `′ ∈ J`+ 1, nK, Lemma 4.6 still
holds for a` by letting q(1) = q?(`) in the definition of the sequence {q(t)}t as in (4.27).

To conclude this section, let us summarize the complexity needed to implement
Algorithms 4.1 and 4.2. First, Algorithm 4.1 requires the entries |ATc| to be sorted
to satisfy hypothesis (4.5). This involves a complexity O(n log n). Moreover, the se-
quences {f(k)}nk=1, {p?(k)}nk=1, {q?(k)}nk=1 can be evaluated with a complexity O(n).
Finally, the main recursion in Algorithm 4.1 implies to run Algorithm 4.2 L times,
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where L is the number of atoms passing test (4.15). Since Algorithm 4.2 requires to
verify at most T = card (T ) inequalities, the overall complexity of the main recursion
scales asO(LT ). Overall, the complexity of Algorithm 4.1 is thereforeO(n log n+LT ).

5. Numerical simulations. We present hereafter several simulation results
demonstrating the effectiveness of the proposed screening procedure to accelerate
the resolution of SLOPE. This section is organized as follows. In Subsection 5.1,
we present the experimental setups considered in our simulations. In Subsection 5.2
we compare the effectiveness of different screening strategies. In Subsection 5.3, we
show that our methodology enables to reach better convergence properties for a given
computational budget.

5.1. Experimental setup. We detail below the experimental setups used in all
our numerical experiments.

Dictionaries and observation vectors. New realizations of A and y are drawn for
each trial according to the distributions detailed hereafter. The observation vector
is generated according to a uniform distribution on the m-dimensional sphere. The
elements of A obey one of the following models:

i) the entries are i.i.d. realizations of a centered Gaussian,
ii) the entries are i.i.d. realizations of a uniform distribution on [0, 1],
iii) the columns are shifted versions of a Gaussian curve.

For all distributions, the columns of A are then normalized. In the following, these
three options will respectively be referred to as “Gaussian”, “Uniform” and “Tœplitz”.

Regularization parameters. We consider three differents choices for the sequence
{γk}nk=1, each of them corresponding to a different instance of the well-known OSCAR
problem [7, Eq. (3)]. More specifically, we let

(5.1) ∀k ∈ J1, nK : γk , β1 + β2(n− k + 1)

where β1, β2 are nonnegative parameters chosen so that γ1 = 1 and γn ∈ {.9, .1, 10−3}.
In the sequel, these parametrizations will respectively be referred to as “OSCAR-1”,
“OSCAR-2” and “OSCAR-3”.

5.2. Performance of screening strategies. We first compare the effectiveness
of different screening strategies described in Section 4. More specifically, we evaluate
the proportion of zero entries in x? – the solution of SLOPE problem (1.1) – that can
be identified by tests (4.12), (4.14) and (4.15) as a function of the “quality” of the
safe sphere. These tests will respectively be referred to as “test-p=1”, “test-p=q”
and “test-all” in the following. Figures 1 (see Subsection 4.2) and 2 represent this
criterion of performance as a function of some parameter R0 (described below) and
different values of the ratio λ/λmax.

The results are averaged over 50 realizations. For each simulation trial, we draw
a new realization of y ∈ R100 and A ∈ R100×300 according to the distributions de-
scribed in Subsection 5.1. We consider Tœplitz dictionaries in Figure 1 and Gaussian
dictionaries in Figure 2.

The safe sphere used in the screening tests is constructed as follows. A primal-
dual solution (xa,ua) of problems (1.1) and (4.4) is evaluated with “high-accuracy”,
i.e., with a duality GAP of 10−14 as stopping criterion. More precisely, xa is first
evaluated by solving the SLOPE problem (1.1) with the algorithm proposed in [5].
To evaluate ua, we extend the so-called “dual scaling” operator [23, Section 3.3] to
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Fig. 2. Percentage of zero entries in the solution of the SLOPE problem identified by test-p=1
(orange lines), test-p=q (green lines) and test-all (blue lines) as a function of R0 for the Gaussian
dictionary, three values of λ/λmax and three parameter sequences {γk}nk=1.

the SLOPE problem. More precisely, we let ua = (y −Axa)/β(y −Axa) where

(5.2) ∀z ∈ Rm : β(z) ,


1 if z ∈ U

max
q∈J1,nK

∑q
k=1

∣∣ATz
∣∣
[k]

λ
∑q
k=1 γk

otherwise.

The couple (xa,ua) is then used to construct a sphere S(ca, Ra) in Rm whose param-
eters are given by

c = ua(5.3a)

R = R0 +
√

2(P (xa)−D(ua))(5.3b)

where R0 is a nonnegative scalar. We note that for R0 = 0, the latter sphere corre-
sponds to the GAP safe sphere described in (3.10).5 Hence, (5.3a) and (5.3b) define
a safe sphere for any choice of the nonnegative scalar R0 ≥ 0.

Figure 1 concentrates on the sequence OSCAR-1 whereas, in Figure 2, each sub-
figure corresponds to a different parametrization of the SLOPE parameters. For the
three considered screening strategies, we observe that the detection performances
decrease as R0 increases. Interestingly, different behaviors can be noticed. For all
simulation setups, test-p=1 reaches a detection rate of 100% whenever R0 is suffi-
ciently small. However, the performance of test-p=q varies from one sequence to
another. In particular, it outperforms test-p=1 for OSCAR-1, is able to detect (at
best) 20% of the zero entries for OSCAR-2 while all entries fail the test for OSCAR-3
and all considered values of R0. Finally, test-all always outperforms (quite logi-
cally) the two other strategies. The gap in performance depends on both the setup
and the radius R0, and can be quite significant in some cases. As a striking example,
we see that for OSCAR-1, λ/λmax = 0.5 and R0 = 5× 10−3, 80% of additional entries
pass test-all as compared to test-p=1.

These results may be explained as follows. First, we already mentioned in Sec-
tion 4 that when the radius of the safe sphere is sufficiently small (that is, when R0 is

5We note that the GAP safe sphere derived in [34] for problem (3.1) extends to SLOPE since
1) the dual problem has the same mathematical form and 2) its derivation does not leverage the
definition of the dual feasible set.
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close to zero), test-p=1 is expected to be the best6 screening test within the family
of tests defined in Theorem 4.3. Similarly, if the SLOPE weights satisfy γ1 = γn, we
showed in Lemma 4.4 that no test in Theorem 4.3 can outperform test-p=q. Hence,
one may reasonably expect that this conclusion remains valid whenever γ1 ' γn, as
observed for the sequence OSCAR-1 in our simulations. On the other hand, passing
test-p=q becomes more difficult as parameter γn is small. As a matter of fact, the
test will never pass when γn = 0. In our experiments, the sequences {γk}nk=1 are
such that γn is close to zero for OSCAR-2 and OSCAR-3. Finally, since test-all en-
compasses the two other tests, it is expected to always perform at least as well as the
latter.

5.3. Benchmarks. As far as our simulation setup is concerned, the results pre-
sented in the previous section show a significant advantage in implementing test-all
in terms of detection performance. However, this conclusion does not include any con-
sideration about the numerical complexity of the tests. We note that, although the
proposed screening rules can lead to a significant reduction of the problem dimensions,
our tests also induce some additional computational burden. In particular, we empha-
sized in Subsection 4.3 that test-all can be verified for all atoms of the dictionary
with a complexity O(n log n + TL) where T ≤ n is a problem-dependent parameter
and L is the number of atoms passing the test. We also note that implementating the
dual scaling operation (5.2) (appearing in the construction of the GAP safe sphere)
requires sorting the entries of a n-dimensional vector. Hence, the implementation of
any test defined in Theorem 4.3 involves a complexity scaling at least as O(n log n).

In this section, we investigate the benefits of interleaving the proposed safe screen-
ing methodology with the iterations of a proximal gradient algorithm [5]. We consider
the following three solving strategies:

1. Implement the proximal gradient procedure [5] with no screening.
2. Interleave the iterations of the proximal gradient algorithm with test-p=q.
3. Interleave the iterations of the proximal gradient algorithm with test-p=q

and test-all: test-all is applied every time the radius of the safe sphere
is divided by 2; otherwise test-p=q is performed.

These strategies will respectively be denoted “PG-no”, “PG-p=q” and “PG-all” in the
sequel. We note that these three options induce an increasing computational over-
head. First, PG-no implements no screening and does therefore induce no additional
computational burden. Second, since test-p=q only requires to verifiy one inequality,
the computational overhead of PG-p=q is dominated by the construction of the safe
sphere and thus scales as O(n log n). Finally, the implementation of test-all induces
a complexity O(n log n+ TL) where T ≤ n is a problem-dependent parameter and L
is the number of atoms passing the test.

We compare the performance of these solving strategies by resorting to Dolan-
Moré profiles [14]. More precisely, we run each procedure for a given budget of
time (that is the algorithm is stopped after a predefined amount of time) on I = 50
different instances of the SLOPE problems. Each instance is generated by drawing
a new dictionary A ∈ R100×300 and observation vector y ∈ R100 according to the
distributions described in Subsection 5.1. We then compute the following performance

6in the sense defined in Footnote 3 page 7.
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profile for each solver solv ∈ {PG-no, PG-p=q, PG-all}:

(5.4) ρsolv(δ) , 100
card ({i ∈ J1, IK : di,solv ≤ δ})

I
∀δ ∈ R+

where di,solv denotes the dual gap achieved by solver solv for problem instance i.
ρsolv(δ) thus represents the (empirical) probability that solver solv reaches a dual
gap no greater than δ for the considered budget of time.

Figure 3 presents the performance profiles obtained for three types of dictionaries
(Gaussian, Uniform and Tœplitz) and three different weighting sequences {γk}nk=1

(OSCAR-1, OSCAR-2 and OSCAR-3). The results are displayed for λ/λmax = 0.5 but
similar performance profiles have been obtained for other values of the ratio λ/λmax.
All algorithms are implemented in Python with Cython bindings and experiments are
run on a Dell laptop, 1.80 GHz, Intel Core i7. For each setup, we adjusted the time
budget so that ρPG-all(10−8) ' 50% for the sake of comparison.

As far as our simulation setup is concerned, these results show that the proposed
screening methodologies improve the solving accuracy as compared to a standard
proximal gradient. PG-all improves the average accuracy over PG-no in all the con-
sidered settings. The gap in performance depends on the setup but is generally quite
significant. PG-p=q also enhances the average accuracy in most cases. As expected its
behavior is more sensitive to the choice of the weighting sequence {γk}nk=1. In particu-
lar, this strategy may lead to poor screening performance when γn ' 0 as emphasized
in Subsection 5.2. This results in no accuracy gain over PG-no as illustrated in Fig-
ure 3 for the sequence OSCAR-3. Nevertheless, we note that, even in absence of gain,
PG-p=q does not seem to significantly degrade the performance as compared to PG-no.

6. Conclusions. In this paper we proposed a new methodology to safely iden-
tify the zeros of the solutions of the SLOPE problem. In particular, we introduced
a family of n! screening rules (indexed by some parameters {pq}nq=1) where n is the
dimension of the primal variable. Each test of this family takes the form of a series
of inequalities which, when verified, imply the nullity of some coefficient of the mini-
mizers. Interestingly, the proposed tests encompass standard “sphere” screening rule
for LASSO as a particular case for some {pq}nq=1, although this choice does not cor-
respond to the most effective test in the general case. We then introduced an efficient
numerical procedure to evaluate all n! screening tests simultaneously. Our algorithm
has a complexity O(n log n+ TL) where T ≤ n is some problem-dependent constant
and L is the number of elements passing at least one test of the proposed family. We
finally assessed the performance of our screening strategy through numerical simu-
lations and showed that the proposed methodology allows significant computational
gains to evaluate the solution of SLOPE to some accuracy.

Appendix A. Miscellaneous results. Appendix A.1 reminds useful results
from convex analysis applied to the SLOPE problem (1.1). Appendix A.2 provides a
proof of (4.2). In all the statements below, ∂rslope(x) denotes the subdifferential of
rslope( · ) evaluated at x.

A.1. Some results of convex analysis. We remind below several results of
convex analysis that will be used in our subsequent derivations. The first lemma
provides a necessary and sufficient condition for x? ∈ Rn to be a minimizer of the
SLOPE problem (1.1):
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Fig. 3. Performance profiles of PG-no, PG-p=q and PG-all obtained for the “Gaussian” (column
1), “Uniform” (column 2) and “Tœplitz” (column 3) dictionaries and λ/λmax = 0.5 with a budget
of time. First row: OSCAR-1, second row: OSCAR-2 and third row: OSCAR-3.

Lemma A.1. x? is a minimizer of (1.1) ⇐⇒ λ−1AT(y −Ax?) ∈ ∂rslope(x?).

Lemma A.1 follows from a direct application of Fermat’s rule [4, Proposition 16.4]
to problem (1.1). We note that under condition (1.3), rslope(x) defines a norm on
Rn, see e.g., [6, Proposition 1.1] or [44, Lemma 2]. The subdifferential ∂rslope(x) is
therefore well defined for all x ∈ Rn and writes as

(A.1) ∂rslope(x) =
{
g ∈ Rn : gTx = rslope(x) and r∗slope(g) ≤ 1

}
,

where

r∗slope(g) , sup
x∈Rn

gTx s.t. rslope(x) ≤ 1,(A.2)

is the dual norm of rslope(x), see e.g., [1, Eq. (1.4)].
The next lemma states a technical result which will be useful in the proof of

Theorem 4.1 in Appendix B:

Lemma A.2. If g ∈ ∂rslope(x), then xT(g − g′) ≥ 0 ∀g′ ∈ Rn s.t. r∗slope(g′) ≤ 1.
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Proof. Let g ∈ ∂rslope(x). From (A.1) we have

gTx = rslope(x),(A.3a)
1 ≥ r∗slope(g).(A.3b)

Moreover, because rslope(x) is a norm we can write:

rslope(x) = sup
g′∈Rn

g′
T
x s.t. r∗slope(g′) ≤ 1,(A.4)

see e.g., [21, Eq. (A.5)]. Using (A.3a) and (A.3b), we obtain that g is a maximizer
of the optimization problem in the right-hand side of (A.4). The result stated in the
lemma then corresponds to the first-order optimality condition of this problem.

In the last lemma of this section, we provide a closed-form expression of the
subdifferential and the dual norm of rslope(x):7

Lemma A.3. The dual norm and the subdifferential of rslope(x) respectively write:

r∗slope(g) = max
q∈J1,nK

1∑q
k=1 γk

q∑
k=1

|g|[k],

∂rslope(x) =

{
g ∈ Rn : gTx = rslope(x) and ∀q ∈ J1, nK :

q∑
k=1

|g|[k] ≤
q∑

k=1

γk

}
.

Proof. The expression of the dual norm is a direct consequence of [44, Lemma 4].
More precisely, the authors showed that

r∗slope(g) = max
v∈V

gTv

where V ,
⋃n
q=1

{
1∑q

k=1 γk
s : s ∈ {0,−1,+1}n, card

(
{j|s(j) 6= 0}

)
= q
}
. A compact

rewriting of this expression leads to

r∗slope(g) = max
q∈J1,nK

1∑q
k=1 γk

q∑
k=1

|g|[k](A.5)

which is precisely the expression given in Lemma A.3. The expression of the subdif-
ferential then follows from (A.1) by plugging the expression of the dual norm in the
inequality “r∗slope(g) ≤ 1”.

A.2. Proof of (4.2). We first observe that

(A.6) 0n is not a minimizer of (1.1)⇐⇒ λ−1ATy /∈ ∂rslope(0n),

as a direct consequence of Lemma A.1. Particularizing the expression of ∂rslope(x)
in Lemma A.3 to x = 0n, the right-hand side of (A.6) can equivalently be rewritten
as

(A.7) ∃ q ∈ J1, nK , λ−1

q∑
k=1

∣∣ATy
∣∣
[k]
>

q∑
k=1

γk.

7We note that an expression of the subdifferential of rslope(x) has already been derived in [10,
Fact A.2 in supplementary material]. However, the expression of the subdifferential proposed in
Lemma A.3 has a more compact form and is better suited to our subsequent derivations.
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Since γ1 > 0 and the sequence {γk}nk=1 is nonnegative by hypothesis (1.3), (A.7) can
also be rewritten as

(A.8) ∃ q ∈ J1, nK , λ <

∑q
k=1

∣∣ATy
∣∣
[k]∑q

k=1 γk
.

The statement in (4.2) then follows by noticing that the right-hand side of (4.1) is a
compact reformulation of (A.8).

Appendix B. Proofs related to screening tests.

B.1. Proof of Theorem 4.1. In this section, we provide the technical details
leading to (4.6). Our derivation leverages the Fermat’s rule and the expression of the
subdifferentiable derived in Lemma A.3.

We prove (4.6) by contraposition. More precisely, we show that if x?(`) 6= 0 for
some ` ∈ J1, nK, then

(B.1) ∃q0 ∈ J1, nK, |aT
` u

?|+
q0−1∑
k=1

|AT
\`u

?|[k] ≥ λ
q0∑
k=1

γk.

Using Lemma A.1 and the following connection between primal-dual solutions (see [6,
Section 2.5])

(B.2) u? = y −Ax?,

we have that x? is a minimizer of (1.1) if and only if

(B.3) g? , λ−1ATu? ∈ ∂rslope(x?).

In the rest of the proof, we will use Lemma A.2 with x = x?, g = g? and different
instances of vector g′ to prove our statement. First, let us define g′ ∈ Rn as

g′(j) = g?(j) ∀j ∈ J1, nK \ {`},
g′(`) = 0.

It is easy to verify that r∗slope(g′) ≤ 1. Applying Lemma A.2 then leads to

g?(`)x
?
(`) ≥ 0.(B.4)

Since x?(`) is assumed to be nonzero, we then have

sign
(
g?(`)

)
sign

(
x?(`)

)
≥ 0,(B.5)

where the equality holds if and only if g?(`) = 0.
Second, let us consider the following choice for g′ ∈ Rn:

g′(j) = g?(j) ∀j ∈ J1, nK \ {`},
g′(`) = g?(`) + sδ,
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where (using the convention g?[0] = +∞)

s ,

{
sign(g?(`)) if g?(`) 6= 0

sign(x?(`)) otherwise,
(B.6)

δ , min

(
|g?|[q′0−1] − |g?|[q′0], min

q∈J1,nK

(
q∑

k=1

γk −
q∑

k=1

|g?|[k]

))
(B.7)

and q′0 ∈ J1, nK is the smallest integer such that |g?(`)| = |g
?|[q′0]. We note that δ ≥ 0

by definition: the positivity of the first argument follows from the definition of q′0, the
positivity of the second argument is due to r∗slope(g?) ≤ 1.

To apply Lemma A.2, let us show that r∗slope(g′) ≤ 1, or equivalently:

∀q ∈ J1, nK :

q∑
k=1

|g′|[k] ≤
q∑

k=1

γk.(B.8)

We have by construction

|g?|[q′0] ≤ |g′(`)| ≤ |g
?|[q′0−1],(B.9)

so that the ordering of the elements of |g?| and |g′| is the same. We then have:

∀q ∈ J1, q′0 − 1K :

q∑
k=1

|g′|[k] =

q∑
k=1

|g?|[k] ≤
q∑

k=1

γk,

∀q ∈ Jq′0, nK :

q∑
k=1

|g′|[k] ≤
q∑

k=1

|g?|[k] + δ

≤
q∑

k=1

|g?|[k] + min
q′∈J1,nK

 q′∑
k=1

γk −
q′∑
k=1

|g?|[k]


≤

q∑
k=1

γk,

where the last inequality is obtained by considering the case q′ = q in the penultimate
equation. Hence r∗slope(g′) ≤ 1.

Applying Lemma A.2 leads to

(B.10) − sx?(`)δ ≥ 0.

Using (B.5) and the definition of s in (B.6), we must have sx?(`) > 0. Since δ ≥ 0,
satisfying inequality (B.10) therefore implies that δ = 0. By definition of q′0, the first
argument in the definition of δ in (B.7) is always strictly positive. Hence

(B.11) min
q∈J1,nK

(
q∑

k=1

γk −
q∑

k=1

|g?|[k]

)
= 0,

or in other words,

(B.12) ∃ q0 ∈ J1, nK,
q0∑
k=1

|g?|[k] =

q0∑
k=1

γk.
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We finally obtain our original assertion (B.1) by using the definition of g? in (B.3)
and the fact that

(B.13)
q0∑
k=1

|ATu?|[k] ≥ |aT
` u

?|+
q0−1∑
k=1

|AT
\`u

?|[k].

B.2. Proof of Lemma 4.2. We first state and prove the following technical
lemma:

Lemma B.1. Let g ∈ Rn and h ∈ Rn be such that g(j) ≤ h(j)∀j. Then

g[k] ≤ h[k] ∀k.(B.14)

Proof. We have by definition

h[k] = max
J⊂J1,nK:card(J )=k

min
j∈J

h(j),

≥ max
J⊂J1,nK:card(J )=k

min
j∈J

g(j),

= g[k],(B.15)

where the inequality follows from our assumption g(j) ≤ h(j)∀j.
We are now ready to prove Lemma 4.2. For any p ∈ J1, qK, we can write:

|aT
` u

?|+
q−1∑
k=1

|AT
\`u

?|[k] = |aT
` u

?|+
p−1∑
k=1

|AT
\`u

?|[k] +

q−1∑
k=p

|AT
\`u

?|[k].(B.16)

First, since u? is dual feasible, we have:

p−1∑
k=1

|AT
\`u

?|[k] ≤ λ
p−1∑
k=1

γk.(B.17)

We next show that if u? ∈ S(c, R), then

|aT
` u

?|+
q−1∑
k=p

|AT
\`u

?|[k] ≤
∣∣aT
` c
∣∣+

q−1∑
k=p

∣∣∣AT
\`c
∣∣∣
[k]

+ (q − p+ 1)R.(B.18)

We then obtain the result stated in the lemma by combining (B.17)-(B.18).
Inequality (B.18) can be shown as follows. First,

∀i ∈ J1, nK : max
u∈S(c,R)

|aT
i u| = |aT

i c|+R.(B.19)

Hence (
max

u∈S(c,R)
|AT
\`u|

)
[k]

= |AT
\`c|[k] +R(B.20)

where the maximum is taken component-wise in the left-hand side of the equation.
Applying Lemma B.1 with g = |AT

\`u| and h = maxũ∈S(c,R) |AT
\`ũ|, we have

∀u ∈ S(c, R) : |AT
\`u|[k] ≤

(
max

ũ∈S(c,R)
AT
\`ũ|

)
[k]

(B.21)
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and therefore

max
u∈S(c,R)

(
|AT
\`u|[k]

)
≤
(

max
u∈S(c,R)

|AT
\`u|

)
[k]

.(B.22)

Combining these results leads to

|aT
` u

?|+
q−1∑
k=p

|AT
\`u

?|[k] ≤ max
u∈S(c,R)

|aT
` u|+

q−1∑
k=p

|AT
\`u|[k]

(B.23)

≤ max
u∈S(c,R)

|aT
` u|+

q−1∑
k=p

max
u∈S(c,R)

(
|AT
\`u|[k]

)
(B.24)

≤ max
u∈S(c,R)

|aT
` u|+

q−1∑
k=p

(
max

u∈S(c,R)
|AT
\`u|

)
[k]

(B.25)

≤
∣∣aT
` c
∣∣+

q−1∑
k=p

∣∣∣AT
\`c
∣∣∣
[k]

+ (q − p+ 1)R.(B.26)

B.3. Proof of Lemma 4.4. We want to show that if test (4.10) is passed for
some {pq}q∈J1,nK, then test (4.14) is also passed when γk = 1 ∀k ∈ J1, nK.

Assume (4.10) holds for some {pq}q∈J1,nK, that is ∀q ∈ J1, nK, ∃pq ∈ J0, q − 1K
such that

(B.27)
∣∣aT
` c
∣∣+

q−1∑
k=pq

∣∣∣AT
\`c
∣∣∣
[k]
< κq,pq ,

where κq,p , λ
(∑q

k=p γk

)
− (q − p + 1)R. Considering the case “q = 1”, (B.27)

particularizes to

(B.28)
∣∣aT
` c
∣∣+R < λγ1.

If γk = 1 ∀k ∈ J1, nK, the latter inequality is also equal to (4.14) and the result is
proved.

B.4. Proof of Lemma 4.5. We prove the result by showing that ∀q ∈ J1, nK
the sequence {Bq,`}`∈J1,nK is non-increasing. To this end, we first rewrite Bq,` in a
slightly different manner, easier to analyze. Let

(B.29)
Cq,p , (q − p+ 1)R+ λ

(∑p−1
k=1 γk

)
∀q ∈ J1, nK,∀p ∈ J1, qK

σq ,
∑q
k=1 |aT

k c| ∀q ∈ J0, nK

with the convention σ0 , 0. Using these notations and hypothesis (4.16), Bq,` can be
rewritten as

Bq,` − Cq,p = |aT
` c|+

q−1∑
k=1

∣∣∣AT
\`c
∣∣∣
(k)
−
p−1∑
k=1

∣∣∣AT
\`c
∣∣∣
(k)

(B.30)

=


|aT
` c|+ σq−1 − σp−1 if q < `

σq − σp−1 if p− 1 < ` ≤ q
|aT
` c|+ σq − σp if ` ≤ p− 1.

(B.31)
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We next show that ∀q ∈ J1, nK the sequence {Bq,`}`∈J1,nK is non-increasing. We first
notice that Cq,p does not depend on ` and we can therefore focus on (B.31) to prove
our claim. Using the fact that |aT

` c| ≥ |aT
`+1c| by hypothesis, we immediately obtain

that Bq,` ≥ Bq,`+1 whenever ` /∈ {p − 1, q}. We conclude the proof by treating the
cases “` = p− 1” and “` = q” separately.

If ` = q we have from (B.31):

(B.32) Bq,`+1 −Bq,` = |aT
q+1c|+ σq−1 − σq = |aT

q+1c| − |aT
q c| ≤ 0,

where the last inequality holds true by virtue of (4.16).
If ` = p− 1 (and provided that p ≥ 2) the same rationale leads to

(B.33) Bq,`+1 −Bq,` = |aT
p c| − |aT

p−1c| ≤ 0.

B.5. Proof of Lemma 4.6. The necessity of (4.28) can be shown as follows.
Assume |aT

nc| ≥ τ for some τ ∈ T and let q ∈ J1, nK be such that τ = τq,p?(q). From
(4.22) we then have

∀p ∈ J1, qK :
∣∣aT
nc
∣∣ ≥ τq,p(B.34)

and test (4.19) therefore fails.
To prove the sufficiency of (4.28), let us first notice that ∀p ∈ J1, nK:

τq(1),p = arg min
q∈J1,nK

τq,p.(B.35)

In particular, letting p(1) = p?(q(1)), we have

∀q ∈ Jp(1), nK : τq(1),p(1) ≤ τq,p(1) .(B.36)

Hence, ∣∣aT
nc
∣∣ < τq(1),p(1) =⇒ ∀q ∈ Jp(1), nK :

∣∣aT
nc
∣∣ < τq,p(1) .(B.37)

In other words, satisfying the left-hand side of (B.37) implies that test (4.19) is verified
for each q ∈ Jp(1), nK.

We can apply the same reasoning iteratively to show that ∀t ∈ J1, card (T )K:∣∣aT
nc
∣∣ < τq(t),p(t) =⇒ ∀q ∈ Jp(t), p(t−1) − 1K :

∣∣aT
nc
∣∣ < τq,p(t) .(B.38)

Since p(card(T )) = 1, we thus obtain that (4.28) implies that (4.19) is verified for each
q ∈ J1, nK.
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