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Abstract – Glyphosate is the most widely used herbicide worldwide and it could have negative effects on wild
bees. We study the effect of glyphosate commercial formulation on the nesting behavior of wild solitary bees
(Megachile spp.) and the survival of immature stages in a Pampean agroecosystem. In four plots without agricultural
management located in an agricultural field, we placed 480 wooden trap-nests. The traps were sprayed with two
different concentrations of glyphosate commercial formulation and only with water. The number of cells per nest
was significantly lower in glyphosate treated traps compared with the water treatment. The probability of finding
breeding cells was two times higher in nests without glyphosate commercial formulation compared with treated
nests. Larvae completed their development and emerged as adults approximately four times more in nests without
glyphosate commercial formulation, relative to those with glyphosate. Our results indicate that glyphosate com-
mercial formulation could be conditioning the behavior of the nesting females and it is affecting their reproduction.

Agrochemical effects /Megachile / Bee survival / Trap nests / Agricultural management

1. INTRODUCTION

The use of land for agricultural purposes trans-
formed nearly 50% of land surface in only
300 years (Ellis et al. 2010). This transformation,
product of deterministic factors (such as

agricultural expansion and agrochemicals) and sto-
chastic factors (such as natural habitats loss and
fragmentation), is the main cause of biodiversity
change and loss worldwide (Sala et al. 2000;
Tscharntke et al. 2005). Pollination, an important
ecosystem service, is affected by these changes
(Tscharntke et al. 2005; Potts et al. 2010) and some
strategies are used to counteract these effects. For
example, the management of crop edges was pro-
posed to increase abundance and diversity of pol-
linators and thus improve pollination quality (Sáez
et al. 2014). Although crops edges have a limited
extension, these places are important biodiversity
reservoirs (Hendrickx et al. 2007; Billeter et al.
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2008; Torretta and Poggio 2013). Crop edges usu-
ally have destructive management (Torretta and
Poggio 2013), where both herbicides and insecti-
cides are used to control spontaneous plants and
non-beneficial arthropods (Gill and Garg 2014;
Bartomeus and Bosch 2018). Therefore, it is nec-
essary to establish how current agricultural man-
agement can affect the development of pollinator
communities, and establish suitable management
strategies for crop edges.

The current model of agricultural production
uses large amounts of agrochemicals that might
directly or indirectly affect pollinator communities
and other organisms in agroecosystem such as
honeybee (Apis mellifera L.) or wild bees (Gary
et al. 1972; Kopit and Pitts-Singer 2018; Rosanigo
et al. 2020); larvae and adults of toads (Cauble and
Wagner 2005, Bernal et al. 2009); and fishes
(Marques et al. 2014). Particularly in pollinators,
direct effects are associated with the reduction of
population abundance, cognitive changes, de-
creased in longevity and in visual abilities, among
others (Boily et al. 2013; Herbert et al. 2014). On
the other hand, indirect effects are associated with
reduction of availability of floral and nesting re-
sources (Devillers et al. 2002). Although several
studies reported these effects, the majority were
conducted in the laboratory and with managed
pollinators such as honeybees or different species
of Bombus (Mullin 2015) with few examples in-
cluding wild bees. However, the recommended
agrochemical dose may not have effects on man-
aged bees (Thompson et al. 2014), but may be
lethal in wild bees which are less adapted to agri-
cultural management. Recently, Rosanigo et al.
(2020) reported a diminished reproductive success
of Megachile (Pseudocentron ) gomprenoides
Vachal in built nests in agricultural lots (principal-
ly: soybean) compared with built nests in semi-
natural areas paired. For this reason, studies in
situ and with wild bees become indispensable.

Glyphosate (N-phosphonomethyl-glycine, C3

H8 NO5 P, CAS 1071-83-6) is a broad-spectrum
herbicide. In the case of glyphosate (and other
agrochemicals), active ingredients are combined
with other ingredients (e.g., adjuvants) to create
the commercial formulae (Chaufan et al. 2014).
An adjuvant is generally broadly defined as any
substance separately added to a pesticide product

that will improve the performance of the product
(Coalova et al. 2014). Glyphosate commercial for-
mulation (hereafter: GLY-CF) is mainly used to
keep crops edges free of spontaneous weeds and to
clear land for crop production. In addition, GLY-
CF is used in urban and peri-urban areas for the
same purposes since it is a chemical that is eco-
nomically cheap, easy to use and find in agrochem-
ical markets (Abraham et al. 2018). This herbicide
affects honeybees and could affect pollinators that
use these semi-natural habitats as refugia and/or
nesting sites (Kopit and Pitts-Singer 2018, but see
Thompson et al. 2014). Sublethal doses of glyph-
osate deteriorate cognitive functions in honeybees,
leading for example a taste decrease (Eiri and Nieh
2012), and infield-realistic doses damage the re-
covery of memory acquired during exploratory
orientation flights (Balbuena et al. 2015). Ingestion
of glyphosate at lower concentrations than those
recommended by the manufacturer produced dis-
orientation and deterioration of associative learning
in workers of A. mellifera (Herbert et al. 2014;
Balbuena et al. 2015). On the other hand, larvae
of A. mellifera exposed to sublethal doses of
glyphosate showed a delay in their development
(Vázquez et al. 2018). Also, a recent study showed
an increase in worker mortality of two species of
social bees A. mellifera and Hypotrigona ruspolii
(Magretti) (Apidae, Meliponini) after contact with
plants sprayed with GLY-CF (Abraham et al. 2018
). Despite the information available on the effects
of glyphosate on managed bees, there are no stud-
ies that demonstrate the consequences of the use of
this herbicide on solitary wild bees, which are
relevant in crop pollination (Garibaldi et al. 2013).

The present study focused on trap nesting wild
bees belonging to the genus Megachile
(Megachilidae). All Megachile species are soli-
tary and some of them build their nests in
preexisting cavities in wood and hollow stems,
among others (Michener 2007). Some studied
species in the Pampean region use plant materials
such as pieces of leaves, petals, and even chewed
leaves for construction of brood cells or nest con-
ditioning (Torretta and Durante 2011, Torretta
et al. 2012, 2014). The number of brood cell per
nest is variable and in each of them the females
place a mass of pollen and one egg (Michener
2007). The aim of our study was to evaluate the
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effect of GLY-CF on the nesting behavior of
solitary bees in a Pampean agroecosystem. In
addition, we estimated the survival of immature
stages (larvae, prepupae, and pupae) reared in trap
nests exposed to different concentrations of GLY-
CF. Our hypothesis is that GLY-CF negatively
affects the reproductive success of wild bees in
agroecosystems through a reduction in the surviv-
al rate of immature stages. Our predictions are as
follows: (i) female bees will indistinctly trap nests
sprayed and not sprayed with GLY-CF (i.e., the
females do not recognize the GLY-CF–impreg-
nated trap nests); (ii) fertile females will build
fewer brood cells per nests sprayed with GLY-
CF than those not sprayed; and (iii) there will be a
negative relationship between survival of imma-
ture stages and the GLY-CF concentration applied
to each trap nest.

2. MATERIALS AND METHODS

2.1. Study area

The study was carried out in an agroecosystem
located in the Pampean region (S 35° 56′, W 61°
11′, Buenos Aires province, Argentina). The Pam-
pean region is a grassland turned into cultivated
fields at rapid rate, affecting both landscape struc-
ture and land use patterns (Medan et al. 2011).
The landscape is a mosaic of crop fields, and in
lesser proportion sown pastures and semi-natural
grasslands used for livestock grazing (Tognetti
et al. 2010; Marrero et al. 2014) with scarce and
small (agriculturally) unmanaged areas (hence-
forth restored fragments). The use of herbicides
and pesticides is frequent in agricultural fragments
which are predominant in this agroecosystem.
Restored fragments (size range: 0.5–3 ha)
consisted of permanently fenced enclosures which
had not been cultivated or grazed for the last
20 years and were therefore considered non-
cropped fragments (Tognetti et al. 2010).

2.2. Sampling design

The survey was carried out during monthly
visits from December 2017 to April 2018. Four
restored fragments were selected based on the
great abundance of pollinators present in these

sites, considering data obtained from a previous
study (Rosanigo 2017; Rosanigo et al. 2020).
Fragments whose areas vary between 0.5 and
1 ha (Pompozzi et al. 2019) were immersed in
an agricultural matrix. In these semi-natural areas,
vegetation is a grassland dominated by exotics
grasses and some entomophilous plant species
(Marrero et al. 2014; Rosanigo 2017). The re-
stored fragments were separated by more than
1000 m in order to enhance their independence.
At each restored fragment, 120 trap nests (40 by
treatment, totaling 480 in all fragments) were
placed in packages of eight traps each, containing
two traps of four different diameters (6, 8, 10, and
12 mm). Each trap nest consisted of a 2 × 2 ×
12 cm block of wood with a 9 cm deep hole
(Figure 1) (for a comparable approach see
Dorado et al. 2011). Fifteen trap nest packages
were placed per restored fragment and five of
them were used in each treatment (normal, satu-
rated, and control). The packages of trap nests of
each treatment were separated by approximately
25 m within each restored fragment, and inside
each treatment, packages were separated by a
distance of two meters (Figure 1).

The treatments consisted of trap nests sprayed
with two different concentrations of glyphosate
commercial formulation Roundup® ControlMax:
the “normal” treatment consisted of trap nests
sprayedwith the manufacturer recommended con-
centration (8 g GLY-CF /l distilled water), “satu-
rated” treatment in which the trap nests were
sprayed with a solution with twice the recom-
mended concentration (16 g GLY-CF /l distilled
water), and the “control” treatment consisted of
trap nests sprayed only with distilled water. We
used distilled water to eliminate the possible ef-
fects of the chemical components of tap water, as
arsenic, which is present in water at our study site
(Minaverry and Cáceres 2016). GLY-CF’s doses
were calculated based on normal field rates
(CASAFE 2020). We used the saturated dose as
a treatment in the present study, because untrained
and/or poorly trained people usually use doses
that largely exceed the normal dose (Abraham
et al. 2018). Although it is not the recommended
dose, it could be realistic.

In December 2017, the trap nest packages were
installed and sprayed with distilled water,
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“normal” and “saturated” GLY-CF. For this pur-
pose, we used different sprayers, one for each
treatment, taking all precautions required to han-
dle the herbicide. The trap nests packages were
sprayed completely, covering the entire external
surface with the solution. Approximately 1 l of
solution was used for the packages of each treat-
ment with glyphosate (1000 ml/20 packs = 50 ml/
pack and 50 ml/8 nest traps = 6.25 ml/trap nest)
and the same volume of distilled water for the
traps nest control treatment. This was repeated in
January, February, and March 2018.

In each visit, each trap nest was checked to
register the presence/absence of bee-constructed
nests (Table S1). Subsequently, each trap nest was
sprayed again, in the same way as in the first visit
and regardless of whether it contained bee-
constructed nests or not, in order to simulate what
actually happens in a field under agricultural man-
agement (Figure 2). Currently, GLY-CF could be
sprayed 1–3 times or more after the crop has
emerged, leaving the crop unharmed but controlling
all actively growing weeds (Benbrook 2016). Final-
ly, during the last visit to the study site (April 2018),
all nest traps were collected and taken to the labo-
ratory. In the lab, the traps were opened to record
the number of bee-constructed nests per treatment
and the number of brood cells present in each

constructed nest. The brood cells of each bee-
constructed nest were individually placed in plastic
tubes with a cotton plug inside boxes under labora-
tory conditions until adult emergence. Each plastic
tube was labeled with the nest number, position of
the cell within the nest (from 1 to n , with 1 being
the first constructed cell), and “control,” “normal,”
and “saturated” treatment. When the adults
emerged, they were sacrificed and mounted on
entomological pins for further determination. Eigh-
teen months later, we opened the remaining cells
and confirmed that larvae were dead.

2.3. Analysis

Bee-constructed nests were evaluated using da-
ta from all the traps. The probability of finding a
nest (0 = without nest, or 1 = with nests) was con-
sidered. A nest was considered to be bee-
constructed if it contained at least one brood cell.
For the brood cells, the data of cells quantity in all
traps (with and without nests) were used, consid-
ering a value of 0 for traps without nest. Finally,
survival was estimated using only data from traps
with nest, such as the number of cells that com-
pleted their development and resulted in emerged
adults per nest. We obtained a bee survival value
in each trap that contained at least one cell.

Figure 1. Scheme of disposition of traps nest in each restored fragment. The packages of trap nests of each treatment
were separated by approximately 25 m within each restored fragment, and inside each treatment, packages were
separated by a distance of two meters.
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Generalized linear andmixedmodels (GLMMs)
were used to evaluate the bee-constructed nests, the
number of brood cells, and the survival of imma-
ture stages (response variables). The R statistical
software (R Development Core Team 2013) was
used, with the glmer function of the lme4 package,
with a binomial distribution for nest and survival
and negative binomial distribution for number of
cell (Table I). In the models, the concentrations of
herbicide (normal, saturated, and control) were
used as fixed factor (categorical variable), while
the identity of the restored fragments, the package,
and the diameter of the trap were used as nested
random factors (Table I). Megachile species were
not used as a random factor because one of the two
species was very abundant and explained most of
the variance. Overdispersion test was estimated
with the dispersion glmer function of package
blmeco, while the goodness of the models fit was
performed using the DHARMa packages in R (R
Development Core Team 2013).

3. RESULTS

A total of 43 bee-constructed nests were found
(occupation of approximately 9% of the total traps),
of which 20 corresponded to control, 11 to normal
concentration, and 12 to saturated concentration of

GLY-CF (Table S1). In total, 140 brood cells were
found, 84 of which corresponded to the control, 30
to the normal, and 26 to the saturated treatment. The
nests were occupied by two species of bees
Megachile (Pesudocentron ) gomphrenoides and
Megachile (Dactylomegachile ) sp. The most abun-
dant species was M. gomphrenoides with more
than 90% of the nests occupied by this species.

Models did not show overdispersion and pre-
sented an appropriate goodness of fit (Table I;
Supplementary material, Fig. S1). No significant
differences were found in the probability that a
trap nest was occupied among the different treat-
ments (ChiSquare = 4.502; p = 0.105) (Table II).
However, significant differences were found in
the number of built brood cells control vs. normal
and saturated treatments (ChiSquare = 6.8693;
p = 0.03224). The number of brood cells in a nest
without GLY-CF is more than twice in relation to
the treated nests (Figure 3). Finally, survival of
immatures stages also showed significant differ-
ences between treatments with GLY-CF and the
control (ChiSquare = 11.248; p = 0.0036). The
survival of the immature stages in the control
nests was 52%, while the nests treated with
GLY-CF had a survival of 14% for the normal
concentration and approximately 4% for the satu-
rated one (Figure 4).

Application window for Glyphosate

Pre-E Firth bloomPost-E Mid-bloom

Dec-2017 Jan- 2018 Feb- 2018 Mar- 2018

November March

Figure 2. Scheme of application of GLY-CF on trap nest. The application window for GLY-CF in summer season
crops in Pampas extends from the pre-emerged (pre-E) until the mid-bloom. To simulate the applications that occur
in agricultural management, we sprayed traps-nest at four different times: the first two during the post-emerged
(post-E) and the others during firth-bloom and mid-bloom. Our applications were intentionally synchronized with
the fumigation of the associated crops.
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4. DISCUSSION

Results show that our hypothesis related to the
negative effects of GLY-CF on nesting biology of
Megachile gomphrenoides andMegachile sp. was
plausible. In accordance with our predictions, the
probability of a female bee building a nest was not
related to the use of GLY-CF, and both the number
of brood cells per nest and the survival of the
immature stages (larvae, prepupae, or pupae) were
greater in nests constructed in GLY-CF free traps.
Our results suggest that females of these bees select
their nesting sites without considering the presence/
absence of GLY-CF. However, the total number of

brood cells in the nests varies depending on GLY-
CF presence in nesting site. This result could be
related to a cognitive failure of nesting females that,
exposed to GLY-CF, fail to integrate the spatial
information, and consequently make erroneous for-
aging trips. Therefore, it is difficult for these females
to return to their nest, as it was reported for workers
of honeybees (Boily et al. 2013; Balbuena et al.
2015). In this way, females ofMegachile spp. could
have established a nest and built one or few brood
cells and then abandoned it, because they did not
manage to return to the nest as a consequence of
erroneous forage trips. Another possible explana-
tion (non-mutually exclusive) is that adults in

Table I.Models used for the analysis. Response variables: nests, cells, and survival. Random factors: identity of the
restored fragments (site), the group of traps (package), and the hole trap diameter (diameter). These variables were
nested (1|site/package/diameter). Fixed factors: herbicide concentration (treatment). The overdispersion values
(dispersion_glmer function of package blmeco) were computed as the square root of the penalized residual sum
of squares divided by n , the number of observations. This quantity may be interpreted as the dispersion factor of a
binomial and Poisson mixed model

Model Formula Distribution Overdispersion

M1 nests~ (1|site/package/diameter) + treatment Binomial 0.658

M2 cells ~ (1|site/package/diameter) + treatment Negative binomial 0.505

M3 survival ~ (1|site/package/diameter) + treatment Binomial 0.831

Table 2. GLMM outputs. The table shows the outputs of generalized linear mixed-effects models with binomial
(nests and survival) and negative binomial (cell) errors for the different response variables. There was one fixed
factor: “treatment” (control, normal, and saturated); and three nested random factors: “site” (identity of the restored
fragments), “package” (the group of traps) and “diameter” (the hole trap diameter)

Estimate Standard error Z value Probability (> |z| ) Significance

M1: nests

Intercept − 2.9608 0.8272 − 3.579 0.000345 ***

Normal − 0.8395 0.4459 − 1.883 0.059715

Saturated − 0.7247 0.4359 − 1.663 0.096372

M2: cells

Intercept − 1.3712 0.8236 − 1.665 0.0959

Normal − 1.1779 0.5418 − 2.174 0.0297 *

Saturated − 1.3829 0.5742 − 2.408 0.0160 *

M3: survival

Intercept − 0.6696 0.1875 − 3.571 0.000356 ***

Normal − 1.3453 0.5644 − 2.384 0.017136 *

Saturated − 2.5885 1.0362 − 2.498 0.012484 *

* 0.01, ** 0.001, *** 0.0001
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contact with GLY-CF die before finishing their
nests, as reported for social species (Abraham
et al. 2018). It is possible that GLY-CF could be
impregnated in the wood and affects females by
direct contact. However, no dead adult bees were
found inside the nests (although they might have
died outside them). Also, numerous studies suggest
that glyphosate and other agrochemicals intervene
directly in the intestinal microbiota of bees, causing
a reduction in bee survival (Dai et al. 2018; Motta
et al. 2018; Vázquez et al. 2018; Blot et al. 2019).

The survival of immatures stages (i.e., the prob-
ability of emerging as adult) was four times higher in
the GLY-CF free nests than ones treated with GLY-
CF. This result could be explained by many studies
carried out for other bee species. A similar trend of
mortality was observed in a recent study under lab
conditions in which Abraham et al. (2018) recorded
about 25% of mortality in A. mellifera during the

first 24 h of contact with plants sprayed with GLY-
CF. Mortality increased to 75% as so did the GLY-
CF concentration (Abraham et al. 2018). In another
study, Dai et al. (2018) showed that the survival of
the immature stages was lower for individuals fed
diets with GLY-CF, also causing the decrease in
larval weight. Vázquez et al. (2018) found that
immature stages of A. mellifera that ate food with
traces of glyphosate had a higher proportion of
larvae with delayed molt and weight reduction,
which could lead to a possible reduction in bee
survival. However, contrary to these results,
Thompson et al. (2014) found no significant effects
on the survival, development, and average weight of
larvae of A. mellifera , nor did they observe signifi-
cant mortality in adult bees under different concen-
trations of GLY-CF.

Although all the studies cited here were carried
out under laboratory conditions and using different

Figure 3. Number of built brood cells in nest sprayed with distilled water (control) or with different concentrations
of GLY-CF (normal and saturated). The figure shows the mean (± SD) number of brood cells per nest under different
treatments.

Figure 4. Survival (measured as emerged adults/constructed cells) of immature stages in treatments without
(control) and with GLY-CF (normal and saturated). The figure shows the mean (± SD) survival of immature stages
per nest under different treatments.

S. Graffigna et al.278



concentrations of agrochemicals, some of these
recommended by the manufacturer, it is believed
that in agricultural management recommendations
are not (always) followed. The GLY-CF applica-
tions are made in many crops in excess, besides
being applied by persons not trained in its use
(Abraham et al. 2018). For this reason, we suggest
field experimentation to evaluate in more realistic
way agrochemicals effects on wild bees. It is pos-
sible that the combination of glyphosate with other
agrochemicals may have negative synergistic ef-
fects on wild bees, as well as vary according to the
entry route (Boily et al. 2013; Kopit and Pitts-
Singer 2018). Moreover, the toxicity of the glyph-
osate formulation could be given not only by the
active component but also by the presence of
adjuvants, as observed by Chaufan et al. (2014)
in their study with human cells. Coalova et al.
(2014) demonstrated that the addition of an adju-
vant to glyphosate formulation increases the tox-
icity of the mixture in cell human culture. On the
other hand, in agroecosystems, the GLY-CF is
prepared in tap water (in a different way to what
was done here, where we used distilled water).
Therefore, if the chemical components of tap water
had any harmful effect on the bees, we would not
be registering it. However, our results were similar
to those reported by Rosanigo et al. (2020), who
registered a higher mortality rate by unknown
causes (i.e., not parasitism) of Megachile
gomphrenoides in nests built in agricultural lots
fumigated with GLY-CF prepared in tap water
compared with semi-natural areas. These authors
suggest that such results could be due to the use of
agrochemicals (Rosanigo et al. 2020).

As a conclusion, it is important to emphasize
studies like this one, since it is possible to use the
results as a model to compare with other insects
(Sgolastra et al. 2018). Our results, based only on
obtained data in one study site and 1 year, suggest
that the effects of GLY-CF are negative for these
leaf cutter bee species. These results indicate an
even greater risk comparedwith social species such
as A. mellifera , because solitary bees in temperate
areas exhibit uni- or bivoltine life cycles (Torretta
et al. 2012, 2014) and the number of eggs laid by
female bees is never more than two per day
(Sgolastra et al. 2018). In addition, solitary bees
have prolonged larval development and require

different sites and materials for nesting (Torretta
and Durante 2011, Torretta et al. 2012, 2014,
Sgolastra et al. 2018). Likewise, the loss of a
solitary female bee involves the loss of her whole
offspring (Kopit and Pitts-Singer 2018). Finally, it
is important to highlight the importance of species
of native pollinators over the exotic managed spe-
cies. Several studies suggest that, under favorable
circumstances, native bees provide a service equiv-
alent to honey bees for crops with high pollination
requirements (Kremen et al. 2002; Garibaldi et al.
2013; Sponsler et al. 2019). In turn, native bees
better cushion environmental fluctuations and are
less vulnerable to outbreaks of different diseases
(Kremen et al. 2002). On the other hand, they
promote the persistence of native plants, which
would allow slightly reducing the homogenization
of landscapes (Garibaldi et al. 2013).
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La formulation commerciale du glyphosate affecte
négativement le succès de la reproduction des abeilles
sauvages solitaires dans un agroécosystème pampéen.
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Eine kommerzielle Glyphosphat-Formulierung hat
einen negativen Einfluss auf den Reproduktionserfolg
solitärer Bienen in einem Pampa-Ökosystem.

Agrochemie-Effekte / Megachile / Überleben von
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