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Abstract The variety of temporal and structural constraints on the Alpine tectonometamorphic
signature of the metamorphic core of the Betic-Rif orogen (Alboran Domain) has supported a long-lasting
debate regarding the Alpine tectonic and geodynamic evolution of the Western Mediterranean region.
Uncertainty still exists on the timing and tectonic significance of (a) the Alpine orogenic construction;

(b) exhumation of the deep roots of the orogen; and (c) transition from orogenic shortening to crustal
extension. In this study, we address these major geological issues by focusing on the lower-grade units

of the Alboran Domain (Upper Sebtides and Ghomarides) exposed in the Rif belt of northern Morocco.
Through a multidisciplinary approach that integrates mesostructural and microstructural investigations
with X-ray diffraction, quantitative mineral chemistry, and **Ar/*’Ar geochronology, a 20 Ma long
tectonic history is reconstructed, which involves burial of the tectonic units at depth (late Eocene) and
postorogenic exhumation under brittle conditions in the upper crust (early Miocene). We document

a Priabonian (~37-34 Ma) D;/M; progressive compressional deformation, during the formation of a
SW-verging orogenic wedge (present coordinates), accreted toward the Africa plate. Brittle extensional
detachment tectonics operated during the Burdigalian (~18-17 Ma), controlling the thinning of the
previously structured Alboran Domain nappe stack and the final exhumation of the Alpine orogenic units.
We propose that transition from orogenic build-up to collapse in the hinterland of the Betic-Rif orogen
occurred when the retreat of the Apennine-Maghrebian subduction was efficient to drive transition from
shortening to extension in the back-arc domain of the western termination of the Apennine-Maghrebian
subduction zone.

1. Introduction

Orogeny is the process through which continental crust grows and differentiates at convergent plate mar-
gins. Understanding the tectonic structures and the temporal scales involved in the formation and the de-
struction of orogenic belts is the prerequisite to decrypt the geodynamic environments that control the
transition from plate convergence to divergence and, ultimately, the cycles of continental assembly and
breakup (e.g., Brown, 2010).

The study of the exhumed roots of the Alpine orogen in the Mediterranean region (Figure 1a) has fostered
the advancement of knowledge on the geological processes and mechanisms operative during the transition
from crustal shortening to extension at convergent plate margins (Dewey, 1988; Jolivet & Brun, 2010; Jolivet
et al., 1998; Lister & Baldwin, 1993; Platt & Vissers, 1989). In particular, the dynamics of the Neotethyan sub-
ducting slab has been recognized to exert a primary role in controlling the stability of mountain belts, with
crustal thinning largely controlled by back-arc extension caused by progressive slab retreat (e.g., Doglioni
et al., 1997; Faccenna et al., 2004; Horvath et al., 1981; Jolivet & Brun, 2010; Jolivet & Faccenna, 2000;
Jolivet et al., 1998, 2013; Malinverno & Ryan, 1986; Rosenbaum et al., 2002; Royden, 1993). Formation of
Tertiary back-arc basins in the upper-plate of the retreating subduction imparted the first-order control
on the physiography of the Mediterranean region. This resulted in a diffuse plate boundary where arcuate
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Figure 1. (a) The Western Mediterranean region showing the main Alpine orogenic belts and the distribution of the back-arc basins (modified after Faccenna
et al., 2004). (b) Schematic geological map of the Betic-Rif orogen, showing distribution of the Alboran Domain in the hinterland domain (modified after
Michard et al., 2006), with indication of the study area (dashed rectangle).

mountain belts are associated with localized and distributed continental rifts (Alboran, Liguro-Provencal,
Tyrrhenian, Aegean basins), whose formation has coincided with active compression at the subduction
fronts (Figure 1a).

The overprinting structures and the varying geothermal gradient (from low-temperature to high-temper-
ature) associated with the back-arc (postorogenic) extension have usually obscured the early tectonomet-
amorphic evolution associated with crustal thickening, hampering full assessment of the spatiotemporal
scales and tectonic scenarios involved in orogenic construction. Consequently, there are large uncertainties
in the tectonic reconstructions used to frame the geodynamic environment responsible for orogeny and
crustal thickening in the region. This is clearly evident in the Western Mediterranean (Figure 1), where a
widespread early Miocene thermal event is documented across the metamorphic hinterland of the Betic-Rif
orogen (the so-called Alboran Domain; see Bessiére et al., 2021 for a recent review) and debate continues
in relation to the Alpine tectonometamorphic evolution of the Alboran Domain, with regard to: (a) the
geodynamic scenario during consumption of the Neotethys ocean and formation of the Apennine-Magh-
rebian-Betic orogen, with models involving either double or single subduction scenarios (see e.g., Bessiere
et al., 2021; Carminati et al., 2012; Daudet et al., 2020; Faccenna et al., 2004; Handy et al., 2010; Lacombe &
Jolivet, 2005; Leprétre et al., 2018; Malusa et al., 2015; Molli & Malavieille, 2011; Pedrera et al., 2020; Platt
et al., 2006; Romagny et al., 2020; Rosenbaum et al., 2002; van Hinsbergen et al., 2020; Vergés & Fernan-
dez, 2012; Williams & Platt, 2018); (b) the age of crustal thickening and thinning, including the role of
structural inheritance (e.g., Acosta-Vigil et al., 2014; Augier et al., 2005; Gueydan et al., 2015; Homonnay
et al., 2018; Li & Massonne, 2018; Massonne, 2014; Michard et al., 1997; Montel et al., 2000; Platt & Viss-
ers, 1989; Platt & Whitehouse, 1999; Platt et al., 1998, 2005, 2006; Rossetti et al., 2010, 2020; Ruiz Cruz &
Sanz De Galdeano, 2013; Sinchez-Navas et al., 2014, 2017; Sanchez-Rodriguez & Gebauer et al., 2000; Zeck
& Whitehouse, 2002; Zeck & Williams, 2001); (c) the metamorphic conditions prevailing during late-oro-
genic extension (e.g., Azanén et al., 1998; Michard et al., 2006; Platt et al., 1998, 2003a, 2003b; Soto &
Platt, 1999; Vidal et al., 1999); and (d) the tectonic evolution of the back-arc regions, with models showing
continuous extension, pulses of shortening or transpressional shearing (e.g., Azafiéon & Crespo-Blanc, 2000;
Balanya et al., 1997; Booth-Rea et al., 2007; Frasca et al., 2017; Hidas et al., 2013; Garrido et al., 2011; Guey-
dan et al., 2019; Mazzoli & Martin-Algarra, 2011; Platt & Vissers, 1989; Platt et al., 2003a, 2003b; Rossetti
et al., 2005).

The aim of this study is to provide time and structural constraints on the Alpine evolution of the Western
Mediterranean region. Here, we focus on the lower-grade tectonic complexes of the Alboran Domain (Up-
per Sebtides and Ghomarides; Kornprobst, 1974; Michard et al., 2006) exposed in the Moroccan arm of
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Figure 2. (a) Schematic geological map (modified and readapted after Kornprobst, 1974) of the Alboran Domain

in the Rif belt, with location of the four tectonic windows where the Sebtide Complex crops out and with indication
of the study area (black rectangle; modified after Kornprobst, 1974). The tectonostratigraphic column (not to scale;
modified and readapted after Chalouan et al., 2008) shows the tectonic architecture of the Alboran Domain in the

Rif (b) Structural map of the study area showing the distribution of the collected structural data and the sampling
areas (structural data derived from Gueydan et al., 2015; Marrone et al., 2021; Michard et al., 2006 and this study). (c)
Geological cross section illustrating the structural architecture of the study area, showing the abrupt truncation of the
main Alpine regional foliation in the Sebtides units operated by the flat-lying Zaouia Fault, bounding the contact with
the Ghomaride Complex at the fault hanging wall. The location of the samples used for Ar-Ar geochronology are also
shown.

the Betic-Rif chain (Figure 2a). These tectonic complexes largely escaped the early Miocene postorogenic
thermal relaxation that affected the Alboran Domain at regional scale and are assumed to better preserve
vestiges of the orogenic processes, in the transition from crustal shortening to extension in the Western
Mediterranean. A minimum time lapse of ca. 20 Ma is recognized between the syn-orogenic burial of the
tectonic units at depth (late Eocene, at ca 37-34 Ma) and the postorogenic exhumation in the brittle crust
(early Miocene, at ca. 18-17 Ma), providing ultimate constraints to the geodynamics of orogenic construc-
tion and destruction in the Mediterranean region.

2. Geological Background

The Betic-Rif arcuate belt of the western Mediterranean region is part of the peri-Mediterranean Alpine
orogenic system, developed along the active margin formed during the Mesozoic-Cenozoic convergence
between African and Eurasian plates (Figure 1a; e.g., Daudet et al., 2020; Dewey et al., 1989; Faccenna
et al., 2004; Guerrera et al., 2019; Handy et al., 2010; Jolivet et al., 2003, 2008; Leprétre et al., 2018; Lonergan
& White, 1997; Platt, 2007; Platt et al., 2013; Romagny et al., 2020; Rosenbaum et al., 2002; van Hinsbergen
et al., 2020). This orogenic domain experienced postorogenic collapse and crustal thinning during the early
Miocene formation of the Alboran back-arc basin (e.g., Booth-Rea et al., 2007; Comas et al., 1999; Dew-
ey, 1988; Faccenna et al., 2001, 2004; Garcia-Dueiias et al., 1992; Jolivet & Faccenna, 2000; Monié et al., 1994;
Platt & Vissers, 1989; Platt et al., 2003a, 2003b; van Hinsbergen et al., 2014; Vergés & Fernandez, 2012;
Zeck, 1996), in association with diffuse magmatism and high-temperature metamorphism (e.g., Esteban
et al., 2011; Michard et al., 2006; Negro et al., 2006; Platt & Whitehouse, 1999; Platt et al., 2003a, 2003b;
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Rossetti et al., 2010, 2013; Soto & Platt, 1999; Tubia et al., 1997, 2004; Turner et al., 1999). As a result, the
orogenic roots were finally exhumed in the hinterland domains to form the metamorphic core (hinter-
land domain) of the Betic-Rif orogen, referred to as the Alboran Domain (Andrieux et al., 1971; Casciello
et al., 2015; Garcia-Duefias et al., 1992; Michard et al., 2006; Platt et al., 2013) (Figure 1).

The Alboran Domain consists of continental-derived metamorphic units that can be correlated across the
Betic-Rif chain (Figure 1; Balany4 & Garcia-Dueifias, 1988; Chalouan & Michard, 2004; Chalouan et al., 2008;
Didon et al., 1973; Garcia-Dueiias et al., 1992; Kornprobst, 1974; Michard et al., 2006; Platt et al., 2013;
Tubia et al., 1992). From bottom to top: (a) the high-pressure metapelites of the Nevado-Filabride Complex
(e.g., Augier et al., 2005; Johnson et al., 1997; Li & Massonne, 2018; Monié et al., 1991; Platt et al., 2006;
Puga et al., 1999), not exposed in Morocco, (b) the low-to high-grade Alpujarride-Sebtide Complex, en-
veloping the large peridotite bodies of Ronda and Beni Bousera (Azafién & Crespo-Blanc, 2000; Azafién
et al., 1998; Balanya et al., 1997; Bouybaouene et al., 1995; Gueydan et al., 2015; Kornprobst, 1974; Mazzoli
& Martin-Algarra, 2011; Michard et al., 1997, 2006; Monié et al., 1991, 1994; Rossetti et al., 2010, 2020); and
(c) the Malaguide-Ghomaride Complex, made up of low-grade Paleozoic basement rocks unconformably
covered by discontinuous Mesozoic-Tertiary deposits (Chalouan & Michard, 2004; Kornprobst, 1974; Loner-
gan, 1993; Michard et al., 2006; Serrano et al., 2006). In both arms of the Betic-Rif orogen, the sedimentary
Mesozoic-Cenozoic successions of the Dorsale Calcaire, the detached Mesozoic cover of the metamorphic
units (Malaguides-Ghomarides and/or Alpujarrides-Sebtides), form the frontal tectonic zones of the hin-
terland domain and tectonically overlie the external fold-and-thrust belt (Chalouan & Michard, 2004; Ko-
rnprobst & Durand-Delga, 1985; Martin-Algarrra et al., 2004; Michard et al., 2006; Nold et al., 1981; Vitale
et al., 2015; Wildi, 1983).

The Alpujarride-Sebtide Complex consists of a postmetamorphic nappe stack of tectonometamorphic units,
characterized by a high-pressure/low-temperature (HP/LT), subduction-type metamorphism on Permi-
an-Triassic protoliths and a high-grade, Barrovian-type metamorphism on pre-Alpine protoliths, respective-
ly (Azafion et al., 1998; Bouybaouene et al., 1995; El Maz & Guiraud, 2001; Gueydan et al., 2015; Marrone
et al., 2021; Michard et al., 2006; Rodriguez-Ruiz et al., 2019; Ruiz Cruz et al., 2010; Williams & Platt, 2018),
typified by a marked increase in the peak temperature in the lower levels of the tectonic units (Alvarez-Vale-
ro et al., 2014; Argles et al., 1999; Azanoén & Crespo-Blanc, 2000; Azafion et al., 1998; Balanya et al., 1997;
Barich et al., 2014; Booth-Rea et al., 2007; Comas et al., 1999; Garcia-Casco & Torres-Roldan, 1999; Garcia-
Duenas et al., 1992; Gueydan et al., 2015; Haissen et al., 2004; Michard et al., 2006; Monié et al., 1994; Ne-
gro et al., 2006; Platt et al., 2013; Rossetti et al., 2005, 2010, 2020; Sdnchez-Navas et al., 2014, 2017; Soto &
Platt, 1999; Tubia et al., 1997; Zeck et al., 1992). The thermal structure within the Alpujarride-Sebtides has
been commonly attributed to the heat source provided by the intracrustal emplacement of the peridotite
bodies (Ronda in the Betics and Beni Bousera in the Rif; Figure 1), which are tectonically interlayered within
the continental metamorphic sequence of the Alpujarride-Sebtide Complex (e.g., Acosta-Vigil et al., 2014;
Bessiere et al., 2021; Frasca et al., 2017; Gueydan et al., 2019; Hidas et al., 2013; Mazzoli et al., 2013; Michard
et al., 2006; Negro et al., 2006; Platt et al., 2013; Tubia et al., 1997). The rise of hot asthenosphere during
extreme crustal thinning in the early Miocene has been also proposed to account for the low-pressure ther-
mal metamorphism in the Alpujarride-Sebtides crustal units overlying the peridotites (Argles et al., 1999;
Gueydan et al., 2015; Platt et al., 2003a).

2.1. Timing of the Alpine Orogeny in the Alboran Domain

Most of the Alpine geochronological and thermochronological data available for the Alboran Domain clus-
ter, irrespective of the method, in the early Miocene (24-18 Ma time interval; see reviews in: Acosta-Vigil
et al., 2014; Bessiere et al., 2021; Gémez-Pugnaire et al., 2019; Homonnay et al., 2018; Michard et al., 2006;
Platt et al., 2013; Rossetti et al., 2010, 2020; van Hinsbergen et al., 2020; Vergés & Fernandez, 2012; Williams
& Platt, 2018), obscuring the early orogenic tectonometamorphic fabrics. Consequently, the timing of the
Alpine crustal thickening phase (D; deformation and M; metamorphism, D;/M, event) and the associated
HP/LT subduction-zone metamorphism in the Western Mediterranean is still largely debated. Relatively
few and contradictory geochronological data are available for the Alpine D;/M; stage in the region.

In the Betics, Eocene ages (ca. 50-40 Ma) have been proposed based on white mica *“’Ar/*Ar geochro-
nology on both the Alpujarrides (Bessiére et al., 2021; Platt et al., 2005) and Nevado-Filabrides (Augier
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et al., 2005), recently confirmed by electron microprobe dating of monazite from both the Alpujarride (Mas-
sonne, 2014) and Nevado-Filabride (Li & Massonne, 2018) complexes. Nonetheless, U-Pb zircon (Lépez
Sanchez-Vizcaino et al., 2001), Lu-Hf garnet (Platt et al., 2006) and Rb/Sr multimineral isochron (Kirch-
ner et al., 2016) geochronological data indicate a Miocene age (18-14 Ma) for continental subduction in
the Nevado-Filabrides Complex. Accordingly, the Nevado-Filabride Complex is interpreted as the leading
edge of the South-Iberian paleomargin, which underthrust the Alpujarride Complex at the early Miocene
time (Behr & Platt, 2012; Booth-Rea et al., 2007; Daudet et al., 2020). In the Rif, “°Ar/*Ar white mica ge-
ochronology (Michard et al., 2006) from the Upper Sebtides and U-(Th)-Pb monazite dating (Homonnay
et al., 2018) from the Lower Sebtides indicate a minimum age of ca. 28 Ma for the Alpine crustal thickening
event in the region. Recently, Marrone et al. (2021) confirmed this scenario, providing evidence of ductile
exhumation for the HP units, within the 29-21 Ma time period. A pre-Miocene timing for the Alpine oro-
genic tectonometamorphic evolution of the Alboran Domain is compatible with (a) the stratigraphic evi-
dence of late Oligocene-early Miocene deposits (late Oligocene-Aquitanian Ciudad Granada Group and the
Burdigalian Vifiuela Group; Serrano et al., 2006), which, containing metamorphic clasts sourced from the
hinterland, unconformably cover the Betic-Rif internal zone (Bourgois et al., 1972; Chalouan et al., 2008;
Lonergan, 1993; Lonergan & Mange-Rajetzky, 1994; Martin-Algarrra et al., 2000; Serrano et al., 2006); and
(b) the tectonostratigraphic and thermal evolution of the Cretaceous flysch basin of the Iberia paleomargin,
where a Paleogene age for the onset of the Alpine crustal thickening has been recently proposed (Daudet
et al., 2020).

To conclude, no firm time constraints exist in the Alboran Domain for (i) the Alpine crustal thickening
event; and (ii) the transition from orogenic shortening to extension. The paucity of this primary information
hampers refinement of the tectonic/geodynamic scenario during the Alpine orogeny in the Betic-Rif realm
and, more generally, regional-scale correlations with other Mediterranean orogens.

2.2. The Alboran Domain in the Rif

The structural architecture of the Alboran Domain in the Rif belt is assigned to three main complexes of
tectonic units, forming a postmetamorphic nappe stack thrust westward onto the external domains of the
Rif chain; from top to bottom: Ghomaride, Sebtide and Dorsale Calcaire complexes (Chalouan & Mich-
ard, 1990; Chalouan et al., 2008; Kornprobst, 1974; Michard et al., 2006) (Figure 2a).

The Ghomaride Complex consists of pre-Alpine (Variscan) (Chalouan & Michard, 1990) metasedimen-
tary basement units overlain by a discontinuous Mesozoic-Cenozoic sedimentary cover (Chalouan &
Michard, 1990; Durand Delga & Kornprobst, 1963; Zaghloul et al., 2010). The tectonic juxtaposition of the
Ghomaride units onto the Sebtides/Dorsale Calcaire nappe stack occurs along low-angle (detachment) ex-
tensional faults (Chalouan & Michard, 1990; Chalouan et al., 1997), which abruptly truncate the previously
formed tectonic edifice. Among these faults, the Zaouia Fault is the best documented structure (Chalouan
et al., 2008; Chalouan & Michard, 2004; Michard et al., 2006; Figure 2b). Results from Raman spectroscopy
of carbonaceous material from the Paleozoic successions have documented a significant thermal resetting,
with peak temperatures varying from ca. 500°C at the base down to <330°C at the top (Negro et al., 2006).
This temperature gradient is consistent with the resetting of the K-Ar isotopic system during the Oligo-
cene-Miocene, as documented in the lower part of the Akaili nappe of the Ghomarides, close to the Zaouia
Fault (Chalouan & Michard, 1990, Figure 2b), where K-Ar white mica ages decrease downwards, from
183 Ma in the upper nappe to 25 Ma at its contact with the Filali micaschists of the Lower Sebtides (Cha-
louan & Michard, 1990). Ar-Ar biotite ages of ca. 21 Ma are also reported in the Filali micaschists immedi-
ately below the fault contact (Michard et al., 2006).

The Sebtide Complex crops out within four tectonic windows, at the core of roughly N-S trending antiformal
structures, from north to south (Kornprobst, 1974; Michard et al., 2006): Beni Mzala, Ceuta, Cabo Negro,
and Beni Bousera (Figure 2a). It is divided in the Upper Sebtides (Federico Units) and Lower Sebtides (Filali
and Beni Bousera units), showing distinct tectonometamorphic signature and characterized by subduc-
tion-type and Barrovian-type metamorphic signature, respectively (Bouybaouene et al., 1995, 1998; El Maz
& Guiraud, 2001; Goffé et al., 1996; Gueydan et al., 2015; Marrone et al., 2021; Michard et al., 1997, 2006;
Negro et al., 2006; Rodriguez-Ruiz et al., 2019; Ruiz Cruz et al., 2010; Vidal et al., 1999).
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The Lower Sebtides consist of felsic migmatitic granulites (kinzigites) forming the envelope of the Beni
Bousera peridotites (together making up the Beni Bousera units; Alvarez-Valero et al., 2014; Bouybaouene
et al., 1998; Haissen et al., 2004; Kornprobst, 1974; Melchiorre et al., 2017; Rossetti et al., 2010, 2020) passing
upward to gneisses and micaschists of the Filali units (E1 Maz & Guiraud, 2001; Gueydan et al., 2015; Ko-
rnprobst, 1974). A polyphase tectonometamorphic evolution is documented in the Lower Sebtides, and still
debated is the age of the climax of metamorphism, considered to be either Hercynian (Michard et al., 1997;
Bouybaouene et al., 1998; Melchiorre et al., 2017; Montel et al., 2000; Rossetti et al., 2010, 2020) or Alpine
(Early Miocene; Gueydan et al., 2015; Platt et al., 2003b) in age.

The Upper Sebtides (Federico units) are grouped into four low-grade tectonometamorphic units, composed
of tectonic slices that experienced exclusively Alpine metamorphism and different peak P-T conditions (D,/
M, event) in the Alpine paleosubduction channel; from the uppermost to the lowermost: the Tizgarine (TZ),
Boquete Anjera (BA), Beni Mzala-2 (BM2), and Beni Mzala-1 (BM1) units (Bouybaouene et al., 1995; Mich-
ard et al., 2006; Vidal et al., 1999). The Federico units are formed from the same lithostratigraphic sequence,
which includes Permo-Triassic reddish to grayish phyllites, passing to Triassic quartzites and dolostones
(Bouybaouene et al., 1995; Chalouan & Michard, 2004; Michard et al., 1997; Rodriguez-Ruiz et al., 2019;
Vidal et al., 1999; Zaghloul, 1994). Peak M; metamorphism (Bouybaouene et al., 1995; Goffé et al., 1996;
Michard et al., 2006; Vidal et al., 1999) varies from LP/LT (0.3-0.4 GPa and 300°C) for TZ (M; peak paragen-
esis: cookeite-pyrophyllite-phengite) to HP/LT, eclogite-facies (1.3-1.8 GPa, 450-550°C) conditions in BM
units (M; peak paragenesis: Mg-carpholite-Mg-chloritoid, talc-phengite-kyanite). Each tectonic unit is thus
characterized by its own peak P-T conditions, but overall exhibit nearly isothermal exhumation paths with
final cooling within the low greenschist facies conditions (Bouybaouene et al., 1995; Marrone et al., 2021;
Michard et al., 2006; Vidal et al., 1999).

The Dorsale Calcaire complex consists of tectonic slices made of Triassic-lower Jurassic shallow water car-
bonates, evolving upward into Cretaceous slope and basin deposits, with no evidence of Alpine metamor-
phic overprint (El Kadiri et al., 1992; Fallot, 1937; Maaté, 1996; Mattauer, 1960; Michard et al., 2006; Nold
et al., 1981). A main Aquitanian-late Burdigalian shortening stage is documented, responsible for the WSW
verging thrusting and tectonic imbrication onto the Flysch domain (Vitale et al., 2015; Zaghloul et al., 2005).

The available geochronological data for the Alpine HP/LT D,/M, event in the Rif are primarily derived from
the BM units of the Upper Sebtides, where K-Ar and “’Ar/*Ar clay-mica mixtures, muscovite and biotite
geochronology (Michard et al., 2006) and in situ “*Ar/*Ar white mica geochronology (Marrone et al., 2021),
provided minimum ages ranging from late Oligocene (ca. 29-25 Ma) to the early Miocene (ca. 24-20 Ma).
Early Miocene ages were also obtained from U-(Th)-Pb dating of allanite-rich epidotes and phosphates
(light REE accessory minerals) in the Federico units of the Upper Sebtides (Janots et al., 2006). Ductile struc-
tures in both Upper (Federico units) and the Lower (Filali micaschists) Sebtides exposed in the Beni Mzala
antiform (Figure 2a) are characterized by a pervasive post-D;/M;, S,-L, planolinear tectonic fabric, with a
dominant top-to-the-NNW (present coordinates) sense of shear (Gueydan et al., 2015; Marrone et al., 2021;
Michard et al., 2006; Negro et al., 2006), which has been referred to the late Oligocene syn-orogenic exhu-
mation of the deep-seated Federico units (Marrone et al., 2021). Similarly, Homonnay et al. (2018), based
on integrated U-(Th)-Pb monazite and “’Ar/** Ar muscovite geochronology in the Lower Sebtides exposed in
the Ceuta area (Figure 2a) proposed a minimum age of ca. 28 Ma for the syn-metamorphic Alpine thrusting
and an Early Miocene (ca. 21 Ma) age for the postorogenic crustal thinning.

The late-orogenic exhumation of the Alboran Domain is primarily constrained by low-temperature ther-
mochronology as derived from the Lower Sebtides, where zircon and apatite fission track data provided
early Miocene ages, ranging from ~20 to ~15 Ma (Azdimousa et al., 2014). The apatite (U-Th)/He ther-
mochronology from the same group of units yielded similar Aquitanian-Burdigalian ages, documenting
rapid cooling and exhumation in the upper crust for the Alboran Domain during the early middle Miocene
(Miinch et al., 2021; Romagny et al., 2014). New “’Ar/*Ar illite Burdigalian-Serravallian (ca. 19-12 Ma) ages
from extensional fault gouges cutting across the Lower Sebtides units of the Ceuta area (Figure 2a) were
reported recently, constraining the timing of the Neogene brittle extensional tectonics in the hinterland of
the Betic-Rif orogen (Miinch et al., 2021).
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I;lt)t)j‘ :he Studied Samples, With Geographical Location and Analytical Method Adopted

Location Analytical method

“OAr/*Ar

Sample Unit Rock type Latitude (°N) Longitude (°W) Mineralogy EMPA XRD step-heating
S17-01 Tizgarine Unit  Qz-Cb vein 35°24'22" 5°9’30" Qz-Cb-Ms-Chl-Prl X
S17-02  Tizgarine Unit  Fine-grained metapelite 35°23'36" 5°9'10” Wm-Prl-Chl-Qz-Hem X X X
S17-04 Tizgarine Unit  Coarse-grained metapelite 35°23'36" 5°9'10” ‘Wm-Prl-Chl-Qz-Hem X X
S17-05  Tizgarine Unit Coarse-grained metapelite 35°24'22" 5°930” ‘Wm-Prl-Chl-Qz-Hem X X
S17-21 Zaouia Fault Fault gouge 35°23'50" 5°1'40" Qz-Ms-Chl-Ab-KIn-Gp-Cal + Py X
S17-21A  Zaouia Fault Fault gouge 35°23'50"” 5°1'40" Qz-Ms-Chl-Ab-KIn + Gp X
S17-21B  Zaouia Fault Fault gouge 35°23'50" 5°1'40" Qz-Ms-Chl-Ab-KIn-Gp-Cal-Py X X
S17-22  Zaouia Fault Fault gouge 35°23'50"” 5°1'40" Qz-Ms-Chl-Ab-KIn-Cal X

Note. (*)Mineral abbreviations after Whitney and Evans (2010); Wm: white mica.

3. Materials and Methods

Our study was conceived to constrain the timing and tectonic structures responsible for the Alpine orogenic
and postorogenic evolution of the Alboran Domain in the Rif. To achieve this goal, we focused on the NW
flank of the Beni Bousera antiform, where the TZ unit of the Upper Sebtides is thrust over the Dorsale
Calcaire and is in tectonic contact with the overlying Ghomaride nappe stack along the Zaouia Fault, part
of the extensional detachment systems bounding the base of the Ghomaride Complex (Figures 2a and 2b).

Although the Alpine metamorphism in TZ unit is of LP/LT type, as indicated by the assemblage Prl-Sud-
Cook and the absence of (Fe-Mg)-carpholite (P < 0.6 GPa and T ~ 300°C; Bouybaouene et al., 1995; Goffé
et al., 1996; Jolivet et al., 1998; Vidal & Goffé, 1991; Vidal et al., 1992, 1999), these rocks were deformed un-
der high P/T gradient conditions (~10°C/km). The TZ unit appears to have escaped the early Miocene tec-
tonothermal event that overprinted and reset geochronometers in deeper units (see Homonnay et al., 2018;
Marrone et al., 2021; Michard et al., 2006; Rossetti et al., 2010, 2020). This unit likely experienced tempera-
tures lower than the closure temperature of white micas for argon diffusion (mainly in the range 350-450°C
in most metamorphic contexts depending on grain size, cooling rate, and pressure; Harrison et al., 2009),
therefore potentially preserving white mica crystallization ages. Therefore, the TZ unit is used as a proxy to
refine the timing and deformation regimes of the Alpine orogeny, whilst the tectonic structure and age of
the Zaouia extensional fault serves as a proxy to refine timing of the brittle Alpine postorogenic tectonics
in the Alboran region.

Field work was carried out to define the structural architecture of the study area (Figure 2b). Selected rock
samples, representative of the different textures recognized in the field (see Table 1 for the sample location
and description), were chosen for petrographical investigation through optical, scanning electron micros-
copy (SEM), and electron microprobe analysis (EMPA). SEM and X-ray powder diffraction (XRD) analyses
were combined to identify and quantify mineral phases in the samples and to determine the white mica
polytypes (e.g., Dalla Torre et al., 1994). Step-heating “’Ar/*Ar geochronology on different mica grain-size
fractions (<0.2, 0.2-0.5, 0.5-2, >2 um) is used to constrain the timing of deformation in the studied samples.

Details on the analytical methods and protocols adopted in this study are provided in Text S1-S5 in support-
ing information. Mineral abbreviations are after Whitney and Evans (2010), complemented with Wm for
white mica and Cook for cookeite (lithium-bearing chlorite).

4. Results

The TZ unit is widely exposed on the western limb of the Beni Bousera antiform (Figure 2a), where the
Upper Sebtides define a verticalized zone of tectonic units located between the Dorsale Calcaire units to
the west and the Filali micaschists of the Lower Sebtides to the east. This assembly of metamorphic rocks
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Figure 3. Outcrop-scale structural setting of the Tizgarine Unit. (a) S, foliation associated with isoclinal F; folds and
Qz-Cb V; veins. Distributed S-C tectonites point to top-to-the-SW sense of shear (exposure parallel to L; and normal
to S;, X-Z section of the D, finite strain ellipsoid). (b) Primary (S,) foliation preserved within the D, shear lithons. (c)
Stereoplot (lower hemisphere equal-area projection) showing the attitude of the collected D, structural elements. The
red arrows indicate the tectonic sense of transport (movement of the hanging wall block) as deduced in S-C tectonites.
(d, e) Detail of the kinematic criteria showing top-to-the-SW shearing in S-C tectonites. F; folds and V; are sheared
along top-to-the-SW shear bands. (f) Late, subvertical, NW-SE striking F, kink bands deforming the S, foliation.

is cut by a sub-horizontal brittle extensional fault (Zaouia Fault), bounding the contact with the overlying
Ghomaride nappe stack (Figures 2b and 2c).

4.1. Tizgarine Unit: Deformation Fabrics and Studied Samples

The Tizgarine unit consists of alternating fine-grained and coarse-grained metapelite layers, interbedded
with quartzites and conglomerates (see also Rodriguez-Ruiz et al., 2019). The unit is tectonically superim-
posed onto the Dorsale Calcaire units along an east-dipping tectonic contact (Figure 2c). At the meso-scale,
the structural fabric of the Tizgarine unit consists of a pervasive, syn-metamorphic fabric (D,/M,), with
S; and S;-L; tectonites and associated V; syn-metamorphic Qz-Cb vein segregations. The veins are usually
deformed, folded and transposed along the S; foliation (Figure 3a). Despite usually transposed by the D,
deformation, the primary sedimentary layering (S,) can be recognized in the field (Figures 3a and 3b).

The S, foliation consists of a disjunctive cleavage striking NW-SE, dipping at high-angle toward the NE (50—
70°) and forming the axial surface of isoclinal F; folds with nearly horizontal hinge lines. The L, stretching
lineations are WSW-ENE trending (Figure 3c) and composed of Qz-Wm + Chl + Cb associations. Distrib-
uted zones (up to 50 cm thick) of shear strain localization are often observed, with development of S-C
tectonites defined by centimeter-to-decimeter spaced C shear planes. On exposures parallel to L; and or-
thogonal to S; (X-Z section of the finite strain ellipsoid), the S-C fabric and the F, fold vergence consistently
point to a top-to-the-SSW sense of shear (Figures 3a, 3d, and 3e). The composite D,/M, fabric is further
deformed by meso-scale upright F, folds and kink bands, with axial surfaces (S,) striking subparallel to the
S, foliation (Figure 3f).
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Figure 4. Thin section scan images of representative samples of the Tizgarine unit. (a) Qz-Cb V; (vein; sample S17-01), with indication of the metamorphic
selvage shown in Figures 5a and 5b. (b) Oriented metapelite sample (S17-02), showing a continuous S, foliation wrapping around Cb-Wm-Chl-Hem concretions
(see Figures 5c and 5d). The sense of shear as deduced by oblique foliation and asymmetric pressure shadows indicate top-to-the-SW sense of shear (exposure
parallel to L; and normal to S,). (c) Coarse-grained metapelite sample (S17-04) showing a disjunctive foliation (S;), with indication of the areas investigated
through back scattered electron (BSE) imaging. (d) Coarse-grained metapelite sample (S17-05) showing the hinge zone of a F, fold (see Figure 3 for location),
and incipient development of a crenulation cleavage affecting the S, and S, foliations (see Figures 5g and 5h).

Four samples (S17-01, V; vein and selvage, S17-02, S17-04, and S17-05; Table 1 and Figures 3a and 4) were
collected to investigate the detrital and syn-metamorphic mineralogy (through SEM, XRD, and EMPA) and
microtexture. The M; syn-metamorphic assemblage as observed in the selvages surrounding the V; veins
(Figure 4a) is composed of Wm-Prl-Chl-Qz-Hem (see also Bouybaouene et al., 1995; Goffé et al., 1996;
Rodriguez-Ruiz et al., 2019). Significantly, Cook and Sud chlorites (see below) coexist with Wm and Prl in
the paragenesis (Figures 5a and 5b).

Sample S17-02 is a metapelite (Figure 4b), collected within a D, top-to-the-WSW shear band. At the thin
section scale, in section cuts orthogonal to S; and parallel to L,, the sample shows a continuous S, folia-
tion, wrapping around Cb-Wm-Chl-Hem concretions (Figures 5c and 5d). Asymmetric pressure shadows
surrounding the concretions indicate top-to-the-SW sense of shear (Figure 4b). Samples S17-04 and S17-
05 are coarse-grained metapelites (Figures 4c and 4d). At the thin section scale, the typical microfabric
consists of a disjunctive slaty cleavage (Figures 5e, 5g, and 5h), where the phyllosilicate-rich (M-domains)
and quartz-feldspar (QF-domains) layering can be recognized. The M-domains are defined by layers (up to
2-10 pm thick) of Fe-oxides (Hem) and newly formed (syn-tectonic) metamorphic Wm (here after referred
to as Wm,,) + Prl + Chl, wrapping around (up to 500 pum in size) microlithons dominantly composed of
lozenge-shaped QF-domains (Figure 5g), with subordinate carbonate and Wm (detrital Wm, referred to as
Wmy) £ Rt, Ap, Zrn, Tur. Quartz grains are typically flattened by intracrystalline deformation, with tails typ-
ically formed by Wm,,, + Chl aggregates. Notably, large Wmy grains are strained along the S, foliation, with
fine-grained Wm,, crystallizing in the low strain zones (Figures 5e and 5f). A spaced crenulation cleavage
is usually observed at the F, hinge zones, folding the composite Sy/S; foliation (Figures 4d and 5h). The Qz
microfabric, as reconstructed from the deformed V, vein (sample S17-01; Figure 4a), is dominated by ductile
deformation textures, as indicated by sweeping undulose extinction, and with the recovery process indicat-
ed by deformation lamellae and subgrain formation. Evidence of dynamic recrystallization is documented
by incipient bulging in the higher strained areas (Figure 6).
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Figure 5. Microtextures of Tizgarine unit as revealed by BSE imaging.

(a, b) Metamorphic selvages around the V; veins showing the M,
metamorphic assemblage (Sample S17-01). (c) Detail of the Cb-Wm-Chl-
Hem concretion in sample S17-02. (d) S, foliation defined by syn-kinematic
Wm and Prl (Sample S17-02). (e) Detrital primary structure made of quartz
(Qz) and white mica (Wmy) grains enveloped by fine-grained syn-tectonic
fine-grained white mica (Wmy,)-hematite (Hem) aggregates (Sample
S17-04). (f) Detrital white mica fish preserved within the S, foliation
(Sample S17-04). (g) Disjunctive, slaty S; foliation, with Wm,,-rich domains
wrapping around flatted Qz (Sample S17-05). (f) Superimposed foliation
caused by D, crenulation cleavage affecting the composite S,/S,; fabric
(Sample S17-05). Mineral abbreviations after Whitney and Evans (2010).

Sample S17-02 was selected to constrain the age of the D;/M; Alpine
event through “’Ar/*Ar white mica geochronology, due to the penetra-
tive character of the D,/M, fabric and a minimal Wmy4 component.

4.2. The Zaouia Fault: Structural Architecture and Studied
Samples

At Cape Zaouia (Figure 2a), a shallowly (30°) NW-dipping, up to
3-m-thick fault core separates the Ghomaride units at the fault hanging
wall from the Filali micaschists of the Lower Sebtides at the footwall,
with the complete tectonic elision of the Upper Sebtides (Figure 7a). The
fault core consists of a gouge made of unconsolidated phyllosilicate-rich
fine-grained material, pervasively cut by synthetic shear surfaces (Fig-
ures 7b and 7c). Fault kinematics documents a nearly pure dip-slip (ex-
tensional) motion (pitch angle of slickenlines: 90-100°; Figure 7d), in-
dicating a general top-to-the-NW sense of shear, as deduced from drag
pattern of foliations and synthetic Riedel shears within the fault gouge
(Figure 7e). At the fault hanging wall, NE-SW synthetic and antithetic
extensional fault systems are observed, accommodating a general NW-SE
directed maximum extension direction. The fault rocks are dominated by
foliated cataclasites, locally associated with dm-thick discontinuous fault
gouges, wrapping around fault-bounded shear lenses (Figure 7f).

Four samples from the fault core (fault gouge) of the Zaouia Fault were
collected for XRD analysis (S17-21, S17-21A, S17-21B, and S17-22; Ta-
ble 1) to define the gouge mineralogy, and one representative sample
(S17-21B) was used to constrain the age of faulting through “°Ar/*Ar
geochronology.

4.3. XRD Analysis

The whole-rock XRD results for both the Tizgarine (S17-02, S17-04, and
S17-05) and Zaouia Fault gouge (S17-21, S17-21A, S17-21B, and S17-22)
samples are shown in Table 2.

The Tizgarine metapelite samples are mainly composed of Qz (33-65
wt.%) and Wm (Ms; 13-17 wt.%), with variable Prl (7-32 wt.%) and subor-
dinate amounts of Hem (5-10 wt.%) and Chl (1-9 wt.%), Rt (up to 2 wt.%)
and Kln (up to 1 wt.%). Carbonate minerals such as Dol (4 wt.%) and Cal
(3 wt.%) have been observed in sample S17-05.

The Zaouia Fault gouge shows a mineralogical assemblage made up of
Qz (10-22 wt.%), Wm (Ms; 37-45 wt.%), Chl (20-22 wt.%), and Ab (7-21
wt.%) as main mineral phases, with minor amounts of Kln (<4 wt.%) and

Cal (<1 wt.%). Occasionally, gypsum is observed in sample S17-21B (18 wt.%), whereas Cal reaches amounts

up to 7 wt.% in sample S17-22.

4.4. White Mica Polytypes

In order to characterize Wm polytypes, randomly oriented specimens for the fractions 50-2, 2-0.5, 0.5-
0.2 um of sample S17-02 (Tizgarine unit), and 2-0.5, 0.5-0.2, and <0.2 pum of sample S17-21B (Zaouia Fault
gouge) were prepared. Results are shown in Table 3 and Figure 8. The reflection peaks at 3.88, 3.73, 3.49,
3.20, 2.99, 2.86, and 2.79 A correspond to the 2M; Wm polytype. The occurrence of 1M Wm polytype was
confirmed by the reflection peaks at 4.12, 3.68, and 3.07 A (Figure 8). The proportion of 2M; and 1M poly-
types was calculated by using the Rietveld refinement method and is presented in Table 3.
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Figure 6. (a-d) Qz microfabric of sample S17-01 (Qz-Cb vein), showing evidence of ductile creep as indicated
by sweeping undulose extinction, deformation lamellae and subgrain (SG) formation (crossed polars). Dynamic
recrystallization textures are indicated by incipient bulging recrystallization (BLG).

The results indicate that both polytypes are present in all the fractions of the Tizgarine unit sample (S17-02).
The 2M,/1M ratio increases with decreasing grain size, from 40% to 65%. In the Zaouia Fault gouge sample
(S17-21B), the 2M, is the almost unique Wm polytype (more than 90 wt.%) in the coarsest fraction. However,
the 2M; and 1M polytypes are present in broadly the same proportion in the <0.5 um fractions.

4.5. Mineral Chemistry

Mineral compositions of the metapelite samples from the Tizgarine unit and calculated mineral formulae
are presented in Table S1.

Detrital muscovite Wmgy (n = 17) is characterized by SiO, ranging 45.90-48.22 wt.%, corresponding to 3.05—
3.17 Si atoms per formula unit (apfu). The related (Fe**4+Mg) ranges from 0.03 to 0.23 apfu. Calculated
portions of end-members are Xy = 0.56-0.80, Xce = 0.06-0.19, Xpy = 0.00-0.16, Xp, = 0.05-0.17 (Figure 9).

The syn-metamorphic Wm,, population (n = 32) shows SiO, ranging 46.27-49.22 wt.%, resulting in 3.11-
3.24 Si apfu. (Fe2++Mg) is 0.04-0.21 apfu. End-members: Xy;s = 0.44-0.71, Xce; = 0.12-0.27, Xpy = 0.03-0.27,
Xpg = 0.03-0.15 (Figure 9). The considerable scatter can be attributed to mixtures of detrital and metamor-
phic white micas. However, it is evident from Figure 9 that Wmy and Wm,,, form two distinct groups, with
the detrital group (Si = 3.10 apfu in average) being clearly less silicic than the metamorphically formed
phengite (Si = 3.17 apfu in average).

Detected chlorite group minerals consist of (i) trioctahedral chlorite (Chl), (ii) sudoite (Sud), and (iii)
cookeite (Cook). Chl (n = 16) is intermediate chamosite-clinochlore with a broad range of composition. Si
ranges between 2.53 and 2.80 apfu, and Xy, from 0.22 to 0.58 (with Xy, = [Mg/(Mg + Fe®")] atomic ratio).
The thermometry model of Cathelineau and Nieva (1985), based on the Al™ content, indicates tempera-
tures in the range 272-329 + 15°C (average 306°C, n = 16). Sud (n = 8) contains slightly more than 3.0 Si
apfu, and is relatively rich in Fe, with calculated Xy, of 0.83-0.86. The Cook composition (n = 5) is compa-
rable to that reported from the Alpujarride-Sebtide Complex investigated by Goffé et al. (1996). Noteworthy
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Figure 7. Outcrop-scale structural setting of the Zaouia Fault. (a) The Zaouia Fault as exposed along the road cut of the National Road 16. The road cut is
trending nearly orthogonal to the slickenlines found on the fault surfaces. A discontinuous, up to 3-m-thick fault gouge is observed. The fault controls the
contact between the Filali micaschists (Lower Sebtides) at the footwall and the Ghomaride Complex at the hanging wall, respectively. A set of synthetic, NW-
dipping extensional fault systems are observed at the fault hanging wall. (b) Detail of the fault gouge. (c) SE-dipping antithetic fault splays at the fault hanging
wall dying out along the fault gouge. (d) Foliated fault gouge at the base of the fault hanging wall. C’-type shear bands document top-to-the-NW shearing. (e)
Stereoplot (lower hemisphere equal-area projection) showing the attitude of the collected structural elements. The fault kinematic is nearly pure extensional
dip-slip. (f) Synthetic fault strands at the fault hanging wall. Up to dm-thick fault gouge decorated the slip zone.

is the relatively high content of FeO, 0.63-0.86 wt.% and MgO 0.45-0.95 wt.%, indicating minor solubility
toward the Sud end-member.

Prl composition is always close to the end-member. Minor amounts of Na and K can be related to the pres-
ence of finely white mica intergrowth not resolvable with the EMPA (e.g., Martinez et al., 2010).

Table 2
XRD Whole-Rock Composition of the Tizgarine Unit and the Zaouia Fault Gouge

Mineral mode (wt.%)

Sample Qz Ms Prl Hem Chl Kln Dol Cal Rt Ab Py Gp
S17-02 33 17 32 10 5 1 = = 2 = = =
S17-04 64 17 7 10 1 - - - 1 - - -
S17-05 65 13 - 5 9 - 4 3 1 - - -
S17-21 22 37 = = 22 3 = 1 = 14 Tr 1
S17-21A 10 45 - - 22 2 - - - 21 - Tr
S17-21B 13 37 - - 20 3 - 1 - 7 1 18
S17-22 14 42 - - 21 4 - 7 - 12 - -

Note. (*)Mineral abbreviations after Whitney and Evans (2010).
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Table 3
Whole-Rock Composition of Various Grain-Size Fractions of Samples S17-02 (Tizgarine Unit) and S17-21B (Zaouia
Fault)

Mineral proportion (wt.%)

Sample Fraction (um) M 2M; Chl Other minerals Wm (wWt.%) 1M (Wt.%) (\fllt\fl‘%;)
S17-02 2-50 39 25 10 26 64 61 39
0.5-2 52 43 1 5 95 55 45
0.2-0.5 34 61 2 2 96 36 64
S17-21B 0.5-2 3 48 16 36 51 6 94
0.2-0.5 31 38 15 18 69 45 55
<0.2 17 20 27 38 37 46 54

4.6. “Ar/*Ar Step-Heating Geochronology

For the TZ, step-heating experiments were carried out on a bulk Wm separate and on the four fractions
(<0.2,0.2-0.5, 0.5-2, and >2-50 um) of sample S17-02 (see Figures 3 and 4b for the outcrop conditions and
microtextural characteristics; Tables 2-3 for the mineralogical assemblage). The same grain-size fractions
were used to date movement along the Zaouia Fault using the fault gouge sample S17-21B (see Figure 7 for
the outcrop conditions; Tables 2-3 for the constituent mineralogy). The age spectra of the bulk and fractions
of TZ are reported in Figure 10 and the age spectra of the fractions of the Zaouia Fault are shown in Fig-
ures 11a, respectively. The Ar-Ar data derived from the Wm fractions have been all corrected for **Ar recoil
loss as obtained through vacuum encapsulation experiments (see Text S4) and a summary of the retention
(RAs), total gas (TGAs) and maximum ages is presented in Table 4. The complete data set is presented in
Tables S2 and S3.

4.6.1. Tizgarine Unit (Sample S17-02)

The bulk Wm separates show discordant age spectra with an overall staircase shape and older ages for the
bulk-grained and coarse-grained fractions compared to the finest fraction (<0.2 pm). Apparent ages for the
bulk sample (Figure 10a) increase from a minimum value of 55.9 + 0.2 Ma (1o error) for 30% of the released
¥ Ar to a maximum value of 265.2 + 1.9 Ma obtained at the end of degassing. A TGAs of 117.9 # 3.0 Ma has
been calculated with all steps (Tables S2 and 4).

Age spectra of the four grain-size fractions are shown in Figure 10b. For each spectrum, the first step with
a zero age represents the amount of *Ar lost by recoil during neutron irradiation and measured before
the step-heating degassing of the sample. As usually observed in fine-grained samples (e.g., Abd Elmola
et al., 2018; Clauer, 2013; Dong et al., 1995; Fitz-Diaz et al., 2016; van der Pluijm et al., 2001), the percentage
of recoiled *Ar increases with decreasing grain size, from about 4.1% for the fraction 2-50 um to 21.8% for
the fraction <0.2 um (Table 4). The shape of the age spectra is quite different, with the larger grain sizes
showing the greatest age discrepancy between the beginning and end of degassing. Thus, the coarsest frac-
tion (2-50 um) shows apparent ages that increase steadily from about 30 Ma to 107 Ma, never reaching a
plateau. In contrast, the finest fraction produces a relatively flat age pattern for about 45% of final degassing
of the sample, with ages in the range 41-47 Ma. For the four fractions, TGAs are between 64.3 + 0.1 Ma (20
error) and 29.8 + 0.2 Ma, with RAs between 67.0 + 0.1 Ma and 38.0 + 0.3 Ma. This last value is provided
by the two finest fractions that contain the highest proportion of the 2M; mica polytype. All the analyzed
fractions and the bulk sample show small and variable amounts of *’Ar, probably due to contamination by
calcite undetected by XRD analysis (Table 2). The amount of *Ar formed by neutron reaction on chlorine
is also variable (Table S2) but tends to increase in the 2M; rich finest fractions (<0.5 um), suggesting more
interaction of the tiny micas with fluids at the time of their (re)crystallisation compared to the coarser micas
that remained unaffected by *Ar(c;, contamination.

4.6.2. The Zaouia Fault Gouge (Sample S17-21B)

The four fractions display age spectra that strongly vary with grain size and do not resemble those derived
from the Tizgarine sample, except for the finest fraction that provides relatively consistent ages at the end
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Figure 8. X-ray diffraction patterns for randomly oriented mounts for the different grain-size fractions and Wm
polytype characterization. (a) Sample S17-02. (b) Sample S17-21B.

of argon degassing. The three other fractions (>0.2 um) have hump-shaped age spectra, with maximum
ages that increase toward the finest fraction (Figures 11a). Significantly, the coarsest fraction produced a
very discordant age spectrum, with two successive “bumps” that may reflect complex recoil artifacts in a
sample consisting mainly of quartz, chlorite, mica, and minor amount of kaolinite and gypsum (Table 2).
It is worth noting, however, that the XRD data show an increase of the 1M mica polytype relative to 2M;
toward the finest fractions (Table 4). The amount of *’Ar recoil loss is important and increases from 12.0%
to 32.6% with decreasing grain size. TGAs show moderate dispersion and decrease with grain size from
21.0 + 0.1 Ma to 18.4 + 0.1 Ma (Figure 11a and Table 4). The RAs are inversely correlated with the grain
size decrease and range from 27.3 + 0.2 to 23.8 + 0.1 Ma. The amount of *’Ar formed by neutron reaction
on calcium is variable but tends to be higher in the coarse fractions, probably due to the presence of gypsum
in the sample (Table 2). The different fractions show a low content of *Ar(c) that is mainly released during
the first step-heating increments (Table S3).

MARRONE ET AL.

14 of 28



A7
ra\%“1%
ADVANCING EARTH
AND SPACE SCIENCE

Tectonics 10.1029/2021TC006707

3.4

Pg Ms

O s17-01
O S17-02
A\ S17-04
> S17-05

Wm:
[ Detrital (Wm,)
Il Metamorphic (Wm, )

Al + Fe** (apfu)

Mean values

33 34 35

Si (apfu) Cel Prl

Figure 9. White mica compositions. (a) Si versus Alyor + Fe’™ diagram and (b) Ternary compositional diagrams, discriminating the analyzed Wm, and Wm,,

populations.

5. Discussion

The intense tectonometamorphic event associated with the ductile-to-brittle exhumation stage across the
whole Alboran Domain of the Betic-Rif orogen resulted in the widespread transposition and overprinting
of the early Alpine D;/M; fabric (see e.g., Williams & Platt, 2018). Indeed, the existing literature describes
the preservation of the Alpine S, foliation only in boudins or lens-shaped microlithons preserved within
the penetrative (main) S, retrogressive (exhumation-related) foliation of the Alpujarride-Sebtide complex
(Azafidn et al., 1998; Azafion & Crespo-Blanc, 2000; Balanya et al., 1997; Marrone et al.,2021; Michard
et al., 2006; Platt et al., 2005; Rossetti et al., 2005; Simancas & Campos, 1993; Tubia et al., 1997; Williams &
Platt, 2018).

The structural and petrographical investigations presented in this study indicate that the TZ unit of the
Upper Sebtides in the Alboran Domain of the Rif belt experienced a first phase (D;) Alpine deformation,
syn-kinematic relative to low-grade M; metamorphism. The metamorphic peak was equilibrated at LP/
LT metamorphic conditions (P < 0.6 GPa and T ~ 300°C; Bouybaouene et al., 1995; Goffé et al., 1996;
Jolivet et al., 1998; Vidal & Goffé, 1991; Vidal et al., 1992, 1999), as further constrained by the Chl-ther-
mometry. The Qz microfabric, documenting evidence of intracrystalline deformation and bulging recrys-
tallization textures indicative of low-grade metamorphic conditions (below 400°C; Law, 2014; Passchier &
Trouw, 2010; Stipp et al., 2002), is compatible with the thermal environment as derived from the M; meta-
morphic mineral paragenesis.

The D, fabric developed in response to a general SW-NE directed shortening regime, which evolved from
ductile-to-brittle deformation during progressive top-to-the-SW shearing (present coordinates; Figures 2b
and 3), compatible with overthrusting of the Federico units (Upper Sebtides) onto the Dorsale Calcaire
(Figures 2b and 2c). Southwestward verging thrusting thus documents an Africa-directed tectonic vergence
during orogenic shortening and nappe stacking in the hinterland domain of the Betic-Rif orogen. Dating
the development of the syn-shearing D;/M; tectonometamorphic fabric in the TZ unit (sample S17-02) thus
provides the first opportunity to directly constrain the timing of the Alpine crustal thickening event in the
Alboran Domain.

Moreover, the structural and temporal constraints derived from the study of the Zaouia Fault, one of the
major extensional detachment fault zones that controls the brittle assembly of the Ghomaride Complex
onto the Alpine metamorphic nappe stack (Chalouan et al., 2008; Chalouan & Michard, 2004; Michard
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Figure 10. “°Ar/*Ar step-heating results for sample S17-02. (a) Age
spectra for the bulk Wm. (b) Age spectra for the different grain-size

fractions.

et al., 2006, Figure 2) can be used to refine the timing of activation of the
postorogenic extensional detachment tectonics in the Alboran Domain
of the Rif chain.

5.1. Age of the Alpine D,/M, Orogenic Event

The discordant age spectrum provided by the bulk Wm separates from
sample S17-02 (Figure 10a) suggests that at least two different age compo-
nents contribute to the argon release, respectively, of Variscan and Alpine
age. These two ages end-members are constrained by the maximum and
minimum ages recorded by the age spectrum at 265 Ma and 56 Ma, re-
spectively (Figure 10a). This evidence indicates that the dated metapelite
sample, for which potassic Wm is the only source of radiogenic argon,
contains different argon reservoirs with a large age range, which renders
their interpretation challenging. Another complication comes from the
fact that the micas formed at the time of D;/M; shearing have a small
grain size, which requires the use of adapted separation techniques, min-
eral characterization and vacuum encapsulation of the samples to moni-
tor the amount of *’Ar recoil loss in the different fractions.

The preservation of a detrital Variscan muscovite (Wmy) in the Per-
mo-Triassic metapelites of the Upper Sebtides is consistent with the poly-
phase evolution of the Alboran Domain and evidence of the orogenic
Variscan belt on the margins of the western Mediterranean (e.g., Acos-
ta-Vigil et al., 2014; Alvarez-Valero et al., 2014; Bouybaouene et al., 1998;
Gueydan et al., 2015; Michard et al., 1997; Montel et al., 2000; Rossetti
et al., 2013, 2020; Ruiz Cruz & Sanz de Galdeano, 2014; Sdnchez-Navas
et al., 2014, 2017; Zeck & Williams, 2001). In the Mediterranean region,
similar exposures of Permo-Triassic continental-derived siliciclastic
deposits that make up the TZ unit and, more in general the Alpujar-
ride-Sebtide Complex, are widespread in Europe and Mediterranean re-
gion, formed from dismantling of the Variscan orogen during the onset
of the Tethyan ocean rifting (Aldinucci et al., 2008; Diez et al., 2005; Linol
et al., 2009; Lépez-Gémez & Arche, 1993). In the Betics and Pyrenees,
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Figure 11. (a) *’Ar/*Ar step-heating results for sample S17-21B, showing the age spectra for the different grain-size fractions. (b) %2M; versus age plot.
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:er:;:w of the *’Ar/* Ar Data and Wim Polytype Proportions for Samples S17-02 and S17-21B
Sample Grain size (um) % Wm 2M;/IM RA(Ma) TGA(Ma) Maximum age(Ma) *’Arrecoil (%) ICT(nm) XCA (Ma)
S17-02 (Tizgarine Unit) Bulk 17 - - 1179 £ 1.5 268.5 + 2.0 - -
50-2 19 39/61 67.1 £0.1 64.3 £ 0.1 106.8 £+ 0.6 4.07 -
2-0.5 37 45/55 47.4 £ 0.1 44.5 £ 0.1 69.9 £ 0.5 6.14 -
0.5-0.2 50 64/36 384 +0.1 33.8+0.1 54.6 £ 0.5 12.14 22-26 36.8 £0.2
<0.2 >60 67/33 38.0 £ 0.3 29.8 £ 0.2 47.3 £ 0.6 21.78 8-15 344+1.1
S17-21B (Zaouia Fault) 50-2 - - 23.8+0.1 21.0+0.1 26.9 £ 0.1 11.95 -
2-0.5 29 94/6 254 +0.2 20.2+0.3 29.7+0.1 21.69 40-50 252 +0.1
0.5-0.2 24 55/45 26.5+0.1 19.6 £ 0.1 31.2+0.2 26.14 30-40 25.7+0.1
<0.2 25 54/46 27.3+£0.2 18.4 £ 0.1 350+ 1.5 32.59 10-25 25.6 £ 0.3

“Ar/*Ar dating of coarse micas in these metapelites provided age spectra similar to that obtained on the
bulk metapelite of Tizgarine (Abd Elmola et al., 2018), thus confirming the large-scale depositional envi-
ronment of these Permo-Triassic rocks.

The minimum age of 56 Ma given by the first heating step of the bulk Wm concentrate is interpreted as a
maximum age limit for the age of the Alpine D;/M; event. The analysis of the age spectra of the four Wm
fractions <50 pm, when combined with the XRD results, provides better constraints on this event. With
decreasing grain size, these fractions show a constant proportion of pyrophyllite (30-36%), a decreasing
amount of quartz (32-3%), an increasing content of white mica (19-60%) and an enrichment of 2M; poly-
type relative to 1M polytype (Tables 2-4). The presence of the latter is probably related to the diagenetic
evolution of the Permo-Triassic pelites before their Alpine metamorphic recrystallization. In the coarse
fraction 2-50 um, the staircase pattern of the age spectrum to a maximum value of ~107 Ma is interpreted
to reflect the coexistence of partially reset detrital Variscan muscovite (2M,), of diagenetic mica (1M) and of
newly formed syn-kinematic mica (2M,). Therefore, the late Cretaceous-Paleocene “’Ar/*Ar RAs and TGAs
(64-67 Ma) are considered to be mixed ages.

The fraction 0.5-2 pm is slightly enriched in 2M; polytype and provides younger and broadly similar
RAs and TGAs that fall in the Middle Eocene (44-47 Ma). This suggests that the mechanisms of dissolu-
tion-recrystallization during the D,;/M; metamorphic event at ~300°C were more efficient for this smaller
size Wm population, leading to a significant isotopic resetting of the prekinematic Wm. Whether or not
this resetting is complete will be further examined in the light of the data provided by the two smallest
grain-size fractions of 0.5-0.2 um and <0.2 pm. These fractions display the highest proportion of Wm and
2M; polytype relative to 1M. They show similar age spectra that mainly differ by the amount of *Ar recoil
loss and both contain a small amount of **Arc, that is lacking in the coarser fractions. This indicates that
the fine-grained Wm grains were in equilibrium with the surrounding intergranular (syn-tectonic) fluid(s)
when they (re)crystallized and suggests that the <0.5 um Wmy may have behaved as open isotopic systems
during the D;/M, tectonometamorphic event. This is consistent with the fact that the peak metamorphic
temperature reached during shearing was high enough to induce a complete resetting of Wm by volume
diffusion, considering the diffusion parameters of Harrison et al. (2009), compatible with those of Kirschner
et al. (1996) for fine-grained Wm. A modeling of the argon behavior based on these diffusion data (Ehlers
et al., 2005) shows that reheating at 300°C for 5 Ma can induce a total loss of radiogenic argon in the Wmy
of the Tizgarine unit with a grain size < 0.5 um. Certainly this loss was enhanced by the dissolution-recrys-
tallization processes that accompanied reheating during shearing (Villa et al., 2014).

Both RAs of these two fined-grained fractions are 38 + 0.2 Ma (Table 4), with TGAs of 33.8 = 0.1 Ma and
29.8 + 0.2 Ma, respectively. Assuming that prekinematic (detrital) white mica experienced full resetting and
that a single age population made of fully reset and newly formed white mica (Wm,,) is present in these
fractions, the age variations can be viewed as recording a grain-size effect on the retention of radiogenic ar-
gon and on ¥Ar recoil loss in the Wm crystallites. Since the recoil distance for the neutron reaction produc-
ing *Ar is ~0.162 um (Onstott et al., 1995), *Ar recoil loss can be expected to be significant in the two finer
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grain-size fractions and higher in the fraction <0.2 um which is in agreement with our data (Table 4). The
amount of *Ar recoil depends not only on the grain size but also on the distribution of the K atoms in the
TOT structure of the crystallites and on their thickness (see Fitz-Diaz et al., 2016 for a review). Moreover,
it is likely that radiogenic argon produced by the natural decay of ** K in poorly retentive sites of the crys-
tallites (surfaces, vacancies, dislocations) may have escaped in the intergranular space. Consequently, these
two competing processes, leading to younger ages for fine-grained white micas complicate interpretation of
RAS and TGAs. In some circumstances, TGAs fit regional geological constraints; in others, RAs appear to
give a better estimate of the geological event to be dated.

Fitz-Diaz et al. (2016) proposed a method of correction of TGAs based on XRD data to consider the effect of
illite crystallite thickness (ICT) on argon retention. This method can be applied to anchizonal-epizonal mi-
cas with thickness values between 10 and 50 nm, which is the range observed in the Wm fractions <0.5 um
of Tizgarine unit, showing a ratio length/thickness of the crystallites close to 10 (SEM and XRD measure-
ments; see Figure S1). The ICTs calculated on oriented fractions 0.5-0.2 and <0.2 um provide values of 22—
26 nm and 8-15 nm, respectively (Table 4). The corrected ages (XCA) of the two finest fractions are reported
in Table 4. The fraction 0.5-0.2 um with a TGA of 33.8 + 0.1 Ma yields a XCA of 36.8 £ 0.2 Ma, very close
to its RA of 38.4 =+ 0.1 Ma. The finest fraction with a TGA of 29.8 + 0.2 Ma has an XCA of 34.4 + 1.1 Ma,
about 4 Ma younger than its RA. The XCAs of these two fractions are relatively consistent and about 10 Ma
younger than the ages provided by the upper grain-size fraction of 0.5-2 pm. They can be interpreted as
recording an equilibrium state and isotopic closure of syn-metamorphic 2M; Wm in the TZ unit during the
period of 37 to 34 Ma (Priabonian; late Eocene).

Whether these ages are crystallization or cooling ages can be assessed by comparing the theoretical closure
temperature of these micas with that of peak metamorphism. We calculated the closure temperature of
these fine-grained Wm using diffusion data of Harrison et al. (2009) and cooling rates in the range 10-50°C/
Ma (Ehlers et al., 2005). This approach gives closure temperatures of 257-271°C and 237-250°C, respec-
tively, for the two fractions, with an uncertainty of about 50°C due to the large uncertainty (10%) on the
activation energy for argon diffusion in Wm (Harrison et al., 2009). Considering this uncertainty, these
closure temperatures are slightly below or similar to the peak metamorphic temperature of ~300°C during
the D;/M; event and could indicate that the ages of 37-34 Ma represent the end of D;/M; (re)crystallization
processes and the beginning of exhumation of Tizgarine unit. These ages are consistent with the *Ar/*Ar
phengite age of 38 Ma recently reported for HP/LT rocks of the Alpujarride units in the Betic Cordilleras
(Bessiére et al., 2021).

The middle Eocene RA and TGA provided by the fraction 0.5-2 um might indicate that the D;/M; Alpine
tectonometamorphic event began earlier, in agreement with Platt et al. (2005) for the Eastern Betic Cor-
dilleras. In the Rif, this hypothesis can be discarded for the following reasons: (i) the 0.5-2 um fraction still
contains a large proportion of diagenetic 1M mica formed before the Alpine D;/M; event; (ii) there is no
evidence of 38Ar(CD exchange with the intergranular fluid(s) and of a full open behavior (resetting) of the
detrital micas with a grain size > 0.5 um; and (iii) a plot of TGA versus % 2M; of the three fractions <2 um
(Haines & van der Pluijm, 2008) yields a negative slope that suggests that the fraction 0.5-2 pm contains
more than one generation of 2M; Wm (Figure S2).

5.2. The Age of the Postorogenic Extensional Detachment Tectonics

The XRD analysis of the Zaouia fault gouge (S17-21B) documents Chl, Qz, Ab, KIln, Wm as the main mineral
components, with nearly constant proportions of Chl (31-36%) and Wm (24-29%) in the grain-size frac-
tions < 2 um and an increase of Kln (7-35%) toward the finest fraction (Tables 2 and 3). Remarkably, the
increase of the 1M Wm polytype with decreasing grain size is compatible with the low-temperature condi-
tions associated to brittle faulting (e.g., Aldega et al., 2019; Curzi et al., 2020; Haines & van der Pluijm, 2008;
van der Pluijm et al., 2001).

‘Wm is the only K-rich mineral that produced radiogenic argon in this sample and only two age components
are present, inherited 2M; metamorphic Wm and 1M authigenic mica. “°’Ar/*Ar dating of the four fractions
yields similar TGAs in the range 21-18.4 Ma for a proportion of 2M; polytype relative to 1M between nearly
100% to 54%. Compared to the Tizgarine unit sample S17-02, the amount of **Ar lost during irradiation by
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recoil effect is quite important (12.0-32.6%, Table 4) and probably relates to the fact that numerous dislo-
cations affected the crystallographic structure of the micas during faulting, thus favoring the development
of new short pathways for the ejection of *’Ar during neutron irradiation. This may be the reason for the
more irregular age spectra compared to those from TZ unit sample S17-02 (three out of four spectra showing
hump-shaped patterns; Figure 10b), which may be related to a complex loss/redistribution of *’Ar in broken
and recrystallized Wm of different grain size and polytype.

The age spectrum of the coarsest 2-50 um fraction (94-100% of 2M;) displays no evidence of a pre-Alpine
age component and provides a TGA of 21.0 + 0.1 Ma that is consistent with the Early Miocene metamorphic
ages commonly recovered from the Sebtide Complex (see Sections 1 and 2) and, particularly, by Ar-Ar bio-
tite ages in the Filali unit at the immediate footwall of the Zaouia Fault (Michard et al., 2006). This age can
be considered as the age of the older Wm end-member in the Zaouia fault gouge. In the three finer fractions
(<2 pm), ages older than 21 Ma are recorded by individual steps on the age spectra (Figure 11a) and by
RAs and XCAs (Table 4). As indicated above, the presence of an old detrital component can be discarded to
explain these ages that are viewed mainly as the consequence of *Ar recoil effects. Among these fractions,
the finest grained (<0.2 um) has a TGA of 18.4 + 0.2 Ma, which represents an upper age limit for the brittle
activity of the Zaouia fault in the upper crust. Figures 11b represents an attempt to correlate TGAs with the
proportion of 2M; mica polytype in the different fractions using IsoplotR software (Vermeesch, 2018). This
plot yields an intercept age of 16.8 + 0.8 Ma for the crystallization of 1M polytype and formation of the
fault gouge at the contact between the Ghomaride and Sebtide Complexes. However, this late Burdigalian
age must be treated with some caution since the representative data points are not widely dispersed along
the regression line. Significantly, however, the Burdigalian age of the Zaouia Fault is consistent with the
“Ar/*Ar illite dating of the extensional fault gouges cutting across the Lower Sebtides units of the Ceuta
area (Miinch et al., 2021, Figure 2a).

5.3. Implications at Regional Scale

Despite the limited number of geochronology samples, the new time-deformation history as reconstructed
in this study conforms to a ca. 20 Ma long tectonic evolution (from the late Eocene to the early Miocene) that,
framed within the regional tectonic and chronostratigraphic scenario of the Alboran Domain (Figure 12),
provides a new reference frame for the Alpine evolution of the Western Mediterranean region. In particu-
lar, results of this study contribute to our understanding of the tectonism and timing of exhumation of the
Alpujarride-Sebtide Complex of the Alboran Domain, with published models indicating either pre-Mio-
cene syn-orogenic (Azafién & Crespo-Blanc, 2000; Azafidn et al., 1998; Balanya et al., 1997, Booth-Rea
et al., 2005; Simancas & Campos, 1993; Tubia et al., 1992; Rossetti et al., 2005; Vergés & Fernandez, 2012) or
early Miocene late-to postorogenic (Platt & Vissers, 1989; Platt et al., 2013; Williams & Platt, 2018) scenarios.

The late Eocene (~37-34 Ma) ages in the TZ unit of the Upper Sebtides provide the first absolute time con-
straint for development of the Alpine D;/M; orogenic fabric in the Alboran Domain of the Rif. This scenario
is in line and supports the Eocene timing already proposed for the Betic counterpart (Augier et al., 2005;
Bessiére et al., 2021; Li & Massonne, 2018; Massonne, 2014; Platt et al., 2005). Significantly, the late Eo-
cene timing for the Alpine D;/M; event is also compatible with the tectonostratigraphic reconstruction of
the Ghomaride-Malaguide complex, where the same time period for the Alpine orogenic event has been
proposed (Chalouan et al., 2008; Lonergan, 1993; Serrano et al., 2006). The Alpine SW-verging D,/M, short-
ening (present coordinates) documented in the TZ unit of the Upper Sebtides, together with the southward
thrusting and imbrication of the Alpujarride Complex in the Sierra Alhamilla of the Betics (Williams &
Platt, 2018), therefore constrain the orogenic process during construction of an Eocene, Africa-verging oro-
genic wedge, formed at the expenses of the Alpujarride-Sebtide and Ghomaride-Malaguide complexes. The
Alpine thrusting then progressively involved the detached Mesozoic cover rocks of the Dorsale Calcaire
during late Oligocene-early Miocene time (Vitale et al., 2015) (Figure 12).

The Alpine orogenic construction of the Western Mediterranean region as reconstructed in this study is con-
sistent with the tectonometamorphic evolution of basement-involved thrusting and nappe stacking in the
hinterland of the Apennine-Maghrebian chain (Figure 1), where similar late Eocene ages for the HP meta-
morphism (Eastern Kabylia: Bruguier et al., 2017; Calabria: Heymes et al., 2010; Rossetti et al., 2001, 2004;
Schenk, 1980) and “Africa-verging” orogenic structures are reported (Calabria and Sicilia: Cirrincione
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Figure 12. Tectonic and chronostratigraphic chart for the hinterland domain of the Betic-Rif orogen of the Western Mediterranean, with indication of

the main Alpine tectonometamorphic stages as reconstructed in this study. List of references: 1, Vitale et al. (2015); 2, Chalouan and Michard (1990);

3, Lonergan (1993); 4, Rossetti et al. (2010, 2020); 5, Platt, Whitehouse, et al. (2003); 6, Esteban et al. (2007); 7, Esteban et al. (2011); 8, Platt and

Whitehouse (1999); 9, Zeck and Williams (2001); 10, Homonnay et al. (2018); 11, Sinchez-Rodriguez and Gebauer (2000); 12, Janots et al. (2006); 13, Gueydan
et al. (2015); 14, Romagny et al. (2014); 15, Platt, Argles, et al. (2003); 16, Esteban et al. (2004); 17, Azdimousa et al. (2014); 18, Sosson et al. (1998); 19,
Andriessen and Zeck (1996); 20, Platt et al. (2005); 21, Monié et al. (1991); 22, Priem et al. (1979); 23, Michard et al. (2006); 24, Monié et al. (1994); 25, Frasca
et al. (2016); 26, Lonergan and Mange-Rajetzky (1994); 27, Serrano et al. (2006); 28, Lopez Sanchez-Vizcaino et al. (2001); 29, Li and Massonne (2018); 30,
Johnson et al. (1997); 31, Augier et al. (2005); 32, Garcia-Dueiias et al. (1992); 33, Platt et al., (2006); 34, Hurford et al. (1999); 35, Platt et al. (1998) and Kelley
and Platt (1999); 36, Comas et al. (1992); 37, Sanchez-Navas et al. (2014); 38, Rossetti et al. (2013); 39, Marrone et al. (2021).

et al., 2015; Dietrich, 1988; Rossetti et al., 2001; Vignaroli et al., 2008, 2012). This correlation allows to frame
the Eocene D;/M; orogenic construction along the Cenozoic convergence zone developed along the Apen-
nine-Maghrebian subduction zone (e.g., Faccenna et al., 2004; Lacombe & Jolivet, 2005; Malusa et al., 2015;
Rosenbaum et al., 2002; Williams & Platt, 2018).

Transition from shortening to extension in the Alboran Domain occurred in the early Miocene (Figure 12).
Brittle postorogenic extensional tectonics is documented since the Burdigalian, as constrained by timing
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of the extensional faulting in the hinterland of the Rif chain. The Burdigalian age is consistent with the
low-temperature thermochronological results as available for the Alpujarride-Sebtide Complex as a whole,
which document Burdigalian-Langhian ages (Andriessen & Zeck, 1996; Azdimousa et al., 2014; Esteban
et al., 2004, 2007; Platt et al., 2003a, 2003b; Romagny et al., 2014; Sosson et al., 1998). This evidence shows
that the Alboran Domain was exhumed to upper crustal conditions and thinned in the brittle crust at that
time. Significantly, this age also overlaps in time with (a) that of the detachment style extension docu-
mented in the internal Betics (Mecina and the Filabres; Crespo-Blanc, 1995; Crespo-Blanc et al., 1994;
Garcia-Dueiias et al., 1992; Martinez-Martinez & Azafo6n, 1997; Martinez-Martinez et al., 2002; Williams
& Platt, 2018), and (b) the formation of the syn-rift basins associated with the Alboran back-arc rifting
(Bourgois et al., 1992; Chalouan et al., 1997; Comas et al., 1999; Do Couto et al., 2016; Soto & Platt, 1999).

Consequently, exhumation of the Alboran Domain in the ductile crust was almost complete by the early Mi-
ocene, as also documented by (a) the Alpujarride-derived clastic supply in the early Miocene deposits that
unconformably cover the hinterland nappe stack in the Betics (Lonergan & Mange-Rajetzky, 1994; Serrano
et al., 2006) (Figure 12) and (b) by the postmetamorphic nappe stacking as documented in the Betics prior
to the Miocene rifting (Azafién & Crespo-Blanc, 2000). In this regard, the overall shapes of the retrogres-
sive P-T paths as derived from the HP units of the Alpujarride-Sebtide Complex, document cooling during
exhumation (Azafdn et al., 1998; Bouybaouene et al., 1995; Marrone et al., 2021; Vidal et al., 1999). This
indicates that, during regional exhumation, large portions of the Alpine, subduction-related metamorphic
units during their way back to the surface escaped the early Miocene thermal overprint documented on
the floor of the Alboran Basin (Platt et al., 1998; Soto & Platt, 1999). The different D;/M, thermal signa-
tures recorded by the tectonic slices forming the Alpujarride-Sebtide nappe stack of the Alboran Domain
(Azafion & Crespo-Blanc, 2000; Azafidn et al., 1998; Michard et al., 2006; Vidal et al., 1999) can be thus
interpreted in terms of their different paleotectonic positions within the Alpine subduction channel prior
to the Alboran extension: more external and shallowly located for the low-grade units (early exhumed; e.g.,
Lujar-Gador in the Betics, Tizgarine unit in the Rif), and more internal and deeper for the higher-grade ones
(e.g., Salobreifia, Herradura, and Adra, units in the Betics, Beni Mzala unit in the Rif). This reconstruction
is therefore consistent with the idea that the major contribution to the exhumation history of the Alboran
Domain occurred in a convergent plate setting, during crustal thickening and orogenic construction in the
Eocene-Oligocene time span (syn-orogenic exhumation in Figure 12).

We therefore propose that transition from crustal shortening to extension in the hinterland (back-arc do-
main) of the Betic-Rif chain was controlled by the retreat of the western termination of the Apennine-Magh-
rebian subduction zone during the late Oligocene-early Miocene formation of the Alboran Basin (postoro-
genic extension in Figure 12). This scenario (see also Bessiére et al., 2021; Bezada et al., 2013; Bokelmann
et al., 2011; Booth-Rea et al., 2007; Faccenna et al., 2004; Frasca et al., 2015; Hidas et al., 2013; Jolivet
et al., 2003; Lonergan & White, 1997; Malusa et al., 2015; Rossetti et al., 2013; Spakman & Wortel, 2004)
is compatible with (a) crustal heating and elevation of the geothermal gradient in the thinned Alpine oro-
genic wedge in the hinterland during rollback of the delaminated lithosphere; (b) the outward progressive
migration of the compressional fronts synchronously with the opening of the Alboran Basin; and (c) the
allochthonous nature of the early structured Alboran Domain nappe stack within the Miocene external
domains of the Betic-Rif chain.

6. Conclusions

The study of the lower-grade units exposed in the Alboran Domain of the internal Rif allow refinement of
the Alpine orogenic and postorogenic evolution of the Western Mediterranean region. A 20 Ma long tecton-
ic history is reconstructed that can be synthesized as follows:

1. A late Eocene (Priabonian, 37-34 Ma) age is documented for the Alpine D;/M; thickening event in the
Alboran Domain during formation of an Africa-verging (SW-directed, present coordinates) orogenic
wedge

2. An Eocene age for the Alpine orogenic metamorphism must be considered for the geodynamic modeling
of Western Mediterranean, consistently with the tectonometamorphic evolution of basement-involved
thrusting in the orogenic hinterland of the Apennine-Maghrebian subduction
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