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Three-dimensional turbulence generated homogeneously by magnetic particles

A. Cazaubiel, J.-B. Gorce, J.-C. Bacri, M. Berhanu, C. Laroche, and E. Falcon∗

Université de Paris, MSC, UMR 7057 CNRS, F-75 013 Paris, France

Three-dimensional turbulence is usually studied experimentally by using a spatially localized
forcing at large scales (e.g. via rotating blades or oscillating grids), often in a deterministic way.
Here, we report an original technique where the fluid is forced in volume, randomly in space and
time, using small magnetic particles remotely driven. Such a forcing generates almost no mean
flow and is closer to those of direct numerical simulations of isotropic homogeneous turbulence. We
compute the energy spectra and structure functions using local and spatiotemporal flow velocity
measurements. The energy dissipation rate is also evaluated consistently in five different ways. Our
experimental results confirm the stationary, homogeneous and isotropic features of such turbulence,
and in particular the Tennekes’ model for which the Tennekes’ constant is experimentally estimated.

I. INTRODUCTION

Turbulence concerns swirling motions of fluids occurring irregularly in space and time. This phenomenon occurs in
most geophysical or astrophysical flows, as well as in many industrial processes [1, 2]. However, attempts to find analyt-
ical solutions to the forced Navier-Stokes equations in a turbulent regime still remain unsuccessful. Three-dimensional
turbulence is thus mainly described phenomenologically using dimensional and similarity arguments assuming notably
homogeneity, isotropy and statistical stationarity [1, 3–6]. For a long time, 3D turbulence experiments consisted of
uniform grids of bars in a wind tunnel (freely decaying turbulence) to get closer to ideal isotropic and homogeneous
turbulence [1, 5]. Nowadays, most laboratory experiments on 3D stationary turbulence are performed in a closed
container where energy is injected from a boundary of the container, at large scales and often in a deterministic way,
such as oscillating grids [7–10], counter-rotating disks (von Kármán flow) [11], several fans [12] or propellers [13], or
multiple jets [14–16]. In contrast, direct numerical simulations of 3D turbulence use a forcing in volume either in
spectral space [17], or more recently in physical space [18]. To be able to experimentally force turbulence in the whole
volume of a container (if possible randomly in time and space) is a challenge that has never been achieved to our
knowledge, and would thus lead to a better comparison with direct numerical simulations [19].
Here, we present an original forcing technique where the fluid is forced in volume randomly in space and time,

by using small magnetic particles remotely driven. An external oscillating magnetic field drives stochastic rotation
of each magnetic particle, whereas the collisions between particles or with the container boundaries lead to erratic
translational motions. Such a forcing within the bulk favors the statistical homogeneity of the velocity field with nearly
no mean flow. The measured energy spectra, structure functions and energy dissipation rate (evaluated consistently
in five different ways) confirm the stationary, homogeneous and isotropy features of such generated turbulence that
could be easily implemented in different domains.
Beyond its implementation to measure global dissipated power in 3D turbulence [20], this forcing mechanism can

be also easily used in other systems as in soft matter to study a 3D granular “gas” in air (showing several major
differences with a boundary-driven system)[21]. Furthermore, colloidal magnetic spinners on a fluid surface, as well
as active (self-propelled) swimmers, can generate flow reminiscent of 2D turbulence [22, 23].

II. THEORETICAL BACKGROUNDS

For large enough Reynolds numbers and 3D stationary, homogeneous, and isotropic turbulence, the energy spectrum
is predicted dimensionally as E(k) = Cǫ2/3k–5/3 [3] with ǫ the energy dissipation rate per unit mass and k the Fourier
spatial scale, and C ≈ 1.6 the Kolmogorov constant measured experimentally [5, 24]. ǫ also represents the mean
flux of kinetic energy cascading from the large (forcing) scale to the small (dissipative) scale. This energy transfer
through this inertial range is due to nonlinearity. The unidimensional (transverse and longitudinal) energy spectra

are proportional theoretically as E⊥(kx) = 4/3E‖(kx) with E‖(kx) = Cǫ2/3k
–5/3
x and C = 18C/55 [5, 24]. The

second-order moment of the velocity increments at a distance r (or structure function) S2(r) ≡ 〈[v(x + r) − v(x)]2〉
is dimensionally predicted as S2(r) = C2ǫ

2/3r2/3 [3], x is a spatial coordinate, and C2 ≈ 2.0 is an experimentally
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FIG. 1. Experimental setup showing the 3D container of fluid and the encapsulated magnets together with PIV and LDV
measurements. Top left: enlargement of a magnetic particle. A vertical oscillating magnetic field B(t) drives time-dependent

rotations of each magnetic particle by applying a torque ~Γ over its magnetic moment ~m.

measured constant [5]. The third-order structure function is analytically derived as S3(r) = −4/5ǫr (the only exact
result known for turbulence) called Kolmogorov’s 4/5 law [4]. Finally, intermittency occurs if the structure functions
of order p, Sp(r) ≡ 〈[v(x + r) − v(x)]p〉, scales as rζp with a nonlinear dependence of ζp with p [25], instead of
ζp = p/3 [3]. For finite Reynolds numbers, the previous laws have several corrections [5, 26].

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A Plexiglas square-section container of length L = 11.5 cm and height
h = 9 cm, is filled with distilled water. N home-made magnetic particles are put within the container (N ∈ [1, 60]).
Each particle is made of a cylindrical permanent neodymium magnet (NdFeB, N52, 0.5 cm in diameter, 0.2 cm in
thickness) encased and axially aligned in a cylindrical Plexiglas shell (1 cm in outer diameter and 1 cm long) to
strongly reduce dipolar interaction between particles [20]. The container is sealed with a transparent lid and sits
between two Helmholtz coils powered by a sinusoidal current of amplitude I ∈ [0, 9] A and frequency F ∈ [0, 50]
Hz. A vertical oscillating magnetic field B(t) = B sin (2πFt) is thus generated with an amplitude B ∈ [0, 207] G
measured with a gaussmeter (FW Bell). B is spatially homogeneous in the container volume with a 5% accuracy. The
AC magnetic field transfers angular momentum into each particle which is converted into linear momentum during
collisions, leading to erratic translational and rotational motions of the particles (see [20] for details). The fluid is
thus forced homogeneously in volume, and randomly in both space and time. The fluid velocity is measured in a
single point over time by nonintrusive Laser Doppler Velocimetry (LDV Dantec Flow Explorer 1D) to access to its
frequency spectrum. The fluid velocity field is measured in a horizontal xy plane (11 × 9 cm2) over time by Particle
Image Velocimetry (PIV) [27], in particular to access the wavenumber spectrum and structure functions. The fluid
flow is visualized using Polyamide fluid tracers (50 µm) illuminated by a horizontal laser sheet. A high-resolution
video camera (Phantom V10, 2400 × 1800 pixel2 at 200 fps), located on the top of the fluid container, records the
motion of the fluid tracers. The spatial resolution is 0.8 mm (i.e., spacing between adjacent velocity field vectors).
Note that less than 3% of the acquired images are discarded and correspond to rare events of a magnetic particle
passing through the laser sheet. This leads to experiments for PIV with a lower N and at lower fluid RMS velocity
(σu ≤ 4 cm/s) than for LDV (σu ≤ 18 cm/s). For most of the results presented below, the volume fraction is 0.7%
(corresponding to N = 10).

Figure 2 shows the typical fluid motions characteristic of a turbulent flow (see also movies in the Supplemental
Material [28]). Strong spatial and temporal fluctuations of the flow are observed over various scales, together with
eddies. We will characterize hereafter the properties of such turbulent flow generated by this novel forcing. We will
also verify if a self-similar energy transfer through the scales occurs by nonlinearity.
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FIG. 2. Fluid tracer trajectories within the laser sheet followed over 10 consecutive images (0.05 s). Forcing parameters:
N = 10, B = 115 G, and F = 50 Hz. σu = 2.3 cm/s.

IV. HOMOGENEITY, ISOTROPY AND LEVEL OF TURBULENCE WITH CONTROL PARAMETERS

The longitudinal and transverse horizontal fluid velocities at a location x are defined as u(x, t) and v(x, t), the
vertical one is w(x, t). Using PIV, we first check that the RMS fluctuating velocity σu is well invariant by translation
in the xy plane, and by rotation of the latter, meaning thus that the velocity field is homogeneous and isotropic in
the horizontal plane. The isotropy ratios are indeed σu/σv = 0.97 ± 0.01 and σu/σw = 0.87 ± 0.01. Moreover, the
mean velocity 〈u〉t,x is found to be much smaller than the RMS fluctuations (i.e., 〈u〉t,x/〈σu〉x < 11%) to be able to
neglect afterward the mean flow (see the Supplemental Material [28]).

Using single-point LDV measurements, we now focus on the scalings of the fluid velocity fluctuations with the
forcing parameters (number of magnetic particles N , amplitude B and frequency F of the magnetic field). The fluid

RMS velocity fluctuations σu =
√

〈u2〉t are found to depend on the forcing parameters as σu ∼ N1/2B1/3F 1/3 (see

the Supplemental Material [28]). The magnetic particle velocity was previously found to scale as Vp ∼ N0B1/3F 1/3

from the power budget between the injected power into the fluid by the magnetic particles and the power dissipated
[20]. The latter is mainly due to viscous dissipation by a turbulent translational drag on the particles and by
inelastic collisions between particles (or with the container walls) [20]. Assuming that the kinetic energy of the fluid
is proportional to the particle ones ∼ NV 2

p , the RMS fluid velocity scales indeed as σu ∼ (NV 2
p )

1/2 ∼ N1/2B1/3F 1/3.

V. FREQUENCY SPECTRUM

The power spectrum density Su(f) of the fluid velocity u(t) measured by LDV is shown in Fig. 3 and compensated
by f−5/3 for an increasing number N of magnetic particles at fixed B and F . The spectrum amplitude increased
with N . More importantly, each spectrum follows a frequency power-law in f−5/3 over more than one decade in
frequency. For zero-mean velocity flows, Tennekes’ model (large-scale advection of turbulent eddies) predicts the
frequency spectrum to scale as f−5/3 [29], as observed here. More precisely, one would expect S(ω) = βǫ2/3q2/3ω−5/3

with β an empirical constant and q ≡
√

(σ2
u + σ2

v + σ2
w) [29]. Since ǫ ∼ σ3

u (see below), S(ω) has to scale as σ
8/3
u .

We thus plot in the inset of Fig. 3 the compensated spectra Su(f)f
5/3 rescaled by N4/3B8/9F 8/9 for a large range of

forcing parameters (N , B and F ). All rescaled spectra are well superimposed on a master curve with a plateau over
more than one decade. As we confirm the Tennekes’ model, we are then able to infer experimentally the Tennekes’
constant from the compensated spectra and ǫ values. One finds β = 0.64 ± 0.15. This value confirms the assumed
Tennekes’ constant of the order of 1 [29] and simulations leading to β = 0.82 [30]. Note that the rare previous
experimental estimates (mainly on smaller inertial ranges) vary from β = 0.14 [16] (resp. 0.23 [15]) using multiple
jets forcing, without (resp. with) a free surface, to β ∈ [0.48, 0.62] [8] and 5.5 [9] using oscillating grids forcing but
without PIV measurements, or β ∈ [0.28, 3.5] for low Reynolds number flows [10].
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FIG. 3. Frequency power spectrum of the velocity u(t) compensated by f−5/3, Su(f)f
5/3, for different N from 10 (bottom)

to 60 (top), with F = 30 Hz and B=161 G. Dashed lines correspond to the predictions (see text). Inset: compensated power

spectra, Su(f)f
5/3 rescaled by N4/3B8/9F 8/9 for various N ∈ [10, 60], B ∈ [103, 184] G, and F ∈ [5, 55] Hz.
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FIG. 4. 1D wavenumber power spectrum Euu(kx) (in blue) and Evv(kx) (red) in the x direction of the velocity components u

and v. N = 10, B = 115 G and F = 50 Hz. σu = 2 cm/s. Dashed lines: k
−5/3
x prediction (blue one is adjusted and red one is

inferred from the prediction Evv = 4
3
Euu). Vertical lines correspond to the length scales Li (dotted line) and Lλ (dotted-dash

line). Inset: Second-order structure functions S
(u)
2 (r) (blue) and S

(v)
2 (r) (red). Blue dashed line: best fit of S

(u)
2 in r2/3. The

red dashed line is derived from the blue line using the relationship S
(v)
2 = 4

3
S

(u)
2 .

VI. WAVENUMBER SPECTRUM AND CHARACTERISTIC SCALES

Using PIV, the 1D wavenumber power spectra (in the x direction), Euu(kx) and Evv(kx), of the longitudinal and
transverse components (u and v) of the velocity field are shown in Fig. 4. The longitudinal spectrum Euu(kx) scales

as k
−5/3
x over a decade as expected from Kolmogorov’s law Euu = Cǫ2/3k

−5/3
x [3]. We also observe that the transverse

spectrum Evv(kx) is proportional to the longitudinal one in agreement with Evv(kx) =
4
3Euu(kx) [5] (see dashed lines

in Fig. 4). The degree of isotropy is thus comparable with that in DNS where the same equivalence between 1D
spectra is found [31].

The inertial scales of turbulence are located between the container size L and the small dissipative Kolmogorov
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FIG. 5. Different estimations of ǫ as a function of σ3
u inferred from (∗) the wavenumber spectrum Euu, (×) the second-order

structure function S2(r), (+) the third-order structure function S3(r), and (◦) the dissipation rate definition (see text). Solid
line is the prediction cσ3

u/Li with c = 1.1. Inset: Third-order structure function S3(r) (solid line). Dashed line is a linear fit.

scale η = (ν3/ǫ)1/4 [3]. Here, one has η ≈ 0.2 mm for a typical mean dissipation rate ǫ = 10−3 m2 s−3 (see below),
ν = 10−6 m2 s−1 is the fluid kinematic viscosity. The integral length scale can not be accurately computed from the
autocorrelation function of the velocity field since the container size L is not eight times larger than the integral scale
[5, 33]. We evaluate the integral scale Li = 5 cm from the abscissa of the maximum of S2(r) (see inset of Fig. 4),
corresponding to roughly the beginning of the inertial range (see Fig. 4). The corresponding turbulent Reynolds
number at Li thus reads ReLi

= σuLi/ν ≈ 103, with σu = 2 cm/s. The Taylor length scale is estimated as Lλ ≈ 6

mm (well located between Li and η - see Fig. 4) using Lλ = Li

√

15/ReLi
[1]. The corresponding Taylor Reynolds

number is Reλ = σuLλ/ν ≈ 122, a value of the same order of magnitude as the ones in boundary forced turbulence
experiments [11–14].

VII. STRUCTURE FUNCTIONS

The structure functions of the velocity field are also computed from the PIV measurements. The inset of Fig. 4
shows the second-order structure functions S2(r) in the x direction of the horizontal components of the velocity field
u and v. The structure functions S2(r) are roughly proportional to r2/3 in the inertial range, as expected by the 2/3
Kolmogorov’s law (see above) [3]. Moreover, as for the spectra, the transverse and longitudinal components are found

proportional as S
(v)
2 = 4

3S
(u)
2 (see dashed lines) as expected theoretically. From S

(u)
2 and Euu, one can also infer the

ratio of the 2/3 law constant over the Kolmogorov’s constant, C2/C = 5.3±2.8, not so far from previous experimental

evaluations ≈ 4 [5]. The third-order structure function S
(u)
3 of the longitudinal velocity field is also computed and

shown in the inset of Fig. 5. S
(u)
3 is found to decrease linearly with r over one decade in the inertial range, in good

agreement with the 4/5 Kolmogorov’s law [4] and with DNS [32]. This corresponds to the negative asymmetry of the

velocity fluctuation gradients quantified by the skewness S
(u)
3 /(S

(u)
2 )3/2 = −0.3± 0.2 close to the value inferred from

the 4/5 law, −4/(5C2) = −0.4 [5].

VIII. ENERGY DISSIPATION RATE

Finally, the mean energy dissipation rate ǫ is estimated in five different ways: (i) as E
3/2
uu k

5/2
x /C3/2 from the

experimental 1D wavenumber spectrum and the Kolmogorov’s spectrum, (ii) as [S
(u)
2 /C2]

3/2/r from the experimental

S
(u)
2 and the 2/3 law, (iii) as −5S

(u)
3 /(4r) from the experimental S

(u)
3 and the 4/5 law, (iv) from its definition for
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isotropic turbulence ǫ ≡ 15ν
〈

(∂ux/∂x)
2
〉

[5, 34], and (v) from dimensional analysis. These different estimations of

ǫ are plotted in Fig. 5 as a function of σ3
u. All ǫ values are found of the same order of magnitude at fixed σu, and

are proportional to σ3
u regardless of the method used. Dimensional arguments estimate the dissipation rate from

the velocity fluctuations as ǫ = cσ3
u/Li [34, 35] involving the integral scale Li, and c a constant of the order of

unity [36, 37]. Here, one finds c = 1.1 close to the values found with a boundary forcing (grid turbulence) [35, 38].
These estimations of ǫ by five different methods are hardly obtained experimentally [39] and are found here to be
all consistent as a consequence of the stationary, homogeneous and isotropic turbulence generated by this forcing in
volume. Note that higher turbulence levels can be explored with this forcing (e.g., ǫ ∼ 6 10−3 m2/s−3 for σu ∼ 0.18
m/s measured with LDV).

IX. CONCLUSION

We developed an original technique to generate 3D turbulence by injecting energy in volume, randomly in time and
space, by using small magnetic particles remotely driven. This forcing contrasts with previous ones in which a spatially
localized forcing is applied at large-scale from a container boundary. We characterize the turbulence generated by this
forcing in volume by local and spatiotemporal measurements of the fluid velocity. Almost no mean flow is involved, and
all measured properties confirm the stationary, homogeneous and isotropic features of such turbulence. In particular,
we confirm experimentally the Tennekes’ model and resolve the disagreement between previously suggested value of
the Tennekes’ constant. Possible intermittency of such generated turbulence could be explored in the future [40],
as well as its Lagrangian properties [41]. Moreover, this forcing mechanism is closer to those of direct numerical
simulations and is rather flexible (e.g. either random in space and time or random only in space or only in time).
It appears very promising to study large-scale 3D turbulence (i.e. larger than the injection scale) and its possible
description by statistical mechanics tools [42]. It could be also applied to smart control of turbulence [43]. Finally,
this homogeneous forcing could be used to better explore geophysical- or astrophysical-like turbulent flows (rotating,
stratified, or multiphase flows), and could provide a technological breakthrough in turbulent mixing.
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SUPPLEMENTAL MATERIAL

“Three-dimensional turbulence generated homogeneously by magnetic particles”
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In this supplemental material, we present movies of fluid tracer trajectories (Sec. I). Additional characteristics on
mean flow and isotropy are also displayed (Sec. II), followed by details on the scaling of the turbulence level with the
forcing parameters (Sec. III) and the scaling of the energy spectrum with the forcing parameters (Sec. IV).

I. MOVIES

Movies of fluid tracer trajectories are shown for an increasing energy input (frequency F and amplitude B of the
magnetic field) for N = 10 magnetic particles during 3.3 s (slow down 3 times). The fluid flow is visualized using
Polyamide fluid tracers (50 µm) illuminated by a horizontal laser sheet. A high-resolution video camera (Phantom
V10, 2400 × 1800 pixels2 - 200 fps) records the motion of the fluid tracers. Bright dots correspond to the maximal
pixel value of tracers averaged over 10 consecutive images (0.05 s). Window size = 9.4 × 8.4 cm2. Note the rare
events of rotating magnetic particles passing through the laser sheet. The fluid velocity is maximal in the vicinity of
the magnetic particles.

1 cm

• stack5.96A20HzN10.avi: Low forcing σu = 1.6 cm/s (F = 20 Hz, B = 137 G),

• stack4.25A40HzN10.avi: Medium forcing σu = 2.8 cm/s (F = 40 Hz, B = 98 G),

• stack7.48A50HzN10.avi: Strong forcing σu = 3.8 cm/s (F = 50 Hz, B = 172 G).

Side and top views of an encapsulated magnetic particle (1 cm):
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II. MEAN FLOW AND ISOTROPY
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FIG. S1: Mean velocity fields [〈u〉t; 〈v〉t] and RMS velocity fluctuations (σu; σv) of the fluid as a function of the

coordinates (x) and (y) in the horizontal plane. σi ≡
√

〈i2〉t − 〈i〉2t , where i = u or v. The value of the velocities are
averaged for 13 s. PIV measurements. The mean velocities are found to be much smaller than the RMS fluctuations
(i.e., 〈i〉t,x/〈σi〉x < 11%) to be able to neglect the mean flow. σu ≈ σv is found also to be roughly constant far from the
container boundaries located at x = 0 and x = 11 cm. The isotropy ratios are 〈σu/σv〉x = 0.96 and 〈σu/σv〉y = 0.98.
The velocity field is thus isotropic in the horizontal plane, the domains close to the boundaries being excluded in the
computations.

III. TURBULENCE LEVEL WITH THE FORCING PARAMETERS
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FIG. S2: Scaling of the RMS fluid velocity fluctuations as a function of the forcing parameters. Longitudinal σu,
vertical σw, and total, σ ≡

√

(σ2
u + σ2

v + σ2
w)/3, RMS velocity fluctuations as a function of (a) the number N of

magnetic particles (for fixed B = 161 G, F = 30 Hz), (b) the magnetic field strength B (for fixed N = 60, F = 30
Hz), and (c) the magnetic field frequency F (for fixed N = 60, B = 161 G). Solid lines display the best fits leading to
σ ∼ N1/2B1/3F 1/3. The transverse velocity coordinate is not shown since σv ≈ σu (see Fig. S1). LDV measurements
were performed at the center of the horizontal plane and a distance of 3.5 cm above the bottom of the container.
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IV. ENERGY SPECTRUM SCALING WITH THE FORCING PARAMETERS
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FIG. S3: (a) Frequency power spectrum density Su(f) rescaled by N for different magnetic particles N ∈ [10, 60]
(for fixed B = 161 G, F = 30 Hz). Inset: Same unrescaled. (b) Su(f) rescaled by B2/3 for different magnetic field
strength B ∈ [103, 184] G (for fixed N = 60, F = 30 Hz). The spectra Su(f) are well superimposed when rescaled by
(a) N and (b) B2/3 as expected from σ ≡ [

∫

Su(f, t)df ]
1/2 with σ ∼ N1/2B1/3F 1/3 (see Fig. S2). See Fig. 3 of the

main article for the full rescaled and compensated spectra. LDV measurements. Dashed lines correspond to a f−5/3

scaling from the Kolmogorov’s spectrum [3] and the Tennekes’ model [29] (see text of the main article).


	Petites_echellesEF6
	Three-dimensional turbulence generated homogeneously by magnetic particles
	Abstract
	Introduction
	Theoretical backgrounds
	Experimental setup
	Homogeneity, isotropy and level of turbulence with control parameters
	Frequency spectrum
	Wavenumber spectrum and characteristic scales
	Structure functions
	Energy dissipation rate
	Conclusion
	Acknowledgments
	References


	SuppMatSmallScales2
	SUPPLEMENTAL MATERIAL  ``Three-dimensional turbulence generated homogeneously by magnetic particles''
	Movies
	Mean flow and isotropy
	Turbulence level with the forcing parameters
	Energy spectrum scaling with the forcing parameters



