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Three-dimensional turbulence generated homogeneously by magnetic particles

Three-dimensional turbulence is usually studied experimentally by using a spatially localized forcing at large scales (e.g. via rotating blades or oscillating grids), often in a deterministic way. Here, we report an original technique where the fluid is forced in volume, randomly in space and time, using small magnetic particles remotely driven. Such a forcing generates almost no mean flow and is closer to those of direct numerical simulations of isotropic homogeneous turbulence. We compute the energy spectra and structure functions using local and spatiotemporal flow velocity measurements. The energy dissipation rate is also evaluated consistently in five different ways. Our experimental results confirm the stationary, homogeneous and isotropic features of such turbulence, and in particular the Tennekes' model for which the Tennekes' constant is experimentally estimated.

I. INTRODUCTION

Turbulence concerns swirling motions of fluids occurring irregularly in space and time. This phenomenon occurs in most geophysical or astrophysical flows, as well as in many industrial processes [START_REF] Davidson | Turbulence[END_REF][START_REF] Galtier | Introduction to Modern Magnetohydrodynamics[END_REF]. However, attempts to find analytical solutions to the forced Navier-Stokes equations in a turbulent regime still remain unsuccessful. Three-dimensional turbulence is thus mainly described phenomenologically using dimensional and similarity arguments assuming notably homogeneity, isotropy and statistical stationarity [START_REF] Davidson | Turbulence[END_REF][START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF][START_REF] Kolmogorov | Dissipation of energy in the locally isotropic turbulence[END_REF][START_REF] Pope | Turbulent Flows[END_REF][START_REF] Frisch | Turbulence: The Legacy of A. N. Kolmogorov[END_REF]. For a long time, 3D turbulence experiments consisted of uniform grids of bars in a wind tunnel (freely decaying turbulence) to get closer to ideal isotropic and homogeneous turbulence [START_REF] Davidson | Turbulence[END_REF][START_REF] Pope | Turbulent Flows[END_REF]. Nowadays, most laboratory experiments on 3D stationary turbulence are performed in a closed container where energy is injected from a boundary of the container, at large scales and often in a deterministic way, such as oscillating grids [START_REF] Srdic | Generation of nearly isotropic turbulence using two oscillating grids[END_REF][START_REF] Kit | Experimental examination of Eulerian frequency spectra in zero-mean-shear turbulence[END_REF][START_REF] De Silva | Oscillating grids as a source of nearly isotropic turbulence[END_REF][START_REF] Al-Homoud | Energy dissipation estimates in oscillating grid setup: LDV and PIV measurements[END_REF], counter-rotating disks (von Kármán flow) [START_REF] Douady | Direct observation of the intermittency of intense vorticity filaments in turbulence[END_REF], several fans [START_REF] Birouk | An attempt to realize experimental isotropic turbulence at low reynolds number[END_REF] or propellers [START_REF] Guala | Experimental study on clustering of large particles in homogeneous turbulent flow[END_REF], or multiple jets [START_REF] Hwang | Creating homogeneous and isotropic turbulence without a mean flow[END_REF][START_REF] Variano | A random-jet-stirred turbulence tank[END_REF][START_REF] Johnson | Turbulent boundary layers absent mean shear[END_REF]. In contrast, direct numerical simulations of 3D turbulence use a forcing in volume either in spectral space [START_REF] Eswaran | An examination of forcing in direct numerical simulations of turbulence[END_REF], or more recently in physical space [START_REF] Lundgren | Linearly forced isotropic turbulence[END_REF]. To be able to experimentally force turbulence in the whole volume of a container (if possible randomly in time and space) is a challenge that has never been achieved to our knowledge, and would thus lead to a better comparison with direct numerical simulations [START_REF] Iyer | Oscillations Modulating Power Law Exponents in Isotropic Turbulence: Comparison of Experiments with Simulations[END_REF].

Here, we present an original forcing technique where the fluid is forced in volume randomly in space and time, by using small magnetic particles remotely driven. An external oscillating magnetic field drives stochastic rotation of each magnetic particle, whereas the collisions between particles or with the container boundaries lead to erratic translational motions. Such a forcing within the bulk favors the statistical homogeneity of the velocity field with nearly no mean flow. The measured energy spectra, structure functions and energy dissipation rate (evaluated consistently in five different ways) confirm the stationary, homogeneous and isotropy features of such generated turbulence that could be easily implemented in different domains.

Beyond its implementation to measure global dissipated power in 3D turbulence [START_REF] Falcon | Dissipated power within a turbulent flow forced homogeneously by magnetic particles[END_REF], this forcing mechanism can be also easily used in other systems as in soft matter to study a 3D granular "gas" in air (showing several major differences with a boundary-driven system) [START_REF] Falcon | Equation of state of a granular gas homogeneously driven by particle rotations[END_REF]. Furthermore, colloidal magnetic spinners on a fluid surface, as well as active (self-propelled) swimmers, can generate flow reminiscent of 2D turbulence [START_REF] Kokot | Active turbulence in a gas of self-assembled spinners[END_REF][START_REF] Bourgoin | Kolmogorovian active turbulence of a sparse assembly of interacting marangoni surfers[END_REF].

II. THEORETICAL BACKGROUNDS

For large enough Reynolds numbers and 3D stationary, homogeneous, and isotropic turbulence, the energy spectrum is predicted dimensionally as E(k) = Cǫ 2/3 k -5/3 [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF] with ǫ the energy dissipation rate per unit mass and k the Fourier spatial scale, and C ≈ 1.6 the Kolmogorov constant measured experimentally [START_REF] Pope | Turbulent Flows[END_REF][START_REF] Saddoughi | Local isotropy in turbulent boundary layers at high Reynolds number[END_REF]. ǫ also represents the mean flux of kinetic energy cascading from the large (forcing) scale to the small (dissipative) scale. This energy transfer through this inertial range is due to nonlinearity. The unidimensional (transverse and longitudinal) energy spectra are proportional theoretically as

E ⊥ (k x ) = 4/3E (k x ) with E (k x ) = Cǫ 2/3 k -5/3 x
and C = 18C/55 [START_REF] Pope | Turbulent Flows[END_REF][START_REF] Saddoughi | Local isotropy in turbulent boundary layers at high Reynolds number[END_REF]. The second-order moment of the velocity increments at a distance r (or structure function) S 2 (r)

≡ [v(x + r) -v(x)] 2 is dimensionally predicted as S 2 (r) = C 2 ǫ 2/3 r 2/3 [3],
x is a spatial coordinate, and C 2 ≈ 2.0 is an experimentally measured constant [START_REF] Pope | Turbulent Flows[END_REF]. The third-order structure function is analytically derived as S 3 (r) = -4/5ǫr (the only exact result known for turbulence) called Kolmogorov's 4/5 law [START_REF] Kolmogorov | Dissipation of energy in the locally isotropic turbulence[END_REF]. Finally, intermittency occurs if the structure functions of order p, S p (r) ≡ [v(x + r) -v(x)] p , scales as r ζp with a nonlinear dependence of ζ p with p [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF], instead of ζ p = p/3 [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF]. For finite Reynolds numbers, the previous laws have several corrections [START_REF] Pope | Turbulent Flows[END_REF][START_REF] Von Kármán | On the Statistical Theory of Isotropic Turbulence[END_REF].

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A Plexiglas square-section container of length L = 11.5 cm and height h = 9 cm, is filled with distilled water. N home-made magnetic particles are put within the container (N ∈ [START_REF] Davidson | Turbulence[END_REF]60]). Each particle is made of a cylindrical permanent neodymium magnet (NdFeB, N52, 0.5 cm in diameter, 0.2 cm in thickness) encased and axially aligned in a cylindrical Plexiglas shell (1 cm in outer diameter and 1 cm long) to strongly reduce dipolar interaction between particles [START_REF] Falcon | Dissipated power within a turbulent flow forced homogeneously by magnetic particles[END_REF]. The container is sealed with a transparent lid and sits between two Helmholtz coils powered by a sinusoidal current of amplitude I ∈ [0, 9] A and frequency F ∈ [0, 50] Hz. A vertical oscillating magnetic field B(t) = B sin (2πF t) is thus generated with an amplitude B ∈ [0, 207] G measured with a gaussmeter (FW Bell). B is spatially homogeneous in the container volume with a 5% accuracy. The AC magnetic field transfers angular momentum into each particle which is converted into linear momentum during collisions, leading to erratic translational and rotational motions of the particles (see [START_REF] Falcon | Dissipated power within a turbulent flow forced homogeneously by magnetic particles[END_REF] for details). The fluid is thus forced homogeneously in volume, and randomly in both space and time. The fluid velocity is measured in a single point over time by nonintrusive Laser Doppler Velocimetry (LDV Dantec Flow Explorer 1D) to access to its frequency spectrum. The fluid velocity field is measured in a horizontal xy plane (11 × 9 cm 2 ) over time by Particle Image Velocimetry (PIV) [START_REF] Raffel | Particle Image Velocimetry: A practical guide[END_REF], in particular to access the wavenumber spectrum and structure functions. The fluid flow is visualized using Polyamide fluid tracers (50 µm) illuminated by a horizontal laser sheet. A high-resolution video camera (Phantom V10, 2400 × 1800 pixel 2 at 200 fps), located on the top of the fluid container, records the motion of the fluid tracers. The spatial resolution is 0.8 mm (i.e., spacing between adjacent velocity field vectors). Note that less than 3% of the acquired images are discarded and correspond to rare events of a magnetic particle passing through the laser sheet. This leads to experiments for PIV with a lower N and at lower fluid RMS velocity (σ u ≤ 4 cm/s) than for LDV (σ u ≤ 18 cm/s). For most of the results presented below, the volume fraction is 0.7% (corresponding to N = 10).

Figure 2 shows the typical fluid motions characteristic of a turbulent flow (see also movies in the Supplemental Material [28]). Strong spatial and temporal fluctuations of the flow are observed over various scales, together with eddies. We will characterize hereafter the properties of such turbulent flow generated by this novel forcing. We will also verify if a self-similar energy transfer through the scales occurs by nonlinearity. 

IV. HOMOGENEITY, ISOTROPY AND LEVEL OF TURBULENCE WITH CONTROL PARAMETERS

The longitudinal and transverse horizontal fluid velocities at a location x are defined as u(x, t) and v(x, t), the vertical one is w(x, t). Using PIV, we first check that the RMS fluctuating velocity σ u is well invariant by translation in the xy plane, and by rotation of the latter, meaning thus that the velocity field is homogeneous and isotropic in the horizontal plane. The isotropy ratios are indeed σ u /σ v = 0.97 ± 0.01 and σ u /σ w = 0.87 ± 0.01. Moreover, the mean velocity u t,x is found to be much smaller than the RMS fluctuations (i.e., u t,x / σ u x < 11%) to be able to neglect afterward the mean flow (see the Supplemental Material [28]).

Using single-point LDV measurements, we now focus on the scalings of the fluid velocity fluctuations with the forcing parameters (number of magnetic particles N , amplitude B and frequency F of the magnetic field). The fluid RMS velocity fluctuations σ u = u 2 t are found to depend on the forcing parameters as σ u ∼ N 1/2 B 1/3 F 1/3 (see the Supplemental Material [28]). The magnetic particle velocity was previously found to scale as V p ∼ N 0 B 1/3 F 1/3 from the power budget between the injected power into the fluid by the magnetic particles and the power dissipated [START_REF] Falcon | Dissipated power within a turbulent flow forced homogeneously by magnetic particles[END_REF]. The latter is mainly due to viscous dissipation by a turbulent translational drag on the particles and by inelastic collisions between particles (or with the container walls) [START_REF] Falcon | Dissipated power within a turbulent flow forced homogeneously by magnetic particles[END_REF]. Assuming that the kinetic energy of the fluid is proportional to the particle ones ∼ N V 2 p , the RMS fluid velocity scales indeed as

σ u ∼ (N V 2 p ) 1/2 ∼ N 1/2 B 1/3 F 1/3 .

V. FREQUENCY SPECTRUM

The power spectrum density S u (f ) of the fluid velocity u(t) measured by LDV is shown in Fig. 3 and compensated by f -5/3 for an increasing number N of magnetic particles at fixed B and F . The spectrum amplitude increased with N . More importantly, each spectrum follows a frequency power-law in f -5/3 over more than one decade in frequency. For zero-mean velocity flows, Tennekes' model (large-scale advection of turbulent eddies) predicts the frequency spectrum to scale as f -5/3 [START_REF] Tennekes | Eulerian and lagrangian time microscales in isotropic turbulence[END_REF], as observed here. More precisely, one would expect S(ω) = βǫ 2/3 q 2/3 ω -5/3 with β an empirical constant and q ≡ (σ 2 u + σ 2 v + σ 2 w ) [START_REF] Tennekes | Eulerian and lagrangian time microscales in isotropic turbulence[END_REF]. Since ǫ ∼ σ 3 u (see below), S(ω) has to scale as σ 8/3 u . We thus plot in the inset of Fig. 3 the compensated spectra S u (f )f 5/3 rescaled by N 4/3 B 8/9 F 8/9 for a large range of forcing parameters (N , B and F ). All rescaled spectra are well superimposed on a master curve with a plateau over more than one decade. As we confirm the Tennekes' model, we are then able to infer experimentally the Tennekes' constant from the compensated spectra and ǫ values. One finds β = 0.64 ± 0.15. This value confirms the assumed Tennekes' constant of the order of 1 [START_REF] Tennekes | Eulerian and lagrangian time microscales in isotropic turbulence[END_REF] and simulations leading to β = 0.82 [START_REF] Fung | Kinetic simulation of homogeneous turbulence by unsteady random Fourier modes[END_REF]. Note that the rare previous experimental estimates (mainly on smaller inertial ranges) vary from β = 0.14 [START_REF] Johnson | Turbulent boundary layers absent mean shear[END_REF] (resp. 0.23 [START_REF] Variano | A random-jet-stirred turbulence tank[END_REF]) using multiple jets forcing, without (resp. with) a free surface, to β ∈ [0.48, 0.62] [8] and 5.5 [START_REF] De Silva | Oscillating grids as a source of nearly isotropic turbulence[END_REF] using oscillating grids forcing but without PIV measurements, or β ∈ [0.28, 3.5] for low Reynolds number flows [START_REF] Al-Homoud | Energy dissipation estimates in oscillating grid setup: LDV and PIV measurements[END_REF]. 

VI. WAVENUMBER SPECTRUM AND CHARACTERISTIC SCALES

Using PIV, the 1D wavenumber power spectra (in the x direction), E uu (k x ) and E vv (k x ), of the longitudinal and transverse components (u and v) of the velocity field are shown in Fig. 4. The longitudinal spectrum E uu (k x ) scales as k -5/3 x over a decade as expected from Kolmogorov's law E uu = Cǫ 2/3 k -5/3 x [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF]. We also observe that the transverse spectrum E vv (k x ) is proportional to the longitudinal one in agreement with E vv (k x ) = 4 3 E uu (k x ) [START_REF] Pope | Turbulent Flows[END_REF] (see dashed lines in Fig. 4). The degree of isotropy is thus comparable with that in DNS where the same equivalence between 1D spectra is found [START_REF] Iyer | Refined similarity hypothesis using three-dimensional local averages[END_REF].

The inertial scales of turbulence are located between the container size L and the small dissipative Kolmogorov scale η = (ν 3 /ǫ) 1/4 [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF]. Here, one has η ≈ 0.2 mm for a typical mean dissipation rate ǫ = 10 -3 m 2 s -3 (see below), ν = 10 -6 m 2 s -1 is the fluid kinematic viscosity. The integral length scale can not be accurately computed from the autocorrelation function of the velocity field since the container size L is not eight times larger than the integral scale [START_REF] Pope | Turbulent Flows[END_REF][START_REF] O'neill | Autocorrelation functions and the determination of integral length with reference to experimental and numerical data[END_REF]. We evaluate the integral scale L i = 5 cm from the abscissa of the maximum of S 2 (r) (see inset of Fig. 4), corresponding to roughly the beginning of the inertial range (see Fig. 4). The corresponding turbulent Reynolds number at L i thus reads Re Li = σ u L i /ν ≈ 10 3 , with σ u = 2 cm/s. The Taylor length scale is estimated as L λ ≈ 6 mm (well located between L i and η -see Fig. 4) using L λ = L i 15/Re Li [START_REF] Davidson | Turbulence[END_REF]. The corresponding Taylor Reynolds number is Re λ = σ u L λ /ν ≈ 122, a value of the same order of magnitude as the ones in boundary forced turbulence experiments [START_REF] Douady | Direct observation of the intermittency of intense vorticity filaments in turbulence[END_REF][START_REF] Birouk | An attempt to realize experimental isotropic turbulence at low reynolds number[END_REF][START_REF] Guala | Experimental study on clustering of large particles in homogeneous turbulent flow[END_REF][START_REF] Hwang | Creating homogeneous and isotropic turbulence without a mean flow[END_REF].

VII. STRUCTURE FUNCTIONS

The structure functions of the velocity field are also computed from the PIV measurements. The inset of Fig. 4 shows the second-order structure functions S 2 (r) in the x direction of the horizontal components of the velocity field u and v. The structure functions S 2 (r) are roughly proportional to r 2/3 in the inertial range, as expected by the 2/3 Kolmogorov's law (see above) [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF]. Moreover, as for the spectra, the transverse and longitudinal components are found proportional as

S (v) 2 = 4 3 S (u) 2 
(see dashed lines) as expected theoretically. From S (u) 2

and E uu , one can also infer the ratio of the 2/3 law constant over the Kolmogorov's constant, C 2 /C = 5.3 ± 2.8, not so far from previous experimental evaluations ≈ 4 [START_REF] Pope | Turbulent Flows[END_REF]. The third-order structure function S (u) 3 of the longitudinal velocity field is also computed and shown in the inset of Fig. 5. S (u) 3 is found to decrease linearly with r over one decade in the inertial range, in good agreement with the 4/5 Kolmogorov's law [START_REF] Kolmogorov | Dissipation of energy in the locally isotropic turbulence[END_REF] and with DNS [START_REF] Iyer | Scaling exponents saturate in three-dimensional isotropic turbulence[END_REF]. This corresponds to the negative asymmetry of the velocity fluctuation gradients quantified by the skewness

S (u) 3 /(S (u)
2 ) 3/2 = -0.3 ± 0.2 close to the value inferred from the 4/5 law, -4/(5C 2 ) = -0.4 [START_REF] Pope | Turbulent Flows[END_REF].

VIII. ENERGY DISSIPATION RATE

Finally, the mean energy dissipation rate ǫ is estimated in five different ways: (i) as E and the 4/5 law, (iv) from its definition for isotropic turbulence ǫ ≡ 15ν (∂u x /∂x) 2 [START_REF] Pope | Turbulent Flows[END_REF][START_REF] Taylor | Statistical theory of turbulence[END_REF], and (v) from dimensional analysis. These different estimations of ǫ are plotted in Fig. 5 as a function of σ 3 u . All ǫ values are found of the same order of magnitude at fixed σ u , and are proportional to σ 3 u regardless of the method used. Dimensional arguments estimate the dissipation rate from the velocity fluctuations as ǫ = cσ 3 u /L i [START_REF] Taylor | Statistical theory of turbulence[END_REF][START_REF] Pearson | Measurements of the turbulent energy dissipation rate[END_REF] involving the integral scale L i , and c a constant of the order of unity [START_REF] Sreenivasan | On the scaling of the turbulence energy dissipation rate[END_REF][START_REF] Lohse | Crossover from high to low reynolds number turbulence[END_REF]. Here, one finds c = 1.1 close to the values found with a boundary forcing (grid turbulence) [START_REF] Pearson | Measurements of the turbulent energy dissipation rate[END_REF][START_REF] Wang | Estimation of the dissipation rate of turbulent kinetic energy: A review[END_REF]. These estimations of ǫ by five different methods are hardly obtained experimentally [START_REF] Hoque | Comparison of specific energy dissipation rate calculation methodologies utilising 2D PIV velocity measurement[END_REF] and are found here to be all consistent as a consequence of the stationary, homogeneous and isotropic turbulence generated by this forcing in volume. Note that higher turbulence levels can be explored with this forcing (e.g., ǫ ∼ 6 10 -3 m 2 /s -3 for σ u ∼ 0.18 m/s measured with LDV).

IX. CONCLUSION

We developed an original technique to generate 3D turbulence by injecting energy in volume, randomly in time and space, by using small magnetic particles remotely driven. This forcing contrasts with previous ones in which a spatially localized forcing is applied at large-scale from a container boundary. We characterize the turbulence generated by this forcing in volume by local and spatiotemporal measurements of the fluid velocity. Almost no mean flow is involved, and all measured properties confirm the stationary, homogeneous and isotropic features of such turbulence. In particular, we confirm experimentally the Tennekes' model and resolve the disagreement between previously suggested value of the Tennekes' constant. Possible intermittency of such generated turbulence could be explored in the future [START_REF] Batchelor | The nature of turbulent motion at large wave-numbers[END_REF], as well as its Lagrangian properties [START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF]. Moreover, this forcing mechanism is closer to those of direct numerical simulations and is rather flexible (e.g. either random in space and time or random only in space or only in time). It appears very promising to study large-scale 3D turbulence (i.e. larger than the injection scale) and its possible description by statistical mechanics tools [START_REF] Dallas | Statistical equilibria of large scales in dissipative hydrodynamic turbulence[END_REF]. It could be also applied to smart control of turbulence [START_REF] Buzzicotti | Statistical properties of turbulence in the presence of a smart small-scale control[END_REF]. Finally, this homogeneous forcing could be used to better explore geophysical-or astrophysical-like turbulent flows (rotating, stratified, or multiphase flows), and could provide a technological breakthrough in turbulent mixing. 

II. MEAN FLOW AND ISOTROPY

σ i ≡ i 2 t -i 2 t
, where i = u or v. The value of the velocities are averaged for 13 s. PIV measurements. The mean velocities are found to be much smaller than the RMS fluctuations (i.e., i t,x / σ i x < 11%) to be able to neglect the mean flow. σ u ≈ σ v is found also to be roughly constant far from the container boundaries located at x = 0 and x = 11 cm. The isotropy ratios are σ u /σ v x = 0.96 and σ u /σ v y = 0.98. The velocity field is thus isotropic in the horizontal plane, the domains close to the boundaries being excluded in the computations. . Solid lines display the best fits leading to σ ∼ N 1/2 B 1/3 F 1/3 . The transverse velocity coordinate is not shown since σ v ≈ σ u (see Fig. S1). LDV measurements were performed at the center of the horizontal plane and a distance of 3.5 cm above the bottom of the container. as expected from σ ≡ [ S u (f, t)df ] 1/2 with σ ∼ N 1/2 B 1/3 F 1/3 (see Fig. S2). See Fig. 3 of the main article for the full rescaled and compensated spectra. LDV measurements. Dashed lines correspond to a f -5/3 scaling from the Kolmogorov's spectrum [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF] and the Tennekes' model [START_REF] Tennekes | Eulerian and lagrangian time microscales in isotropic turbulence[END_REF] (see text of the main article).

III. TURBULENCE LEVEL WITH THE FORCING PARAMETERS

IV. ENERGY SPECTRUM SCALING WITH THE FORCING PARAMETERS
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 1 FIG.1. Experimental setup showing the 3D container of fluid and the encapsulated magnets together with PIV and LDV measurements. Top left: enlargement of a magnetic particle. A vertical oscillating magnetic field B(t) drives time-dependent rotations of each magnetic particle by applying a torque Γ over its magnetic moment m.
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 2 FIG. 2. Fluid tracer trajectories within the laser sheet followed over 10 consecutive images (0.05 s). Forcing parameters: N = 10, B = 115 G, and F = 50 Hz. σu = 2.3 cm/s.
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 6364 FIG. 3. Frequency power spectrum of the velocity u(t) compensated by f -5/3 , Su(f )f 5/3 , for different N from 10 (bottom) to 60 (top), with F = 30 Hz and B=161 G. Dashed lines correspond to the predictions (see text). Inset: compensated power spectra, Su(f )f 5/3 rescaled by N 4/3 B 8/9 F 8/9 for various N ∈ [10, 60], B ∈ [103, 184] G, and F ∈ [5, 55] Hz.

FIG. 5 .

 5 FIG. 5. Different estimations of ǫ as a function of σ 3 u inferred from ( * ) the wavenumber spectrum Euu, (×) the second-order structure function S2(r), (+) the third-order structure function S3(r), and (•) the dissipation rate definition (see text). Solid line is the prediction cσ 3 u /Li with c = 1.1. Inset: Third-order structure function S3(r) (solid line). Dashed line is a linear fit.
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 2 /C 3/2 from the experimental 1D wavenumber spectrum and the Kolmogorov's spectrum, (ii) as [S (u) 2 /C 2 ] 3/2 /r from the experimental S (u) 2 and the 2/3 law, (iii) as -5S (u) 3 /(4r) from the experimental S (u) 3

  FIG.S1: Mean velocity fields [ u t ; v t ] and RMS velocity fluctuations (σ u ; σ v ) of the fluid as a function of the coordinates (x) and (y) in the horizontal plane.σ i ≡ i 2 t -i 2 t, where i = u or v. The value of the velocities are averaged for 13 s. PIV measurements. The mean velocities are found to be much smaller than the RMS fluctuations (i.e., i t,x / σ i x < 11%) to be able to neglect the mean flow. σ u ≈ σ v is found also to be roughly constant far from the container boundaries located at x = 0 and x = 11 cm. The isotropy ratios are σ u /σ v x = 0.96 and σ u /σ v y = 0.98. The velocity field is thus isotropic in the horizontal plane, the domains close to the boundaries being excluded in the computations.

3 FIG

 3 FIG.S2: Scaling of the RMS fluid velocity fluctuations as a function of the forcing parameters. Longitudinal σ u , vertical σ w , and total, σ ≡ (σ 2 u + σ 2 v + σ 2 w )/3, RMS velocity fluctuations as a function of (a) the number N of magnetic particles (for fixed B = 161 G, F = 30 Hz), (b) the magnetic field strength B (for fixed N = 60, F = 30 Hz), and (c) the magnetic field frequency F (for fixed N = 60, B = 161 G). Solid lines display the best fits leading to σ ∼ N 1/2 B 1/3 F 1/3 . The transverse velocity coordinate is not shown since σ v ≈ σ u (see Fig.S1). LDV measurements were performed at the center of the horizontal plane and a distance of 3.5 cm above the bottom of the container.

  FIG. S3: (a) Frequency power spectrum density S u (f ) rescaled by N for different magnetic particles N ∈ [10, 60] (for fixed B = 161 G, F = 30 Hz). Inset: Same unrescaled. (b) S u (f ) rescaled by B 2/3 for different magnetic field strength B ∈ [103, 184] G (for fixed N = 60, F = 30 Hz). The spectra S u (f ) are well superimposed when rescaled by (a) N and (b)B 2/3 as expected from σ ≡ [ S u (f, t)df ] 1/2 with σ ∼ N 1/2 B 1/3 F 1/3 (see Fig.S2). See Fig.3of the main article for the full rescaled and compensated spectra. LDV measurements. Dashed lines correspond to a f -5/3 scaling from the Kolmogorov's spectrum[START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF] and the Tennekes' model[START_REF] Tennekes | Eulerian and lagrangian time microscales in isotropic turbulence[END_REF] (see text of the main article).
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In this supplemental material, we present movies of fluid tracer trajectories (Sec. I). Additional characteristics on mean flow and isotropy are also displayed (Sec. II), followed by details on the scaling of the turbulence level with the forcing parameters (Sec. III) and the scaling of the energy spectrum with the forcing parameters (Sec. IV).