
HAL Id: hal-03399938
https://hal.science/hal-03399938v1

Submitted on 2 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounds for Sparse Planar and Volume Arrays
Yann Meurisse, Jean-Pierre Delmas

To cite this version:
Yann Meurisse, Jean-Pierre Delmas. Bounds for Sparse Planar and Volume Arrays. IEEE Transactions
on Information Theory, 2001, 47 (1), pp.464 - 468. �10.1109/18.904563�. �hal-03399938�

https://hal.science/hal-03399938v1
https://hal.archives-ouvertes.fr


Bounds for sparse planar and volume arrays

Yann Meurisse and Jean-Pierre Delmas

November 2, 2021

Abstract

This correspondence improves and extends bounds on the numbers of sensors, redundancies and
holes for sparse linear arrays to sparse planar and volume arrays. As an application, the efficiency of
regular planar and volume arrays with redundancies but no holes is deduced. Also, examples of new
redundancy and hole square arrays, found by exhaustive computer search, are given.
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1 Introduction

When the number of antenna sensors available for an array is limited, the problem of optimum array geometry
naturally arises. From the beamwidth and the sidelobe level of the associated beampattern [1] or from the direction
of arrival (DOA) estimation accuracy [2] point of view, array configurations known as linear minimum redundancy
(MR) arrays or linear minimum hole (MH) arrays (also called optimum nonredundant arrays) are often proposed.
Linear MR arrays have been extensively studied; see [3] and [4] and the references therein. In particular, much
attention has been given to bounds on the ratio M2/A [4],[5] where M and A denote respectively the number
of sensors and the aperture of the linear array. Linear MH arrays were considered in [3] and [6]. Whereas
specific structures were designed to optimize some performance criteria (e.g. [7] for DOA algorithms with DOA
prior information and [1] for beampatterns with various sidelobe level/beamwidth tradeoffs); redundancy and hole
concepts do not embrace any such optimality criterion directly. Thus, the MR and MH arrays are more easily
applicable to a wider range of problems, and these structures achieve an efficient tradeoff between beampattern
and DOA estimation performance.

Contrary to the sparse linear arrays, few contributions have been devoted to sparse planar and volume arrays
(note that the planar array retains side ambiguity resolved by a volume array). The notions of MR and MH
arrays can be extended to these arrays because the spatial covariance matrix, associated with equally spaced
arrays, exhibits a Toeplitz, block-Toeplitz structure for uncorrelated sources. Some structures of square and cubic
redundancy arrays were studied by Pumphrey [8]. However, as discussed in [9], the computation of MR and MH
arrays for the two-dimensional case is much more involved than that for the one-dimensional case. Thus, it is of
importance to have bounds to be able to qualify the efficiency of not necessarily MR or MH planar and volume
structures.

Section 2 improves and extends bounds on the numbers of sensors, redundancies and holes for the sparse linear
arrays given by [3] to sparse planar and volume arrays. As an application, the efficiency of regular planar and
volume arrays with redundancies but no holes is deduced. Also, examples of new redundancy and hole square
arrays given by exhaustive computer search are shown in Appendix.

2 Bounds for arrays with redundancies and holes

Consider a volume array A made of M sensors lying on the marks of a Cartesian grid 1 . The sensor spacings on this
grid are integer multiples of some fundamental distance (usually the half wavelength of the incident radiation), and
thus the sensor separations can be represented by these integers. Based on the assumption that one is primarily
interested in how an array samples the spatial covariance function, which is a function only of the separation
between the points (for uncorrelated sources), the useful notion of coarray was introduced [10]. It refers to the set
of points at which the spatial covariance function can be estimated with that array. This coarray D is represented
with a set of vectors d called lags

D = {dij = si − sj} i, j = 1, 2, . . . ,M

where si = (xi, yi, zi)
T is the location of the ith sensor (xi, yi and zi are integers). Denote by

(Ax, Ay, Az) = (max(xi − xj),max(yi − yj),max(zi − zj))

the apertures of this array. Linear and planar arrays are considered as particular cases of volume arrays, i.e.,
Ay = Az = 0 and Az = 0 for respectively linear and planar arrays. With these definitions, we recall that if the
array has more than one pair of sensors separated by the same lag d, these pairs produce redundant estimates
of the covariance function at that lag. In this case, the coarray of that array is said to have redundancies. The
number of these redundancies excluding the lag 0 is denoted by R. If there is no pair of sensors separated by
some lag whose components are all smaller than the associated apertures of the array, the array is said to have
a hole in its coarray at that location. The number of these holes is denoted by H. If E is the number of
distinct lags of the coarray (including lag 0), the number M2 of lags dij of the coarray is composed of E lags
appearing at least one time and of R + M − 1 strictly redundant lags, so M2 = E + R + (M − 1). Each of the
(2Ax + 1)(2Ay + 1)(2Az + 1) lags of the rectangular parallelepiped associated full array appears either at least one
time or not at all, so E +H = (2Ax + 1)(2Ay + 1)(2Az + 1). Consequently the apertures, the numbers of sensors,

1It is possible to consider other kind of grid as Haubrich [10] did, who considered sensors on an isometric or equilateral
triangle grid and found perfect planar arrays in this way.
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redundancies and holes are related by

(2Ax + 1)(2Ay + 1)(2Az + 1) = (M2 −M + 1) +H −R. (2.1)

To eliminate the apertures in this relation and derive a general relation between the numbers of sensors, redundan-
cies and holes, we introduce a new function associated with its autocorrelation function that enables us to improve
and to extend directly the linear array bounds by [3] to planar and volume arrays. Let χA : Z3 → {0, 1} be the
characteristic function of the array, i.e. χA(s) = 1 if a sensor is in position s and χA(s) = 0 elsewhere. The number
of times the lag d is present in the sparse array defines the autocorrelation function Λ(d) of χA: Z3 → N . With
these definitions, the following result is proved.

Result 1 For a given number of sensors, the numbers of holes and redundancies that must be present in the linear,
planar or volume array satisfy the relation: 2

R(3π + 2(1 + αA)) +H(3π − 2(1 + αA)) ≥ 2(1 + αA)M2 − (M − 1)(3π + 2(1 + αA)) (2.2)

where αA is given in the Appendix 3 .

Proof Let χD be the characteristic function of the coarray associated with the fully populated array of
apertures (Ax, Ay, Az) and χ0 : Z3 → {0, 1} that of lag 0 whose Fourier transforms are respectively
sinπ(2Ax+1)fx

sinπfx

sinπ(2Ay+1)fy
sinπfy

sinπ(2Az+1)fz
sinπfz

and 1.

As Λ(d) is the number of times the lag d appears in the array A, the difference

ε(d)
def
= Λ(d)− χD(d)− (M − 1)χ0(d) (2.3)

satisfies for d in D: ε(d) = −1 if d is a hole, ε(d) is equal to the number of redundancies of that lag d if d is in D,
except for d = 0 in which case ε(d) = 0. Consequently

∑
d∈D |ε(d)| = H + R. As the Fourier transform E(f) of

the even real function ε(d) is real, E(f) ≤ |E(f)| ≤
∑

d∈D |ε(d)| = H +R. Therefore, taking the Fourier transform
of (2.3) and noting that the Fourier transform L(f) of the autocorrelation function Λ(d) is real non negative, there
holds for all f :

− sinπ(2Ax + 1)fx
sinπfx

sinπ(2Ay + 1)fy
sinπfy

sinπ(2Az + 1)fz
sinπfz

− (M − 1) ≤ H +R− L(f) ≤ H +R.

After simple manipulations detailed in the Appendix, we obtain:

2

3π
(1 + αA)(2Ax + 1)(2Ay + 1)(2Az + 1)− (M − 1) ≤ H +R. (2.4)

Finally, substituting (2.1) in this expression yields (2.2).
Result 1, identical to [3, rel. (19)] except for the presence of αA, improves the classic one-dimensional bound

[1], and extends it to two- and three-dimensional arrays. Surprisingly, this result is invariant with respect to the
dimensionality of the array. Putting respectively H = 0 and R = 0 in (2.2) gives lower bounds on R and H
for respectively redundancy arrays and hole arrays. Whatever the dimensionality of the array may be, we have,

for redundancy arrays R ≥ 2(1+αA)M2

3π+2(1+αA) − (M − 1) and for hole arrays H ≥ 2(1+αA)M2

3π−2(1+αA) − (M − 1) 3π+2(1+αA)
3π−2(1+αA) .

Thus, for large arrays, the lower bounds provided by [3, rel. (20) and (21)] are approximatively multiplied by 1.0237 .

Concerning the bounds on M , result 1 implies the following:

1. For perfect arrays, i.e., arrays with no redundancy or hole (R = 0 ; H = 0), result 1 implies 2(M2−M +1)−
3π(M − 1) ≤ 0, therefore M ∈ {2, 3, 4}. Thus from (2.1), M2−M + 1 = (2Ax + 1)(2Ay + 1)(2Az + 1) = 3, 7
or 13. Since the product (2Ax + 1)(2Ay + 1)(2Az + 1) is prime, the only, non trivial solutions are:

M = 3 ; Ax = 3 ; Ay = Az = 0 and M = 4 ; Ax = 6 ; Ay = Az = 0.

These are the well-known linear perfect arrays [3] and we prove that the only perfect arrays are linear.

2Note that in our formulation, lags d are in Z3, so our definitions of H and R differ from those of [3, rel. 19] in the linear
case by the multiplicative factor 2.

3In particular it is shown in the Appendix that αA � 1 and that αA ≈ 0.0237 for apertures ≥ 6.
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2. For redundancy arrays [3], i.e., arrays with no hole (H = 0), result 1 and (2.1) yield:

M2 ≥ (2Ax + 1)(2Ay + 1)(2Az + 1)

(
1 +

2(1 + αA)

3π

)
, (2.5)

which for Ay = Az = 0 gives a tighter lower bound on M than [3, rel. (17)]. However, because of round-off
effect, the improvement provided by (2.5) in the one-dimensional case is not regular and occurs for only
certain values of A. For example, for LMR arrays, A = 69 is the lowest value of A for which the lower bound
on M provided by [3, rel. (17)] and by (2.5) would be different (respectively M ≥ 13 and M ≥ 14).

3. For hole arrays [3], i.e. arrays with no redundancy (R = 0), result 1 and (2.1) yield:

(M − 1)2 ≤ (2Ax + 1)(2Ay + 1)(2Az + 1)

(
1− 2(1 + αA)

3π

)
− 1, (2.6)

which for Ay = Az = 0 gives a tighter upper bound on M than [3, rel. (26)]. But, as previously, the
improvement in the one-dimensional case is not regular and, for example, for LMH arrays, A = 51 is the
lowest value of A for which the upper bound on M provided by [3, rel. (26)] and by (2.6) would be different
(respectively M ≤ 10 and M ≤ 9).

3 Design of sparse linear and volume arrays

To build efficient square and cubic redundancy arrays, two regular structures are known. The first ones, referred
to by Pumphrey[8] as “cross product” (CP) arrays, are constructed from respectively two or three identical linear
MR arrays. A square cross product array for example has an sensor at {i, j} if the linear array it is constructed
from has an sensor at {i} and one at {j} (see Fig.2). Note that these structures can be extended to nonidentical
linear MR arrays. As linear MR arrays are built for any M , their optimal aperture A is a function AM of M . So
associated cross product arrays are defined only for these apertures AM , for which the number of sensors is M2 or

M3. As for linear MR arrays [5],[4], 2.434 ≤ limM→∞
M2

AM
≤ 3.348, therefore these cross product structures satisfy

respectively for the square and cubic arrays with M sensors,

2.434 ≤ lim
M→∞

M

AM
≤ 3.348 and 2.434 ≤ lim

M→∞

M2/3

AM
≤ 3.348. (3.1)

Compared to (2.5), which gives for respectively linear, square and cubic redundancy arrays M2 ≥ 2.434A+ 1.217,
M ≥ 2.207A+ 1.103 and M2/3 ≥ 2.135A+ 1.068, these cross product redundancy arrays are potentially efficient.
However, we note that the difference between the number of sensors given by the lower bound (2.5) and the
one given by (3.1) increases with the dimensionality of the array. A second regular structure was proposed by
Greene-Wood (GW) [11] for square arrays. The sensor location (i, j, k) of such an array of aperture A verifies
: i = 0 or j = 0 or k = 0 or i = j = k = 2, · · · , A (k = 0 for square array cf. Fig.2). It gives respectively
M = 3A and M = A(3A+ 4) for square and cubic arrays 4. Compared to (2.5), the Greene-Wood square array is a
potentially efficient redundancy array contrary to the Greene-Wood cubic array. Naturally all these structures are
not necessarily MR. Table 1 exhibits, by exhaustive computer search, the number of MR and MH square arrays for
apertures up to 6 (7 for MH square arrays), two arrays being considered different if none of them can be deduced
from the other by an elementary transformation. We find that these arrays are not generally unique. However,
Greene-Wood or cross product MR arrays exist for each of these apertures (except for A = 2).

4Note that a more efficient cubic structure can be obtained by piling up identical GW square arrays for which the number
of sensors is M = 3A(A+ 1)
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square MR array square MH array

Aperture Mmin LB Number of configurations Mmax UB Number of

Total GW CP configurations

2 7 6 2 5 5 1
3 9 8 4 1 1 6 7 36
4 12 10 4 1 8 8 4
5 15 13 83 1 9 10 347
6 16 15 ≥ 1 1 11 12 1
7 17 12 14 113

Table 1 Numbers of sensors and configurations of square MR [resp. MH] arrays obtained by exhaustive
computer search compared with lower bound (LB) [resp. upper bound (UB)], versus aperture.
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Fig.1 Numbers of sensors (obtained by exhaustive computer search and bounds (2.5),(2.6)) versus aperture of
square array.

M = 9   R = 24
(cross product array)

M = 12   R = 52
(Greene-Wood array) M = 15   R = 90

M = 16   R = 72
(cross product array)

M = 7  R = 18

Fig.2 Examples of square MR arrays.
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M = 6   H = 18

M = 8    H = 32

M = 9   H = 48
M = 11   H = 58

M = 12   H = 92

M = 5  H = 4

Fig.3 Examples of square MH arrays.

4 Conclusion

A general formulation has enabled us to consider the notion of minimum hole and minimum redundancy arrays
regardless of the dimensionality of the array. Thanks to this approach, tighter bounds have been given on the
numbers of sensors, redundancies and holes for the linear arrays and similar bounds have been proposed for planar
and volume arrays. As an application, the efficiency of regular planar and volume arrays with redundancies but
no holes has been deduced. The number of sensors and configurations of square MR and MH arrays obtained by
exhaustive computer search has been given. An example of square MR and MH array for each aperture is exhibited
up to aperture 7. Finally, we note that designing simple regular structures of efficient hole arrays, or deducing hole
planar and volume arrays from linear hole arrays, still presents a number of obstacles.

A Proof of (2.4)

Let s(A, f) denote the expression − sinπ(2Ax+1)fx
sinπfx

sinπ(2Ay+1)fy
sinπfy

sinπ(2Az+1)fz
sinπfz

. Because explicit calculation of

maxf s(A, f) is complicated, we shall focus on two slightly smaller values. First, as maxx
(
− sin x

x

)
= 2

3π (1 + α
′
)

with α
′

= 0.0237 and sinx < x for x > 0, direct manipulations imply:

2

3π
(1 + α

′
)(2Ax + 1)(2Ay + 1)(2Az + 1) ≤ max

f
s(A, f).

Second, suppose Ax = min(Ax, Ay, Az) without loss of generality. For f0
def
= (f0, 0, 0), f0

def
= 3

2(2Ax+1) :

− sinπ(2Ax + 1)f0
sinπf0

(2Ay + 1)(2Az + 1) = s(A, f0) ≤ max
f
s(A, f).

Using the classical relation between the periodic Fourier transform of a sequence and the Fourier transform of the
associated analog waveform,

− sinπ(2Ax + 1)f0
sinπf0

= −
+∞∑

k=−∞

sin(π(2Ax + 1)(f0 − k))

π(f0 − k)
= − sinπ(2Ax + 1)f0

π

+∞∑
k=−∞

(−1)k

f0 − k

= − sinπ(2Ax + 1)f0
π

(
1

f0
+ 2f0

+∞∑
k=1

(−1)k

f0
2 − k2

)

=
2

3π
(2Ax + 1)

(
1− 9

2

+∞∑
k=1

(−1)k

k2(2Ax + 1)2 − 9
4

)
def
=

2

3π
(2Ax + 1)(1 + α

′′

A).

Therefore
2

3π
(1 + α

′′

A)(2Ax + 1)(2Ay + 1)(2Az + 1) ≤ max
f
s(A, f).

Combining these two values, (2.4) holds with αA
def
= max(α

′
, α

′′

A). We note that α
′′

A is decreasing in Ax and a sharp

examination of α
′′

A shows that αA = α
′′

A for Ax < 6 (e.g. α3 ≈ 0.0797) and αA = α
′ ≈ 0.0237 for Ax ≥ 6.
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