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This correspondence improves and extends bounds on the numbers of sensors, redundancies and holes for sparse linear arrays to sparse planar and volume arrays. As an application, the efficiency of regular planar and volume arrays with redundancies but no holes is deduced. Also, examples of new redundancy and hole square arrays, found by exhaustive computer search, are given.

Introduction

When the number of antenna sensors available for an array is limited, the problem of optimum array geometry naturally arises. From the beamwidth and the sidelobe level of the associated beampattern [START_REF] Graff | Optimal linear arrays for narrow-band beamforming[END_REF] or from the direction of arrival (DOA) estimation accuracy [START_REF] Abramovich | Comparison of DOA estimation performance for various types of sparse antenna array geometries[END_REF] point of view, array configurations known as linear minimum redundancy (MR) arrays or linear minimum hole (MH) arrays (also called optimum nonredundant arrays) are often proposed. Linear MR arrays have been extensively studied; see [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF] and [START_REF] Pillai | Array Signal processing[END_REF] and the references therein. In particular, much attention has been given to bounds on the ratio M 2 /A [START_REF] Pillai | Array Signal processing[END_REF], [START_REF] Leech | On the representation of 1, 2, ..., n by differences[END_REF] where M and A denote respectively the number of sensors and the aperture of the linear array. Linear MH arrays were considered in [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF] and [START_REF] Vertatschitsch | Nonredundant array[END_REF]. Whereas specific structures were designed to optimize some performance criteria (e.g. [START_REF] Huang | Optimal design of linear array of sensors[END_REF] for DOA algorithms with DOA prior information and [START_REF] Graff | Optimal linear arrays for narrow-band beamforming[END_REF] for beampatterns with various sidelobe level/beamwidth tradeoffs); redundancy and hole concepts do not embrace any such optimality criterion directly. Thus, the MR and MH arrays are more easily applicable to a wider range of problems, and these structures achieve an efficient tradeoff between beampattern and DOA estimation performance.

Contrary to the sparse linear arrays, few contributions have been devoted to sparse planar and volume arrays (note that the planar array retains side ambiguity resolved by a volume array). The notions of MR and MH arrays can be extended to these arrays because the spatial covariance matrix, associated with equally spaced arrays, exhibits a Toeplitz, block-Toeplitz structure for uncorrelated sources. Some structures of square and cubic redundancy arrays were studied by Pumphrey [START_REF] Pumphrey | Design of sparse arrays in one, two, and three dimensions[END_REF]. However, as discussed in [START_REF] Haykin | Some aspects of array signal processing[END_REF], the computation of MR and MH arrays for the two-dimensional case is much more involved than that for the one-dimensional case. Thus, it is of importance to have bounds to be able to qualify the efficiency of not necessarily MR or MH planar and volume structures.

Section 2 improves and extends bounds on the numbers of sensors, redundancies and holes for the sparse linear arrays given by [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF] to sparse planar and volume arrays. As an application, the efficiency of regular planar and volume arrays with redundancies but no holes is deduced. Also, examples of new redundancy and hole square arrays given by exhaustive computer search are shown in Appendix.

Bounds for arrays with redundancies and holes

Consider a volume array A made of M sensors lying on the marks of a Cartesian grid1 . The sensor spacings on this grid are integer multiples of some fundamental distance (usually the half wavelength of the incident radiation), and thus the sensor separations can be represented by these integers. Based on the assumption that one is primarily interested in how an array samples the spatial covariance function, which is a function only of the separation between the points (for uncorrelated sources), the useful notion of coarray was introduced [START_REF] Haubrich | Array design[END_REF]. It refers to the set of points at which the spatial covariance function can be estimated with that array. This coarray D is represented with a set of vectors d called lags

D = {d ij = s i -s j } i, j = 1, 2, . . . , M
where s i = (x i , y i , z i ) T is the location of the ith sensor (x i , y i and z i are integers). Denote by

(A x , A y , A z ) = (max(x i -x j ), max(y i -y j ), max(z i -z j ))
the apertures of this array. Linear and planar arrays are considered as particular cases of volume arrays, i.e., A y = A z = 0 and A z = 0 for respectively linear and planar arrays. With these definitions, we recall that if the array has more than one pair of sensors separated by the same lag d, these pairs produce redundant estimates of the covariance function at that lag. In this case, the coarray of that array is said to have redundancies. The number of these redundancies excluding the lag 0 is denoted by R. If there is no pair of sensors separated by some lag whose components are all smaller than the associated apertures of the array, the array is said to have a hole in its coarray at that location. The number of these holes is denoted by H. If E is the number of distinct lags of the coarray (including lag 0), the number M2 of lags d ij of the coarray is composed of E lags appearing at least one time and of R + M -1 strictly redundant lags, so M 2 = E + R + (M -1). Each of the (2A x + 1)(2A y + 1)(2A z + 1) lags of the rectangular parallelepiped associated full array appears either at least one time or not at all, so E + H = (2A x + 1)(2A y + 1)(2A z + 1). Consequently the apertures, the numbers of sensors, redundancies and holes are related by

(2A x + 1)(2A y + 1)(2A z + 1) = (M 2 -M + 1) + H -R. (2.1)
To eliminate the apertures in this relation and derive a general relation between the numbers of sensors, redundancies and holes, we introduce a new function associated with its autocorrelation function that enables us to improve and to extend directly the linear array bounds by [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF] to planar and volume arrays. Let χ A : Z3 → {0, 1} be the characteristic function of the array, i.e. χ A (s) = 1 if a sensor is in position s and χ A (s) = 0 elsewhere. The number of times the lag d is present in the sparse array defines the autocorrelation function Λ(d) of χ A : Z 3 → N . With these definitions, the following result is proved.

Result 1 For a given number of sensors, the numbers of holes and redundancies that must be present in the linear, planar or volume array satisfy the relation: 2

R(3π + 2(1 + α A )) + H(3π -2(1 + α A )) ≥ 2(1 + α A )M 2 -(M -1)(3π + 2(1 + α A )) (2.2)
where α A is given in the Appendix 3 .

Proof Let χ D be the characteristic function of the coarray associated with the fully populated array of apertures (A x , A y , A z ) and χ 0 : Z 3 → {0, 1} that of lag 0 whose Fourier transforms are respectively sin π(2Ax+1)fx sin πfx sin π(2Ay+1)fy sin πfy sin π(2Az+1)fz sin πfz and 1. As Λ(d) is the number of times the lag d appears in the array A, the difference

(d) def = Λ(d) -χ D (d) -(M -1)χ 0 (d) (2.3) satisfies for d in D: (d) = -1 if d is a hole, (d) is equal to the number of redundancies of that lag d if d is in D, except for d = 0 in which case (d) = 0. Consequently d∈D | (d)| = H + R. As the Fourier transform E(f ) of the even real function (d) is real, E(f ) ≤ |E(f )| ≤ d∈D | (d)| = H + R.
Therefore, taking the Fourier transform of (2.3) and noting that the Fourier transform L(f ) of the autocorrelation function Λ(d) is real non negative, there holds for all f :

- sin π(2A x + 1)f x sin πf x sin π(2A y + 1)f y sin πf y sin π(2A z + 1)f z sin πf z -(M -1) ≤ H + R -L(f ) ≤ H + R.
After simple manipulations detailed in the Appendix, we obtain:

2 3π (1 + α A )(2A x + 1)(2A y + 1)(2A z + 1) -(M -1) ≤ H + R. (2.4) 
Finally, substituting (2.1) in this expression yields (2.2). Result 1, identical to [3, rel. (19)] except for the presence of α A , improves the classic one-dimensional bound [START_REF] Graff | Optimal linear arrays for narrow-band beamforming[END_REF], and extends it to two-and three-dimensional arrays. Surprisingly, this result is invariant with respect to the dimensionality of the array. Putting respectively H = 0 and R = 0 in (2.2) gives lower bounds on R and H for respectively redundancy arrays and hole arrays. Whatever the dimensionality of the array may be, we have, for redundancy arrays R ≥ 2(1+α A )M 2 3π+2(1+α A ) -(M -1) and for hole arrays

H ≥ 2(1+α A )M 2 3π-2(1+α A ) -(M -1) 3π+2(1+α A ) 3π-2(1+α A )
. Thus, for large arrays, the lower bounds provided by [3, rel. (20) and ( 21)] are approximatively multiplied by 1.0237 .

Concerning the bounds on M , result 1 implies the following:

1. For perfect arrays, i.e., arrays with no redundancy or hole (R = 0 ; H = 0), result 1 implies 2(M 2 -M + 1) -3π(M -1) ≤ 0, therefore M ∈ {2, 3, 4}. Thus from (2.1), M 2 -M + 1 = (2A x + 1)(2A y + 1)(2A z + 1) = 3, 7 or 13. Since the product (2A x + 1)(2A y + 1)(2A z + 1) is prime, the only, non trivial solutions are:

M = 3 ; A x = 3 ; A y = A z = 0 and M = 4 ; A x = 6 ; A y = A z = 0.
These are the well-known linear perfect arrays [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF] and we prove that the only perfect arrays are linear.

2. For redundancy arrays [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF], i.e., arrays with no hole (H = 0), result 1 and (2.1) yield:

M 2 ≥ (2A x + 1)(2A y + 1)(2A z + 1) 1 + 2(1 + α A ) 3π , (2.5) 
which for A y = A z = 0 gives a tighter lower bound on M than [3, rel. (17)]. However, because of round-off effect, the improvement provided by (2.5) in the one-dimensional case is not regular and occurs for only certain values of A. For example, for LMR arrays, A = 69 is the lowest value of A for which the lower bound on M provided by [3, rel. (17)] and by (2.5) would be different (respectively M ≥ 13 and M ≥ 14).

3. For hole arrays [START_REF] Linebarger | Difference bases and sparse sensor arrays[END_REF], i.e. arrays with no redundancy (R = 0), result 1 and (2.1) yield:

(M -1) 2 ≤ (2A x + 1)(2A y + 1)(2A z + 1) 1 - 2(1 + α A ) 3π -1, (2.6) 
which for A y = A z = 0 gives a tighter upper bound on M than [3, rel. (26)]. But, as previously, the improvement in the one-dimensional case is not regular and, for example, for LMH arrays, A = 51 is the lowest value of A for which the upper bound on M provided by [3, rel. (26)] and by (2.6) would be different (respectively M ≤ 10 and M ≤ 9).

Design of sparse linear and volume arrays

To build efficient square and cubic redundancy arrays, two regular structures are known. The first ones, referred to by Pumphrey [START_REF] Pumphrey | Design of sparse arrays in one, two, and three dimensions[END_REF] as "cross product" (CP) arrays, are constructed from respectively two or three identical linear MR arrays. A square cross product array for example has an sensor at {i, j} if the linear array it is constructed from has an sensor at {i} and one at {j} (see Fig. 2). Note that these structures can be extended to nonidentical linear MR arrays. As linear MR arrays are built for any M , their optimal aperture A is a function A M of M . So associated cross product arrays are defined only for these apertures A M , for which the number of sensors is M 2 or M 3 . As for linear MR arrays [START_REF] Leech | On the representation of 1, 2, ..., n by differences[END_REF], [START_REF] Pillai | Array Signal processing[END_REF], 2.434 ≤ lim M →∞ M 2

A M ≤ 3.348, therefore these cross product structures satisfy respectively for the square and cubic arrays with M sensors,

2.434 ≤ lim M →∞ M A M ≤ 3.348 and 2.434 ≤ lim M →∞ M 2/3 A M ≤ 3.348. ( 3.1) 
Compared to (2.5), which gives for respectively linear, square and cubic redundancy arrays M 2 ≥ 2.434A + 1.217, M ≥ 2.207A + 1.103 and M 2/3 ≥ 2.135A + 1.068, these cross product redundancy arrays are potentially efficient. However, we note that the difference between the number of sensors given by the lower bound (2.5) and the one given by (3.1) increases with the dimensionality of the array. A second regular structure was proposed by Greene-Wood (GW) [START_REF] Greene | Sparse array performance[END_REF] for square arrays. The sensor location (i, j, k) of such an array of aperture A verifies : i = 0 or j = 0 or k = 0 or i = j = k = 2, • • • , A (k = 0 for square array cf. Fig. 2). It gives respectively M = 3A and M = A(3A + 4) for square and cubic arrays4 . Compared to (2.5), the Greene-Wood square array is a potentially efficient redundancy array contrary to the Greene-Wood cubic array. Naturally all these structures are not necessarily MR. 

Conclusion

A general formulation has enabled us to consider the notion of minimum hole and minimum redundancy arrays regardless of the dimensionality of the array. Thanks to this approach, tighter bounds have been given on the numbers of sensors, redundancies and holes for the linear arrays and similar bounds have been proposed for planar and volume arrays. As an application, the efficiency of regular planar and volume arrays with redundancies but no holes has been deduced. The number of sensors and configurations of square MR and MH arrays obtained by exhaustive computer search has been given. An example of square MR and MH array for each aperture is exhibited up to aperture 7. Finally, we note that designing simple regular structures of efficient hole arrays, or deducing hole planar and volume arrays from linear hole arrays, still presents a number of obstacles.

A Proof of (2. Combining these two values, (2.4) holds with α A def = max(α , α A ). We note that α A is decreasing in A x and a sharp examination of α A shows that α A = α A for A x < 6 (e.g. α 3 ≈ 0.0797) and α A = α ≈ 0.0237 for A x ≥ 6.
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 1243 Fig.1 Numbers of sensors (obtained by exhaustive computer search and bounds (2.5),(2.6)) versus aperture of square array.
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 432 Let s(A, f ) denote the expression -sin π(2Ax+1)fx sin πfx sin π(2Ay+1)fy sin πfy sin π(2Az+1)fz sin πfz. Because explicit calculation of max f s(A, f ) is complicated, we shall focus on two slightly smaller values. First, as max x -sin x x = 2 3π (1 + α ) with α = 0.0237 and sin x < x for x > 0, direct manipulations imply:2 3π (1 + α )(2A x + 1)(2A y + 1)(2A z + 1) ≤ max f s(A, f ).Second, suppose A x = min(A x , A y , A z ) without loss of generality. Forf 0 def = (f 0 , 0, 0), f 0 def = (2Ax+1) : -sin π(2A x + 1)f 0 sin πf 0 (2A y + 1)(2A z + 1) = s(A, f 0 ) ≤ max f s(A, f ).Using the classical relation between the periodic Fourier transform of a sequence and the Fourier transform of the associated analog waveform,sin π(2A x + 1)f 0 sin πf 0 = -+∞ k=-∞ sin(π(2A x + 1)(f 0 -k)) π(f 0 -k) = -sin π(2A x + 12A x + 1) 2α A )(2A x + 1)(2A y + 1)(2A z + 1) ≤ max f s(A, f ).

Table 1

 1 Table1exhibits, by exhaustive computer search, the number of MR and MH square arrays for apertures up to 6 (7 for MH square arrays), two arrays being considered different if none of them can be deduced from the other by an elementary transformation. We find that these arrays are not generally unique. However, Greene-Wood or cross product MR arrays exist for each of these apertures (except for A = 2). Numbers of sensors and configurations of square MR [resp. MH] arrays obtained by exhaustive computer search compared with lower bound (LB) [resp. upper bound (UB)], versus aperture.

			square MR array			square MH array
	Aperture	M min	LB Number of configurations	M max	UB	Number of
				Total	GW	CP			configurations
	2	7	6	2			5	5	1
	3	9	8	4	1	1	6	7	36
	4	12	10	4	1		8	8	4
	5	15	13	83	1		9	10	347
	6	16	15	≥ 1		1	11	12	1
	7		17				12	14	113

It is possible to consider other kind of grid as Haubrich[START_REF] Haubrich | Array design[END_REF] did, who considered sensors on an isometric or equilateral triangle grid and found perfect planar arrays in this way.

Note that in our formulation, lags d are in Z

, so our definitions of H and R differ from those of[3, rel. 19] in the linear case by the multiplicative factor 2.3 In particular it is shown in the Appendix that αA 1 and that αA ≈ 0.0237 for apertures ≥ 6.

Note that a more efficient cubic structure can be obtained by piling up identical GW square arrays for which the number of sensors is M = 3A(A + 1)