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Asymptotic normality of sample covariance matrix for

mixed spectra time series:

Application to sinusoidal frequencies estimation
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Abstract

This correspondence addresses the asymptotic normal distribution of the sample mean and the

sample covariance matrix of mixed spectra time series containing a sum of sinusoids and a moving

average process. Two central limit theorems are proved. As an application of this result, the asymptotic

normal distribution of any sinusoidal frequencies estimator of such time series based on second-order

statistics is deduced.
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1 Introduction

There is considerable literature (e.g. [1]-[4]) concerning the asymptotic Gaussian distribution of sample mean and

sample covariance matrix of real-valued stationary processes xt. Several situations have been considered, among

them xt is a generalized linear process, satisfies mixing conditions or is Gaussian with a power spectral density.

However, few contribution have been devoted to the asymptotic distributions of the sample covariance matrix

associated with mixed spectra time series. Subsequent to the revision of this manuscript, the reference [5] which

was brought to our attention, tackled this problem but with quite advanced statistical tools such as martingale

theory.

We will be concerned with real or complex 1 valued processes of the type

xt = m+

K∑
k=1

ak cos(2πfkt+ φk) + vt or xt = m+

K∑
k=1

ake
iφkei2πfkt + vt (1.1)

with

vt =

Q∑
q=0

bqut−q. (1.2)

Throughout this paper, (ut)t=1,...,n is a sequence of zero-mean i.i.d. random variables where E|u4t | < ∞, with

cu
def
= E(u2t ), κu

def
= Cum(ut, ut, ut, ut) and cu

def
= E|u2t |, c′u

def
= E(u2t ), κu

def
= Cum(ut, u

∗
t , ut, u

∗
t ), respectively in the

real and the possibly noncircular 2 complex case. (ak)k=1,...,K and (bq)q=0,...,Q are unknown fixed real or complex

numbers respectively. m is an unknown fixed number and fk are unknown fixed distinct real numbers in ]0, 1/2[

for real valued processes [resp. in ]− 1/2,+1/2[ for complex valued processes]. For the phases φk, the model (1.1)

can be interpreted in two different ways, leading to different statistical descriptions.

1. We can assume that φk are random variables uniformly distributed on [0, 2π] and that (φk)k=1,...,K and ut

are mutually independent. In this case xt is a wide-sense stationary process.

2. We can assume that φk are nonrandom unknown parameters 3 and so xt is a not a wide-sense stationary

process.

We are interested in the asymptotic distribution of the sample mean mn
def
= 1

n

∑n
t=1 xt and of the sample

covariance matrix Rn
def
= 1

n

∑n
t=1(xt−mn)(xt−mn)T in the real case [resp., Rn

def
= 1

n

∑n
t=1(xt−mn)(xt−mn)H

in the complex case], where xt
def
= (xt, xt−1, . . . , xt−p+1)T and mn

def
= (mn, . . . ,mn)T . The asymptotic normality of

the sample mean mn and sample covariance matrix Rn is proved in Section 2. As an application of this result, the

1Complex processes appear as complex envelope of bandpass real processes.
2Here, circular refers to second-order circular (see e.g. [6] which is sometimes called “proper”(see [7]).
3In this model fk 6= 0, otherwise m would be a special case of a sinusoid.
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asymptotic normal distribution of any sinusoidal frequencies estimator of such time series, based on second-order

statistics, is derived in Section 3.

2 Central limit theorems

For the convenience of the reader, the definition of the complex Gaussian distribution is recalled. A complex

random p×1 vector y has a zero-mean complex Gaussian distribution specified by p×p positive definite matrix Σ1

and p× p symmetric matrix Σ2 and denoted N (0; Σ1,Σ2) 4 if the 2p-joint distribution of the real and imaginary

part of y is 2p-zero-mean real Gaussian, i.e. for any complex p× 1 vector w: the real scalar wHy + (wHy)H has

a zero-mean real Gaussian distribution with variance

2wHΣ1w + wHΣ2w
∗ + wTΣ∗2w (2.1)

where E(yyH) = Σ1 and E(yyT ) = Σ2.

Considering the sample mean, the following theorem is proved in the Appendix.

Theorem 1
√
n (mn −m) converges in distribution to the zero-mean real [resp., complex] Gaussian distribution

of variance cm [resp., cm, c
′
m] in the real case [resp., in the complex case] irrespective of the phase model.

√
n (mn −m)

L→ N (0, cm) [resp., N (0; cm, c
′
m)]. (2.2)

Furthermore

lim
n→∞

E(mn) = m and lim
n→∞

nVar(mn) = cm (2.3)

where cm and c′m are defined as:

cm = cu

∣∣∣∣∣
Q∑
q=0

bq

∣∣∣∣∣
2

and c′m = c′u

(
Q∑
q=0

bq

)2

. (2.4)

Then, considering the sample covariance matrix, if R denotes respectively E[(xt −m)(xt −m)T ] and E[(xt −

m)(xt −m)H ] in the real and the complex case of the first statistical model with m
def
= (m, . . . ,m)T , the following

theorem is proved in the Appendix.

4This notation was introduced by [6]. The matrix Σ2 is respectively called relation matrix by [6] and pseudo-covariance

matrix by [7].

3



Theorem 2
√
n (Vec(Rn)−Vec(R)) 5 converges in distribution to the zero-mean real [resp., complex] Gaussian

distribution of covariance CR [resp., CR,CRK] in the real case [resp., in the complex case], irrespective of the

phase model.

√
n (Vec(Rn)−Vec(R))

L→ N (0,CR) [resp., N (0,CR,CRK)]. (2.5)

Furthermore

lim
n→∞

E(Rn) = R and lim
n→∞

nCov (Vec(Rn)) = CR (2.6)

where CR is defined respectively in the real and the complex cases as:

CR =

∫ +1/2

−1/2
S2
v(f)

[
e(f)eH(f)⊗c e(f)eH(f) + e(f)eT (f)⊗c e(f)eT (f)

]
df + κuVec(BBT )VecT (BBT )

+
1

2

K∑
k=1

a2kSv(fk)
[
e(fk)eH(fk)⊗c e(fk)eH(fk) + e(−fk)eH(−fk)⊗c e(−fk)eH(−fk)

]
+

1

2

K∑
k=1

a2kSv(fk)
[
e(fk)eH(−fk)⊗c e(fk)eH(−fk) + e(−fk)eH(fk)⊗c e(−fk)eH(fk)

]
, (2.7)

CR =

∫ +1/2

−1/2
S2
v(f)

[
e(f)eH(f)⊗c e(f)eH(f)

]
df +

∫ +1/2

−1/2
S′

2
v(f)

[
e(f)eT (f)⊗c e(f)eT (f)

]
df

+2

K∑
k=1

a2kSv(fk)[e(fk)eH(fk)⊗c e(fk)eH(fk)] + κuVec(BBH)VecH(BBH), (2.8)

with e(f)
def
= (1, ei2πf , . . . , ei2(p−1)πf )H , where ⊗c denotes the complex Kronecker product A ⊗c B, i.e. the

block matrix, the (i, j) block element of which is b∗i,jA
6 and K is the vec-permutation matrix which trans-

forms Vec(A) to Vec(AT ) for any square matrix A. Sv(f)
def
= cu

∣∣∣∑Q
q=0 bqe

−i2πfq
∣∣∣2 i.e., the spectral density

of vt and S′v(f)
def
= |c′u|

∣∣∣(∑Q
q=0 bqe

−i2πfq
)(∑Q

q=0 bqe
+i2πfq

)∣∣∣. B denotes the p × (p + Q) filtering matrix
b0 b1 · · · bQ

. . .
. . .

b0 b1 · · · bQ

.

Remark 1 In (2.6), Cov (Vec(Rn)) denotes E(Vec(Rn −R)VecH(Rn −R)). We note that

VecT (Rn −R) = VecH(Rn −R)K (2.9)

so E(Vec(Rn−R)VecT (Rn−R)) = E(Vec(Rn−R)VecH(Rn−R))K. Therefore the noncircular complex Gaussian

asymptotic distribution of Rn is characterized by CR only.

5Vec(.) is the “vectorization” operator that turns a matrix into a vector consisting of the columns of the matrix stacked

one below another.
6This slightly unusual convention makes it easier to deal with complex matrices.
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Remark 2 We note that expression (2.7) of CR obtained in the real case, cannot be deduced from expression (2.8)

in the complex case as suggested by the Euler relation applied to relation (1.1):

ak cos(2πfkt+ φk) =
ak
2
eiφkei2πfkt +

ak
2
e−iφke−i2πfkt.

In fact, if S′v(f), BH and a2k[e(fk)eH(fk) ⊗c e(fk)eH(fk)] are respectively replaced with Sv(f), BT and(
ak
2

)2
[e(fk)eH(fk) ⊗c e(fk)eH(fk)] +

(
ak
2

)2
[e(−fk)eH(−fk) ⊗c e(−fk)eH(−fk)], an extra cross-term appears in

(2.7). This surprising property is apparently contradictory, given the result that the asymptotic distribution of

the sample covariance matrix does not depend on the phase model. In fact, the explanation comes from certain

expressions proved in the complex case in the appendix (see footnote 8) being valid only if no frequencies are

opposite. The fact that φk and −φk, associated with fk and −fk are not independent, is irrelevant.

Remark 3 We note that for “very narrow-band” (i.e. the bandwidth is very small with respect to the sampling

frequency) MA processes vt, the expressions (2.7) and (2.8) are unbounded. For example, when vt tends to be

white in [f0 − b, f0 + b] with finite fixed power cv, the expression (2.7) and (2.8) are not bounded with b, because

Sv(f) tends to


cv
2b for |f − f0| ≤ b

0 elsewhere

which implies that CR contains the terms
∫ +1/2

−1/2 S
2
v(f)df that tend to

c2v
2b .

Since the matrix R is Toeplitz, the “accuracy” of its sample covariance estimate Rn which is non-Toeplitz should

be improved by replacing it by its “Toeplitzed” estimate. This “Toeplitzation” also known as redundancy averaging

in statistical signal and array processing applications [9], is carried out by averaging along the diagonals. The

resulting estimate Rto
n is referred as the “Toeplitzed” estimated covariance matrix. Because this “Toeplitzation”

operates a linear transform on Rn, theorem 2 extends as follows:

Corollary 1 Vec(Rn) and Vec(Rto
n ) have the same asymptotic Gaussian distribution. It is characterized by the

asymptotic distribution of the first column rn of Rn. In the real case [resp., in the complex case], we have:

√
n (rn − r)

L→ N (0,Cr) [resp., N (0; Cr,C
′
r)]. (2.10)

Furthermore

lim
n→∞

E(rn) = r and lim
n→∞

nE[(rn − r)(rn − r)T ] = Cr (2.11)

[resp., lim
n→∞

nE[(rn − r)(rn − r)H ] = Cr lim
n→∞

nE[(rn − r)(rn − r)T ] = C′r](2.12)

where Cr, [resp., Cr,C
′
r] is defined in the real [resp., complex] case as:

Cr =

∫ +1/2

−1/2
S2
v(f)

[
e(f)eH(f) + e(f)eT (f)

]
df + κuBbbTBT
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+
1

2

K∑
k=1

a2kSv(fk)
[
e(fk)eH(fk) + e(−fk)eH(−fk) + e(fk)eH(−fk) + e(−fk)eH(fk)

]
, (2.13)

Cr =

∫ +1/2

−1/2

[
S2
v(f)e(f)eH(f) + S′

2
v(f)e(f)eT (f)

]
df + κuBbbHBH + 2

K∑
k=1

a2kSv(fk)e(fk)eH(fk), (2.14)

C′r =

∫ +1/2

−1/2

[
S2
v(f)e(f)eT (f) + S′

2
v(f)e(f)eH(f)

]
df + κuBb∗bHBT + 2

K∑
k=1

a2kSv(fk)e(fk)eT (fk),(2.15)

with b is the (p+Q)× 1 vector (b0, . . . , bQ, 0, . . . , 0)T .

Remark 3 In the complex case, we note that contrary to Rn (see remark 1), the asymptotic distribution of rn is

not caracterized by Cr only.

Relation (2.11) reads componentwise with rn
def
= (r0n, . . . , r

p−1
n )T and rib

def
=

b0bi + . . .+ bQ−ibQ 0 ≤ i ≤ Q

0 Q < i ≤ p− 1.

lim
n→∞

nCov(rin, r
j
n) = 2

∫ +1/2

−1/2
S2
v(f) cos(2πif) cos(2πjf)df+2

K∑
k=1

a2kS
2
v(fk) cos(2πifk) cos(2πjfk)+κur

i
br
j
b , i, j ≥ 0.

This extends the property given by [10] and by [3, Theorem 9.4] where vt is respectively a sequence of i.i.d. zero

mean random variables with E(v4t ) <∞ or a sequence of i.i.d. Gaussian distributed zero mean random variables.

3 Application to estimation of sinusoidal frequencies

Theorem 2 allows us to derive the asymptotic performance of most covariance-based sinusoidal frequencies esti-

mation algorithms. With this aim, we adopt a functional analysis approach which consists in recognizing that the

whole process of constructing an estimate fn of f
def
= (f1, . . . , fK)T is equivalent to defining a functional relation-

ship linking this estimate fn to the statistics Rn from which it is inferred. This functional dependence is denoted

fn = alg(Rn). Clearly, f = alg(R) with R = E(f)∆EH(f) + cuBBH 7, where E(f)
def
= (e(f1), . . . , e(fK)) and

∆
def
= Diag(a21, . . . , a

2
K). So the different algorithms alg(.) constitute distinct extensions of the mapping R

alg7→ f

generated by any unstructured Hermitian matrix Rn. In the following, we consider “regular” algorithms. More

specifically, we assume the following conditions:

1. The function alg(.) is differentiable in a neighborhood of R, i.e., if Dalg
f,R

8 denotes the K × p2 matrix of this

7We consider complex case only, extension to the real case is straightforward.
8Expressions of Dalg

f,R are ordinarily deduced from perturbation calculus (see e.g. in [11] for the standard MUSIC

algorithm).
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differential evaluated at point R

alg(R + δR) = f + Dalg
f,RVec(δR) + o(δR). (3.1)

2. For any f , any positive definite diagonal matrix ∆ and any cu

alg
(
E(f)∆EH(f) + cuBBH

)
= f . (3.2)

These two requirements are met for example by the high resolution second-order frequency estimators such as

MUSIC, weighted MUSIC, Min-Norm, TAM and ESPRIT, which all assume that vt is white. With the conditions

(3.1) and (3.2), the following result is proved in the Appendix.

Theorem 3
√
n (fn− f) converges in distribution to the zero-mean Gaussian distribution of covariance Cf which

is invariant with respect to the distribution of the noise innovation.

√
n (fn − f)

L→ N (0,Cf ) (3.3)

with

Cf =

∫ +1/2

−1/2
Dalg
f,R

[
S2
v(f)

(
e(f)eH(f)⊗c e(f)eH(f)

)
+ S′

2
v(f)

(
e(f)eT (f)⊗c e(f)eT (f)

)] (
Dalg
f,R

)H
df. (3.4)

So, although the asymptotic covariance of Vec(Rn) is very sensitive to the distribution of ut, (nCov(Vec(Rn)) is

unbounded for the super-Gaussian case under the constraint of fixed power because of κu in expressions (2.7) and

(2.8)), the asymptotic performance of most covariance-based sinusoidal frequencies estimators is invariant with

respect to the distribution of the noise innovation. However, this asymptotic covariance Cf keeps unbounded for

narrow-band noise of fixed power because of the term
∫ +1/2

−1/2 S
2
v(f)df in the expression (3.4). We note that theorem

3 extends a result given in [13] where explicit expressions for the covariance of the estimation errors associated

with MUSIC and ESPRIT methods are derived for complex circular Gaussian white noise.

In the special case where the spectral density Sv(f) is known up to a multiplicative constant, the whitening of

the noise used classically in direction of arrival estimation (DOA) (see e.g. [14]) can be used to advantage. In this

approach, after vt is whitened by a linear transformation applied to xt, any covariance-based DOA methods based

on a calibrated array of generic steering vector in white noise (such as MUSIC, weighted MUSIC, Min-Norm,...) can

be used. In these circumstances, it makes sense to study the influence of the spectrum of vt and the selected linear

transformation on the performance of this sinusoidal frequency estimator. Considering our functional analysis,

theorem 3 answers this question. The process vt is whitened using the Cholesky decomposition LHL of (BBH)−1

7



(see e.g. [15, relation 1.7.19]) and any unitary matrix Q:

(BBH)−1 = L′
H

L′ with L′
def
= QL

and the covariance matrix of xt becomes:

R′ = L′E(f)∆ (L′E(f))
H

+ cuI.

If alg (.) denotes an algorithm based on generic steering vector and white noise assumption, the sinusoidal fre-

quencies are estimated with the following scheme:

Rn 7→ R′n
def
= L′RnL′

H alg7→ fn ⇒ Rn
alg′7→ fn.

Applying the chain differential rule, theorem 3 applies in this situation by replacing in (3.4), Dalg
f,R by Dalg′

f,R =

Dalg
f,R′(L

′ ⊗c L′), because Vec(R′n) = (L′ ⊗c L′)Vec(Rn).

A Proof of theorems

The complex case is considered only as the same approach may be used for the real case.

A.1 Proof of theorem (1)

First of all,
√
n (mn −m) is decomposed as

√
n (mn −m) =

K∑
k=1

ake
iφk

1√
n

(
n∑
t=1

ei2πfkt

)
+

1√
n

n∑
t=1

vt. (A.1)

Because
∣∣∑n

t=1 e
i2πfkt

∣∣ =
∣∣∣ sinπnfksinπfk

∣∣∣ is bounded, the first term of (A.1) converges almost surely to 0 when n → ∞

whatever the phase model. Thus, we can consider the term 1√
n

∑n
t=1 vt only, in the study of the convergence in

distribution of
√
n (mn − m). Let yt

def
= w∗vt + wv∗t . yt is a real stationary Q−dependent sequence of random

variables with mean zero and correlation γk with

γk =

Q∑
q=0

cu|w|2(b∗k+qbq + bk+qb
∗
q) + c′uw

∗2bk+qbq + c′
∗
uw

2b∗k+qb
∗
q .

The conditions of [2, theorem 6.4.2] are fulfilled. Thus, 1√
n

∑n
t=1 yt converges in distribution to the zero-

mean real Gaussian distribution of variance cy = γ0 + 2
∑Q
q=1 γq and limn→∞ nVar

(
1
n

∑n
t=1 yt

)
= cy with

cy = 2|w|2cu
∣∣∣∑Q

q=0 bq

∣∣∣2 + w∗2c′u

(∑Q
q=0 bq

)2
+ w2c′

∗
u

(∑Q
q=0 b

∗
q

)2
. The theorem follows thanks to (2.1).
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A.2 Proof of theorem (2)

Because 1
n

∑n
t=1 vt converges in probability to 0 (see e.g. [2, proposition 6.3.10]), mn converges in probability to

m. Using a classical result (e.g. deduced from [2, proposition 6.3.4] and [2, proposition 6.3.7]), we can deduce

that studying the asymptotic distribution of Rn, boils downs to studying the asymptotic distribution of R′n
def
=

1
n

∑n
t=1(xt −m)(xt −m)H . Then, using Vec(abH) = a⊗c b, Vec(R′n −R) is decomposed as

Vec(R′n −R) =
1

n

n∑
t=1

(z1t + z2t )

with z1t
def
= ct⊗c vt+vt⊗c ct+vt⊗c vt−Vec(Rv) and z2t

def
=
∑

1≤k 6=k′≤K akak′e
i(φk−φk′ )ei2π(fk−fk′ )te(fk)⊗c e(fk′)

where ct
def
=
∑K
k=1 ake

iφkei2πfkte(fk), vt
def
= (vt, vt−1, . . . , vt−p+1)T and Rv

def
= E(vtv

H
t ). Because

‖|
√
n

1

n

n∑
t=1

z2t‖ ≤
1√
n

∑
1≤k 6=k′≤K

akak′ |
sin(πn(fk − fk′)
sin(π(fk − fk′)

| ‖e(fk)⊗c e(fk′)‖,

√
n 1
n

∑n
t=1 z2t converges almost surely to 0 when n → ∞. Thus, we can consider the term

√
n
n

∑n
t=1 z1t alone, in

the study of the convergence in distribution of
√
n Vec (R′n −R). To prove the convergence in distribution of

√
n 1
n

∑n
t=1 z1t to a zero-mean noncircular complex Gaussian distribution, we consider the associated scalar real

random variable yt
def
= wHz1t + (wHz1t )

H (see definition of Section 2). The conditional distribution of (yt)t=1,...,n

given the phases (φk)k=1,...,K is a zero-mean real distribution of L-dependent (with L = p + Q) but not strictly

stationary random variables because yt are not identically distributed. As such, the conditions of [2, theorem 6.4.2]

are no longer fully satisfied.

To prove theorem 2, we continue to make use of [2, theorem 6.4.2] by some modifications of its proof. Following

this proof, we must consider first, the limit of nVar
(
1
n

∑n
t=1 yt/φ

)
when n→∞. Thanks to (2.9), this expression

may be written as:

2wH

 1

n

∑
1≤s,t≤n

E(z1sz
1
t
H
/φ)

w + wH

 1

n

∑
1≤s,t≤n

E(z1sz
1
t
H
/φ)

Kw∗ + wT

 1

n

∑
1≤s,t≤n

E(z1sz
1
t
H
/φ)

∗Kw (A.2)

where 1
n

∑
1≤s,t≤n E(z1sz

1
t
H
/φ) = Ta + Tb + Tc with

Ta
def
=

1

n

∑
1≤s,t≤n

E((vs ⊗c cs)(c
H
t ⊗c vHt )/φ) + E((cs ⊗c vs)(v

H
t ⊗c cHt )/φ),

Tb
def
=

1

n

∑
1≤s,t≤n

E((vs ⊗c cs)(v
H
t ⊗c cHt )/φ) + E((cs ⊗c vs)(c

H
t ⊗c vHt )/φ),

Tc
def
=

1

n

∑
1≤s,t≤n

E ((vs ⊗c vs −Vec(Rv)(vt ⊗c vt −Vec(Rv))
H
.

Thanks to the following property of the vec-permutation matrix K

(aH ⊗c bH)K = bT ⊗c aT , (A.3)
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E((vs⊗c cs)(c
H
t ⊗c vHt )/φ) + E((cs⊗c vs)(v

H
t ⊗c cHt )/φ) =

[
(E(vsv

T
t )⊗c csc

T
t ) + (csc

T
t ⊗c E(vsv

T
t ))
]
K, thus the

first term of Ta becomes:

p+Q−1∑
l=−p−Q+1

R′v(l)⊗c

 ∑
1≤k,k′≤K

akak′e
i(φk+φk′ )e−i2πfk′ l

 1

n

∑
s∈Sn,l

ei2π(fk+fk′ )s

 e(fk)eT (fk′)

K

with R′v(l)
def
= E(vsv

T
s−l) and Sn,l is the set {s, 1 ≤ s ≤ n − l for l ≥ 0 or −l + 1 ≤ s ≤ n for l ≤ 0}. Because

limn→∞ | 1
n

∑
s∈Sn,l

ei2π(fk+fk′ )s |= 0 9, the first term of Ta and therefore the term Ta tends to O when n→∞.

As E((vs⊗c cs)(v
H
t ⊗c cHt )/φ) + E((cs⊗c vs)(c

H
t ⊗c vHt )/φ) =

(
E(vsv

H
t )⊗c csc

H
t

)
+
(
csc

H
t ⊗c E(vsv

H
t )
)
, the first

term of Tb becomes:

p+Q−1∑
l=−p−Q+1

Rv(l)⊗c

 ∑
1≤k,k′≤K

akak′e
i(φk−φk′ )ei2πfk′ l

 1

n

∑
s∈Sn,l

ei2π(fk−fk′ )s

 e(fk)eH(fk′)


with Rv(l)

def
= E(vsv

H
s−l). Because limn→∞ | 1

n

∑
s∈Sn,l

ei2π(fk−fk′ )s |= 0 for fk 6= fk′ and 1 for fk = fk′ ,

the first term of Tb tends to
∑

1≤k≤K a
2
k

(∑p+Q−1
l=−p−Q+1 Rv(l)

)
e−i2πfkl ⊗c e(fk)eH(fk) when n → ∞. With(∑p+Q−1

l=−p−Q+1 Rv(l)
)
e−i2πfkl = Sv(fk)e(fk)eH(fk), the term Tb tends to

2
∑

1≤k≤K

a2kSv(fk)
[
e(fk)eH(fk)⊗c e(fk)eH(fk)

]
. (A.4)

Then, because vt = But with ut
def
= (ut, ut−1,...,ut−p−Q+1

)T , the term Tc becomes:

(B⊗c B)nCov(Vec(Ru
n))(BH ⊗c BH) (A.5)

with Ru
n

def
= 1

n

∑n
t=1 utu

H
t . [nCov(Vec(Ru

n))](j−1)(p+Q)+i,(l−1)(p+Q)+k then becomes:

1

n

∑
1≤s,t≤n

E(us−i+1u
∗
s−j+1u

∗
t−k+1ut−l+1)− E(us−i+1u

∗
s−j+1)E(u∗t−k+1ut−l+1). (A.6)

By definition of Cum(us−i+1, u
∗
s−j+1, u

∗
t−k+1, ut−l+1), (A.6) is decomposed as

E(us−i+1u
∗
t−k+1)E(us−j+1u

∗
t−k+1) + E(us−i+1ut−l+1)E(u∗s−j+1u

∗
t−k+1) + Cum(us−i+1, u

∗
s−j+1, u

∗
t−k+1, ut−l+1).

These three terms are respectively equal to
c2u for s− t = i− k = j − l

0 elsewhere

,


|c′u|2 for s− t = i− l = j − k

0 elsewhere

,


κu for i = j, k = l and s− t = i− k

0 elsewhere

.

Consequently, limn→∞[nCov(Vec(Ru
n))](j−1)(p+Q)+i,(l−1)(p+Q)+k is defined and decomposed as

c2u for i− k = j − l

0 elsewhere

+


|c′u|2 for i− l = j − k

0 elsewhere

+


κu for i = j, k = l

0 elsewhere

9Except for the specific case where two frequencies fk are opposite.
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whose associated matrix is

c2u

∫ +1/2

−1/2

[
e(f)eH(f)⊗c e(f)eH(f)

]
df + |c′u|2

∫ +1/2

−1/2

[
e(f)eH(f)⊗c e(f)eH(f)

]
Kdf + κuVec(I)VecT (I).

Then

(B⊗c B)

[∫ +1/2

−1/2

[
e(f)eH(f)⊗c e(f)eH(f)

]
df

]
(BH ⊗c BH) =

∫ +1/2

−1/2
(Be(f)eH(f)BH)⊗c (Be(f)eH(f)BH)df,

(B⊗c B)

[∫ +1/2

−1/2

[
e(f)eH(f)⊗c e(f)eH(f)

]
Kdf

]
(BH ⊗c BH) =

∫ +1/2

−1/2
(Be(f)eH(f)BT )⊗c (Be(f)eH(f)BT )df

thanks to (A.3) with cuBe(f)eH(f)BH = Sv(f)e(f)eH(f) and |c′u|Be(f)eH(f)BT = S′v(f)e(f)eH(f). And then

κu(B⊗c B)Vec(I)VecT (I)(BH ⊗c BH) = κuVec(BBH)VecH(BBH)

thanks to Vec(ABC) = (A ⊗c CH)Vec(B). Putting together the limits of term Tb and of term Tc,

limn→∞
1
n

∑
1≤s,t≤n E(z1sz

1
t
H
/φ) is defined and does not depend on the phases φk. Thanks to (A.2) and (2.1),

we get expression (2.8) irrespective of the phase model.

Then, following the proof of [2, theorem 6.4.2], the application of the classical central limit (CL) theorem (e.g.

[2, theorem 6.4.1]) to the sum:

1√
n

r∑
t=1

yt,k with yt,k
def
= y(t−1)k+1 + . . .+ ytk−L, where r

def
= bn/kc and k fixed with k > L

for n → ∞ is not valid because (yt,k)t=1,...,r are zero-mean independent but not identically distributed random

variables. We replace the classical CL theorem by the Lyapunov theorem (see e.g. [8, p. 371]) by verifying the

following Lyapunov’s condition [8, relation (27.16)] with δ = 2:

lim
r→∞

∑r
t=1 E(y2+2

t,k /φ)(√∑r
t=1 E(y2t,k/φ)

)2+2 = 0. (A.7)

As 1
n

∑r
t=1 E(y2t,k/φ) = nVar

(
1
n

∑r
t=1 yt,k/φ

)
, we get after similar manipulations as previously that∑r

t=1 E(y2t,k/φ) ∝ n when n → ∞. On the other hand, 1
n

∑r
t=1 E(y4t,k/φ) can be decomposed as the sum of

terms

ca,b,c,d(w)
1

n

r∑
t=1

 ∑
1≤l,l′,l′′,l′′′≤k−L

E
(

(z1(t−1)k+l)
sa
a (z1(t−1)k+l′)

sb
b (z1(t−1)k+l′′)

sc
c (z1(t−1)k+l′′′)

sd
d /φ

) , (A.8)

for 0 ≤ a, b, c, d ≤ p2, where ca,b,c,d(w) is an appropriate function of w and where (y1
(t−1)k+l)

si
i denotes the i-th

component of y1
(t−1)k+l which is conjugated for certain indices. Because an examination of the term (A.8) shows

that it has a limit when n → ∞,
∑r
t=1 E(y4t,k/φ) ∝ n when n → ∞. So Lyapounov’s condition (A.7) with δ = 2
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is proved. Therefore the conditional real scalar random variable

∑r

t=1
yt,k√∑r

t=1
E(y2

t,k
/φ)

converges in distribution to the

zero-mean, unit variance real Gaussian distribution when r →∞.

Finally, incorporating the other elements of the proof of [2, theorem 6.4.2],
√
n 1
n

∑n
t=1 yt converges in distribu-

tion to the zero-mean, Gaussian distribution of variance 2wHCRw + wHCRKw∗ + wTC∗RKw with CR given by

(2.8). And by application of the Cramer-Wold theorem [8, theorem 29.4], the complex random vector
√
n 1
n

∑n
t=1 z1t

converges in distribution to the zero-mean complex noncircular Gaussian distribution N (0; CR,CRK).

A.3 Proof of corollary (1)

Thanks to the “Toeplitzation” projection matrix To, Vec(Rto
n ) = ToVec(Rn). Therefore, theorem 2 extends to

Rto
n with the asymptotic covariance matrix Cto

R = ToCRTo. Because

e(fk)e+(fl)⊗c e(fk)e+(fl) = (e(fk)⊗c e(fk))(e+(fl)⊗c e+(fl)) with +
def
= T or H

and e(fi)⊗c e(fi) = Vec(e(fi)e
H(fi)) with e(fi)e

H(fi) is a Toeplitz matrix,

To

(
e(fk)e+(fl)⊗c e(fk)e+(fl)

)
To = e(fk)e+(fl)⊗c e(fk)e+(fl).

Then, because BB+ is also a Toeplitz matrix, relation ToCRTo = CR is proved. Therefore the “Toeplitzation”

does not improve the covariance estimate and the expressions of Cr and C′r are given by the blocks (1,1) of CR

and C′R respectively.

A.4 Proof of theorem (3)

From the regularity condition (3.1), the asymptotic behaviors of fn and Rn are directly related. The standard

result on regular functions of asymptotically normal statistics (see e.g. [12, theorem, p. 122]) applies. So (3.3)

holds with Cf = Dalg
f,RCR

(
Dalg
f,R

)H
. Furthermore, this closed-form expression simplifies if the conditions (1) and

(2) are taken into account.

f = alg
(
E(f)(∆ + δ∆)EH(f) + (cu + δcu)BBH

)
= f + Dalg

f,RVec
(
E(f)δ∆EH(f) + δcuBBH

)
+ o(δ∆) + o(δcu)

= f + Dalg
f,R

(
K∑
k=1

δa2k(e(fk)⊗c eH(fk)) + δcuVec(BBH)

)
+ o(δ∆) + o(δcu), (A.9)

where Vec(e(fk)eH(fk)) = e(fk)⊗c eH(fk) is used in the third equality. Therefore the following constraints upon

Dalg
f,R hold:

Dalg
f,R[e(fk)⊗c eH(fk)] = 0, k = 1, . . . ,K and Dalg

f,RVec(BBH) = 0 (A.10)
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and using the expression (2.8), the proof follows.
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