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The purpose of this paper is to determine the domain of validity of spatial covariance-based nar-

rowband DOA algorithms when processing non-narrowband data. By focusing on the case of one

source and two equipowered uncorrelated sources of the same bandwidth, we examine order detection

and asymptotic bias and covariance w.r.t. the bandwidth and the number of snapshots given by any

narrowband algorithm. An order detector scheme, based on numerical analysis arguments introduced

in channel order detection, is proposed. Closed-form expressions are given for the asymptotic bias

and covariance of the DOA’s estimated by the MUSIC algorithm, for which we show the key role that

bandwidth plays w.r.t. the demodulation frequency. Furthermore, a common closed-form expression

of the Cramer-Rao bound is given for the DOA parameter of a narrowband or wideband source, whose

spectrum is symmetric w.r.t. the demodulation frequency, in the case of an arbitrary array. This allows

us to prove that the MUSIC algorithm retains its efficiency over a large bandwidth range under these

conditions.

1 Introduction

The problem of estimating the directions of arrival (DOA) of multiple plane waves impinging on an array of sensors

may be classified into narrowband and wideband data processing, according to whether the complex envelope of the

received signals can be considered as constant versus variable in time along the array. As the wideband approaches

generally require an increased computational complexity (see e.g., [12] and the references therein) compared to

the narrowband ones, it is of interest to examine if the narrowband methods can be used for a sufficiently wide

bandwidth without sacrificing performance. This question, interestingly, has received little attention in the lit-

erature. Schell and Gardner [17] mention the breakdown of narrowband approximations as one departure from

ideality among potentially others. Several authors have proposed definitions of the narrowband scenario but have

not related it to the performance of DOA algorithms. Based on the result shown in [4] that more than 99.99% of the

received power from a single signal is characterized by the r = d2bτθ + 1e largest eigenvalues of the spatio-temporal

covariance matrix (where b is the bandwidth of the received signal and τθ is the propagation time across the array

including time spent traveling through the delay lines in the sensors), Buckley [4] defined as a narrowband scenario

the case where 2bτθ + 1 is sufficiently close to one. For wider bandwidths and greater propagation time across the

array, this notion of effective rank allows Buckley and Griffiths [5] to propose a signal subspace algorithm in the
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context of wideband signals. A similar approach has been proposed in the context of spatial signal processing in

[22] in which a signal is considered narrowband if the second eigenvalue of the signal’s noise-free spatial covariance

matrix is smaller than the noise power. And recently, the effect of nonzero bandwidth which is symmetric spectra

w.r.t. the demodulation frequency of the estimated DOA’s has been analyzed in [18].

The purpose of this work is twofold. First, we extend the analysis of [18] to the case of nonsymmetric spectra

and/or offset of the centered value of the spectra w.r.t. the demodulation frequency. Second, considering order

detection, the Cramer-Rao bound and the comparison between narrowband and wideband algorithms, we prove

that the vague definition of a narrowband scenario often given in the literature, namely, that the array aperture is

much less than the inverse relative bandwidth (i.e., Mb
f0
� 1 where M denotes the number of sensors and where the

spacing between sensors is the halfwavelength) is far too severe in the cases of one source or of two equipowered

uncorrelated sources of the same bandwidth.

This paper is organized as follows. After the data model and some notations are introduced in Section 2, the

performance of the eigendecomposition-based order detectors are considered, where a criterion based on numerical

analysis arguments [13] is proposed in Section 3. The asymptotic bias and covariance (w.r.t. the number of

snapshots and the signal bandwidth) of the estimated DOA’s are then studied and illustrated in the case of the

standard MUSIC algorithm in Section 4. A common closed-form expression of the Cramer-Rao bound (CRB) is

given for the DOA parameter of a narrowband or wideband single source of any power spectral density symmetric

w.r.t. the demodulation frequency in the case of an arbitrary array in Section 5. Finally, Section 6 is devoted to

comparisons between narrowband and wideband algorithms for two scenarios.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H and ∗

stand for transpose, conjugate transpose, conjugate, respectively. E(·), Cov(·) and Tr(·) denote the expectation,

the covariance and the trace, respectively. Vec(.) is the “vectorization” operator that rearranges a matrix into

a vector consisting of the columns of the matrix stacked one below another; it will be used in conjunction with

the Kronecker product A ⊗ B as the block matrix whose (i, j) block element is ai,jB. The symbol � denotes

elementwise multiplication of A and B ([A�B]i,j = Ai,jBi,j). Diag(a1, . . . , an) is a diagonal matrix with diagonal

elements ai and 1 is the vector of all ones, whose dimension is inferred from the context.
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2 Data model

Consider K radiating sources impinging on an arbitrary array of M sensors. The received signals that are assumed

wide-sense stationary, are bandpass filtered 1 (with bandwidth B) around the frequency f0 of interest (with B < 2f0,

see e.g., [11, Section 15.3]). After down-shifting the sensor signals to baseband, the complex envelope is generated.

If the background noise is white, the continuous-time noise envelope is white in the bandwidth [−B2 ,+
B
2 ]. After

sampling the complex envelope signals at the rate 1
Ts
� B, the M -vectors of observed complex envelope at the

array output at times t = 1, . . . , T form independent snapshots. The M -vector nt, containing the complex envelope

of the noise, is assumed throughout the paper to be temporally and spatially uncorrelated, with E(ntn
H
t ) = σ2

nIM ,

and independent of the sources. If skt denotes the complex envelope of the kth source w.r.t. the frequency f0 of

interest and µk(f) its spectral measure [6, chap. 3] 2, the complex envelope of this source observed at the mth

sensor is skt−τk,me
−i2πf0τk,m , where τk,m is the propagation delay associated with the kth source and the mth sensor.

These delays τk,m contain information about the kth DOA θk
3, and we set Θ

def
= (θ1, . . . θK)T . The M -vector of

observed complex envelope at the array output is then

yt =

K∑
k=1

∫ +B/2

−B/2
ei2πfta(θk, f0 + f)dµk(f) + nt,

where a(θk, ν)
def
= [e−i2πντk,1 , . . . , e−i2πντk,M ]T . If the sources are spatially uncorrelated, the spatial covariance

matrix may be written as

Rb = E(yty
H
t ) =

K∑
k=1

∫ +B/2

−B/2
Sk(f)a(θk, f0 + f)aH(θk, f0 + f)df + σ2

nIM , (2.1)

where Sk(f) denotes the power spectral density of the kth source. For the zero bandwidth case, this matrix

becomes:

R0 =

K∑
k=1

σ2
ka(θk, f0)aH(θk, f0) + σ2

nIM , (2.2)

where σ2
k denotes the power of the kth source. We consider that the power spectral density Sk(f) of the complex

envelope of the kth wideband source is parameterized by its centered frequency fm
def
=

∫
fSk(f)df∫
Sk(f)df

, its standard

1We suppose that their power spectral densities are zero near DC.

2This spectral representation skt =
∫ +B/2

−B/2 e
i2πftdµk(f) enables us to easily generate wide-sense stationary bandlimited

processes by the approximation: skt ≈
∑L−1

l=0
akl e

i2πflt with fl
def
= −L+2l+1

2L
B, L � 1 (with L = 200 in Monte Carlo

simulations) and (akl )l=0,...,L−1,k=1,...,K are uncorrelated random variables with E|akl |2 = B
L
Sk(fl), where Sk(f) denotes the

power spectral density of skt .
3For notational simplicity we assume that θk is a real scalar.
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deviation fσ
def
=

(∫
(f−fm)2Sk(f)df∫

Sk(f)df

) 1
2

4 and by its power σ2
k. The kth source spectrum is expressed by Sk(f) =

σ2
k

fσ
S
(
f−fm
fσ

)
, if S(f) denotes a normalized function, i.e. a function satisfying

∫
S(f)df = 1,

∫
fS(f)df = 0, and

∫
f2S(f)df = 1, (2.3)

and the k-th source correlation is Rk(t) = σ2
kR(fσt)e

i2πfmt where R(t) denotes the correlation function associated

with S(f) which satisfies from (2.3)

R(0) = 1 , R′(0) = 0 , R′′(0) = −4π2.

Because a(θk, f0 + f)aH(θk, f0 + f) = a(θk, f0)aH(θk, f0) � a(θk, f)aH(θk, f), the covariance matrix Rb may be

written as

Rb =

K∑
k=1

a(θk, f0)aH(θk, f0)�Rsk + σ2
nIM , (2.4)

where Rsk is the M ×M matrix whose (m,n)th term is the source correlation

[Rsk ]m,n = E(skt−τk,ms
k
t−τk,n

∗
) =

∫ +B/2

−B/2
Sk(f)ei2πf(τk,n−τk,m)df = σ2

k

∫
S(ν)ei2π(νfσ+fm)(τk,n−τk,m)dν

= σ2
kR (fσ(τk,n − τk,m)) ei2πfm(τk,n−τk,m). (2.5)

If zm and pk denote, respectively, the coordinate vector of the mth sensor referenced to a specific sensor and the

unit wavevector associated with the kth source, then τk,m = 1
f0

zTmpk
λ0

(e.g., for a linear array, τk,m = dm
c sin θk =

1
f0
dm
λ0

sin θk where θk is the kth DOA relative to the array broadside, c is the propagation velocity, dm is the distance

from sensor m to a reference sensor and λ0
def
= c

f0
). Because Rsk = σ2

k11T in the zero bandwidth case, we prove in

Appendix A that Rsk = σ2
k11T + δRsk with

[δRsk ]m,n = σ2
kαm,n,k

[
i2π

(
fm
f0

)
− 2π2αm,n,k

(
f2
σ

f2
0

)]
+O

(
f2
m

f2
0

)
+O

(
f3
σ

f3
0

)
+O

(
fmf

2
σ

f3
0

)
(2.6)

for an arbitrary spectrum

= −2π2σ2
kα

2
m,n,k

(
f2
σ

f2
0

)
+O

(
f3
σ

f3
0

)
for an arbitrary spectrum centered at f0, (2.7)

= −2π2σ2
kα

2
m,n,k

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

)
for a symmetric spectrum centered at f0, (2.8)

with αm,n,k
def
= (zn−zm)Tpk

λ0
. Therefore Rb may be considered as a perturbation of R0:

Rb = R0 + δRb with δRb =

K∑
k=1

a(θk, f0)aH(θk, f0)� δRsk (2.9)

4In the special case of sources with uniform spectrum in [f0 − b
2
, f0 + b

2
], fm = 0 and fσ = b

2
√
3
.
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3 Performance of the detector

First, we consider the performance of the eigendecomposition-based order detectors. Many methods have been

suggested for the detection of the number of sources in array processing. The most commonly used detectors are

formulated in terms of the eigenvalues of the sample spatial covariance matrix Rb(T ) derived from T independent

snapshots yt. Typical examples are the Akaike information criterion (AIC) and the minimum description length

(MDL) detectors. These methods are easy to implement and as long as the data come from the idealized zero

bandwidth assumption; MDL gives a strongly consistent estimate of the number of sources independent of the

signal-noise-ratio. Unfortunately if the bandwidth of the signal increases, the AIC and MDL criteria rapidly tend

to overestimate the number of sources and, in practice, the estimated number of sources by these detectors may

be far from the true number [21]. The general design of robust detection methods that work with non-narrowband

signal remains an open problem.

The detection of the number of non-narrowband signals from the sample spatial covariance matrix, however,

is analogous to the detection of the “effective” order of the impulse response of a channel from the sample spatio-

temporal covariance matrix. In fact, the sample spatial covariance matrix Rb(T ) observed in a non-narrowband

scenario can be considered as the sum of an “ideal” rank-K matrix R and a “perturbation” matrix δRb,T ,

Rb(T ) = R + δRb,T

where K is the number of sources and R is the signal’s noise-free spatial covariance matrix associated with K

zero bandwidth signals. The “perturbation” matrix δRb,T incorporates the influence of the non-narrowband as-

sumption, the influence of the additive noise, and the influence of the estimated (i.e., inexact) statistics. Using the

concept of canonical angles between subspaces and invariant subspace perturbation results, a “maximally stable”

decomposition of the range space of the sample covariance matrix into signal and noise subspace has been proposed

in the channel order determination context by Liavas et al. [13]. This approach leads to the following criterion:

The detected order K̂ is the value of k which minimizes

r(k)
def
=


λk+1

λk−2λk+1
, if λk+1 ≤ λk

3

1, otherwise

where λ1 ≥ λ2 ≥ . . . ≥ λM denote the eigenvalues of the sample covariance matrix Rb(T ). We propose applying

this criterion in the context of non-narrowband array processing. Contrary to the AIC and MDL criteria, which

base their detection on the similarity of the smallest eigenvalues, the proposed criterion is based on the existence
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of an eigenvalue gap; these points are detailed in [14]. Because simulations (see, e.g., Fig.1 and [22]) show that as

the signal’s bandwidth is increased, eigenvalues pop up from the noise floor one at a time, the proposed criterion

is potentially promising.
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Fig.1 Eigenvalues of the signal’s noise-free spatial covariance matrix for one or two equipowered sources (DOA

separation of 15◦) of centered flat spectrum of bandwidth b and a uniform linear array of M = 5 sensors as a

function of the fractional bandwidth Mb
f0

.
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Fig.2 Detected mean number of sources (from 100 runs) by the MDL, Liavas and Wang criteria as a function of

the fractional bandwidth Mb
f0

for a uniform linear array of M = 5 sensors, one or two equipowered sources (DOA

separation of 15◦), of centered flat spectrum of bandwidth b with a SNR of 20dB and T = 320 snapshots (10

sections of 32 frequencies for the Wang criterion).

Fig.2 compares the MDL and Liavas criteria to that derived for wideband signals proposed by Wang and Kaveh

[20] with the same data (complex envelopes sampled at the Nyquist rate 1
Ts

= b). The figure shows that the Liavas

criterion is much more robust to bandwidth increases than the MDL criterion. Naturally, the Wang criterion which
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is adapted to wideband scenarios outperforms our criterion. What can be said about the quality of the estimates

obtained by our criterion is given by its behavior as the snapshot size increases to infinity. Figs.3 5 and 4 show,

respectively, for one and two equipowered sources, the domain of fractional bandwidth Mb
f0

for which the MDL

and Liavas criteria correctly detect the number of sources in the large-sample limit (i.e., with exact statistics). In

these figures the Liavas criterion consistently outperforms the MDL criterion. Furthermore, they show that the

robustness of the MDL and Liavas criteria to a bandwitdh increase can be reduced with an increase of SNR or

DOA separation 6. Of course, a fair and thorough comparison between the MDL and Liavas criteria would require

a large quantity of scenarios (various arrays, DOA’s, sources spectra and SNR). For example, an extensive study

of scenarios of two equipowered symmetric spectra sources impinging on a uniform linear array shows sometimes

that the Liavas criterion falsely detects 1 source for a small number of sensors, a favorable SNR and a small DOA

separation while the MDL criterion correctly detects 2 sources; similar cases are observed for two sources with

different powers.
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Fig.3 Asymptotic (w.r.t. the number of snapshots) detected number of sources by the MDL (Km) and Liavas (Kl)

criteria as a function of the fractional bandwidth Mb
f0

, the number of sensors or the SNR for a uniform linear array

and one source of centered flat spectrum of bandwidth b.

5For example, Fig.3a should be understood in the following way. The MDL criterion detects 1 source (Km = 1) for Mb
f0

approximately less than 1.5× 10−1 and otherwise more than 1 source, while the Liavas criterion detects 1 source (Kl = 1)

for Mb
f0

approximately less than 7× 10−1 and otherwise more than 1 source.
6Because these detectors correctly detect the number of sources in the entire domain of SNR and DOA separation

represented on these figures for zero bandwidth signals, this point does not contradict the improvement of the performance

of these detector tests to increasing the SNR or DOA separation with narrowband signals.
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Fig.4 Asymptotic detected number of sources (w.r.t. the number of snapshots) by the MDL (Km) and Liavas (Kl)

criteria as a function of the fractional bandwidth Mb
f0

, the number of sensors, the DOA separation or the SNR for

a uniform linear array and two equipowered sources of centered flat spectrum of bandwidth b.

4 Asymptotic bias and covariance

To consider the asymptotic bias and covariance of the DOA’s (w.r.t. to the number of snapshots and signal

bandwidth) estimated by a narrowband second-order statistics (SOS)-based algorithm, we adopt a functional

approach that consists of recognizing that the whole process of constructing an estimate Θ(T ) of Θ is equivalent to

defining a functional relation linking this estimate Θ(T ) to the sample statistics Rb(T ) = 1
T

∑T
t=1 yty

H
t from which

it is inferred. This functional dependence is denoted Θ(T ) = alg(Rb(T )). Clearly, Θ = alg(R0), and therefore the

different narrowband SOS-based algorithms alg(·) constitute distinct extensions of the mapping R0 → Θ generated
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by (2.2) to any unstructured Hermitian matrix Rb(T ). Rb(T ) may be considered as a perturbation of Rb:

Rb(T ) = Rb + δRT , (4.1)

where δRT is the finite sample size error, verifying E(δRT ) = O and Cov(δRT ) = O
(

1
T

)
. Because the mapping

alg(·) is sufficiently regular in a neighborhood of Rb for most SOS-based algorithms, we have from (4.1),

Θ(T ) = alg(Rb) + (Dalg
Rb
, δRT ) +O(‖δRT ‖2), (4.2)

where (Dalg
Rb
, δRT ) denotes the differential of the mapping alg(·) evaluated at point Rb applied to δRT . Taking

expectations, we obtain:

E(Θ(T )) = alg(Rb) +O

(
1

T

)
. (4.3)

By considering Rb as a perturbation of R0 (see (2.9)), a first-order perturbation analysis of a narrowband SOS-based

algorithm acting on Rb evaluated at the point R0 gives

alg(Rb) = alg(R0) + (Dalg
R0
, δRb) +O(‖δRb‖2)

= Θ + Dalg
R0

Vec(δRb) +O(‖δRb‖2), (4.4)

where Dalg
R0

denotes the matrix associated with the differential 7 of the narrowband SOS-based algorithm alg(·) at

point R0. So, from (4.3),(4.4) and (2.9) and from (2.7) and (2.8) for spectra centered on f0, the following result

holds:

Result 1 The asymptotic bias of the estimate Θ(T ) (w.r.t. the number of snapshots and signal bandwidth) given

by a narrowband SOS-based algorithm is given by:

E(Θ(T ))−Θ = Dalg
R0

Vec(δRb) +O(‖δRb‖2) +O

(
1

T

)
for an arbitrary spectrum

=

K∑
k=1

balg
k

(
f2
σ

f2
0

)
+O

(
f3
σ

f3
0

)
+O

(
1

T

)
for an arbitrary spectrum centered at f0 (4.5)

=

K∑
k=1

balg
k

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

)
+O

(
1

T

)
for a symmetric spectrum centered at f0 (4.6)

with balg
k

def
= Dalg

R0
Vec

(
a(θk, f0)aH(θk, f0)� σ2

kUk

)
, and [Uk]m,n

def
= −2π2α2

m,n,k.

7Algorithm-dependent expressions of Dalg
R0

and Dalg
Rb

are ordinarily deduced from perturbation calculus (see e.g., the

expression (B.1) of Dmusic
R0

given in Appendix B).
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Then, from (4.2) and (4.3), the mapping alg(·) gives the deviation from the asymptotic mean E(Θ(T )):

Θ(T )− E(Θ(T )) = Dalg
Rb

Vec(δRT ) +O

(
1

T

)
+O(‖δRb‖2). (4.7)

We therefore have:

Result 2 The asymptotic covariance of the estimate Θ(T ) (w.r.t. to the number of snapshots and signal bandwidth)

given by a narrowband SOS-based algorithm may be written as

Cov(Θ(T )) =
1

T
Dalg

Rb
CRb

(
Dalg

Rb

)H
+O

(
1

T 2

)
+O

(
1

T

)
O(‖δRb‖2) +O(‖δRb‖4)

=
1

T
Dalg

Rb
(R∗0 ⊗R0)

(
Dalg

Rb

)H
+

1

T
Dalg

Rb
(R∗0 ⊗ δRb)

(
Dalg

Rb

)H
+

1

T
Dalg

Rb
(δR∗b ⊗R0)

(
Dalg

Rb

)H
+ O

(
1

T 2

)
+O

(
1

T

)
O(‖δRb‖2) +O(‖δRb‖4) (4.8)

with CRb = limT→∞ TCov(Vec(Rb(T )) = limT→∞ TE(Vec(δRT )VecH(δRT )) = R∗b ⊗Rb for independent circular

complex snapshots yt, [3, p. 336].

These general results enable us to extend the results of [18] for symmetric spectra to the general case of non-

symmetric spectra and/or offset of the centered value of the spectra w.r.t. the demodulation frequency f0. Due to

the complexity of the computations, we concentrate on the standard MUSIC algorithm and the presented results

are illustrated in the cases of one source or two equipowered sources in the following subsection.

4.1 Monosource case

For the specific case of one source, the following results are proved in Appendix B:

Result 3 The asymptotic bias (w.r.t. to the number of snapshots and signal bandwidth) is given for an arbitrary

spectrum by:

E(θ1(T ))− θ1 =
8π2

Mαθ1

(
fm
f0

) M∑
n,m=1

αm,n,1
zn
Tp

′

1

λ0
+O

(
f3
σ

f3
0

)
+O

(
f2
m

f2
0

)

+ O

(
f2
σfm
f3

0

)
+O

(
1

T

)
for an arbitrary spectrum (4.9)

= O

(
f3
σ

f3
0

)
+O

(
1

T

)
for an arbitrary spectrum centered at f0 (4.10)

= O

(
f4
σ

f4
0

)
+O

(
1

T

)
for a symmetric spectrum centered at f0 (4.11)

with p
′

1
def
= dp1

dθ1
.
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Result 4 In the specific case of an arbitrary linear array and a symmetric spectrum w.r.t. f0 + fm

E(φ1(T ))− φ1 = φ1
fm
f0

+O

(
f4
σ

f4
0

)
+O

(
1

T

)
(4.12)

where φ1 denotes here the spatial parameter φ1 = π sin θ1, with θ1 the DOA relative to the array broadside.

We note that the expression of the bias given for an arbitrary array and a symmetric spectrum w.r.t. f0 in (4.11) is

more accurate than the expression β
(
f2
σ

f2
0

)
+O( 1

T ) given in [18]. Furthermore, the numerical computation 8 of the

asymptotic bias (w.r.t. the number of snapshots) satisfies |music(Rb)− θ1| < 10−6 for uniform linear and circular

arrays (with M ≤ 20, for all θ1) and for a source with flat spectrum (for all b). Result 3 shows that the behavior

of the estimate θ1(T ) depends critically on the symmetry and the center of the spectrum w.r.t. the demodulation

frequency.

Concerning the asymptotic variance w.r.t. the number of snapshots and signal bandwidth, we prove in Appendix

C the following result for an arbitrary spectrum centered on f0:

Result 5

Var(θb1(T )) = Var(θ0
1(T ))

(
1 + c

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

))
+O

(
1

T 2

)
(4.13)

where Var(θ0
1(T )) is the classic asymptotic variance of the MUSIC algorithm for a narrowband scenario (see, e.g.,

[19, rel. (3.12)]) and where an expression for c is given in Appendix C.

The performance degradation due to center frequency mismach is illustrated in Figs.5 and 6. These figures show

the mean square error of the spatial DOA φ1 estimated by the standard MUSIC algorithm: MSE(φ1(T )) =

bias2(φ1(T )) + Var(φ1(T )) in which the bias and variance are given respectively by φ1
fm
f0

(see (4.12)) and by

1
T Dmusic

Rb
(R∗0 ⊗ R0 + R∗0 ⊗ δRb + δR∗b ⊗ R0)

(
Dmusic

Rb

)H
(see (4.8)) where δRb is given by (2.7) and (2.9). The

principal term of this MSE may be written as

MSE(φ1(T )) = φ2
1

(
f2
m

f2
0

)
+

[
c0
T

+
c1
T

(
fm
f0

)
+
c2
T

(
f2
σ

f2
0

)]
, (4.14)

in which c0/T denotes the asymptotic variance (w.r.t. the number of snapshots) of the MUSIC algorithm acting on

zero bandwidth data. We see the key role of the frequency offset fm between the centered frequency of the spectrum

and the demodulation frequency f0: the narrowband SOS-based algorithms are much more sensitive to frequency

8We note that the relative flatness of the MUSIC localization function has prevented us from obtaining precise values of

the bias due to the limited precision effects.
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offset than to bandwidth. Furthermore, because the bias is constant in T , this sensitivity to fm increases with the

number of snapshots.
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Fig.5 Analytical asymptotical (w.r.t. b and T ) MSE (rel. (4.14)) and estimated MSE (1000 runs with 99% confidence

interval) using the MUSIC algorithm of the spatial DOA φ1 = π sin θ1 w.r.t. b
f0

and fm
f0

for one source of centered

flat spectrum of bandwidth b impinging on a uniform linear array of 5 sensors with a SNR of 20dB and T = 160

or 320.
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Fig.6 Constant theoretical MSE (rel.(4.14)) contours as a function of the fractional bandwidth b
f0

and the fractional

offset fm
f0

in the conditions of Fig.5.

4.2 Two equipowered sources case

In the case of two equipowered sources, even for symmetric spectra w.r.t. f0, the terms Dmusic
R0

(l, :)Vec(δRb),

l = 1, 2, do not vanish and therefore the asymptotical bias (w.r.t. the bandwidth and the number of snapshots)

is of order greater than or equal to
f2
σ

f2
0

. In the specific case of two symmetric spectra w.r.t. f0, it is proved in
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Appendix D that

Dmusic
R0

(l, :)Vec(δRb) = cl

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

)
, l = 1, 2, (4.15)

where the expression for the constant cl is given in Appendix D. Therefore, three asymptotic expressions of bias,

w.r.t. the bandwidth and the number of snapshots, are given

(a) Dmusic
R0

(l, :)Vec(δRb), (b) cl

(
f2
σ

f2
0

)
and (c) musicl(Rb)− φl, l = 1, 2.

in which the first two are analytical and the third is numerical.

For the parameters of Fig.7, it is shown that these three values show good agreement up to Mb
f0

= 1 and

moreover, as the biases of the two sources are of opposite sign (negative for θ1 = 25◦ and positive for θ2 = 40◦), the

estimated DOA’s move further apart with increasing source bandwidth. As such, the resolution capabilities of the

standard MUSIC algorithm potentially improves with increasing source bandwidth with these specific parameters.

In fact, when the number of sensors increases, the estimated DOA’s keep moving further apart with increasing

source bandwidth, but the biases are no longer opposite. Consequently, the usual resolution capability criterion

(see e.g., [10] based on a threshold equation evaluated at mid-angle 1
2 (θ1 + θ2)) is not appropriate for our situation.

We note that these favorable properties no longer apply when the two sources have different powers.
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Fig.7 Asymptotic (w.r.t. b and T ) (a), (b), (c) bias and estimated (dots) by Monte Carlo simulation (1000 runs)

bias of the spatial DOAs φk = π sin θk for two equipowered sources of centered flat spectrum of bandwidth b,

θ1 = 25◦ (1), θ2 = 40◦ (2) impinging on a linear array of 5 sensors, SNR = 20dB, T = 160 versus Mb
f0

.
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5 Cramer-Rao lower bound

In the case of wideband sources with spectra symmetric w.r.t. the demodulation frequency f0, it was shown in

Section 4 (see rel. (4.5)), that the estimated DOA parameter given by any narrowband SOS-based algorithm is

asymptotically unbiased w.r.t. the number of snapshots and signal bandwidth. Therefore, in this case, it makes

sense to consider the CRB of the DOA parameter for sources of nonzero bandwidth.

Furthermore, in the case of one source, it was pointed out that the bias is negligible for all useable bandwidths.

In these conditions, it is interesting to relate the CRB of the parameter θ1 associated to a wideband and a

narrowband source. In this latter case, the spatial covariance matrix (2.1) has the common expression:

Rb = ∆θ1RΦ∆H
θ1 ,

with ∆θ1
def
= Diag(e−i2πf0τ1,1 , . . . , e−i2πf0τ1,M ) and RΦ

def
= Rs1 + σ2

nIM where Rs1 is a real-valued symmetric 9

matrix thanks to the symmetry of the spectrum of the source w.r.t. the frequency f0. Consequently, Rb is uniquely

parameterized by Ψ = (θ1,Φ) where Φ = (φ0,0, φ1,0, . . . , φM−1,M−1) with (φi,j)0≤j≤i≤M−1 denotes the diagonal

and subdiagonal of RΦ. In the case of T independent circular complex Gaussian zero-mean snapshots yt, the CRB

for the DOA parameter θ1 alone can be obtained by following the same lines as in [2, Appendix] 10. Therefore the

CRB of the parameter θ1 is

CRBθ1 =
1

2T

(
Tr(−∆

′

θ1

2
+ ∆

′

θ1R
−1
Φ ∆

′

θ1RΦ)
)−1

, (5.1)

where ∆
′

θ1

def
= −2πf0Diag(

dτ1,1
dθ1

, . . . ,
dτ1,M
dθ1

).

We propose in the following to relate the CRB of the parameter θ1 associated with a wideband and a narrowband

source. Using the expression of CRBθ1 given in (5.1), in which RΦ becomes

RΦ =
(
σ2

111T + σ2
nIM

)
+ δRs1 ,

the following result is proved in Appendix E.

Result 6 The CRB of the parameter θ1 issued from a nonzero bandwidth source is given by

CRBθb1 = CRBθ01

(
1 + c′

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

))
(5.2)

9In the specific case of a uniform linear array, Rs1 is additionally a Toeplitz matrix.
10We note that using the property that Rb is linear in the parameters Φ, another more intricate expression (requiring a

projection matrix) may be obtained; see e.g., [16] with a rather elaborate proof and [1, Appendix 4.C] with a short direct

proof.
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where CRBθ01 is the classic CRB given in a narrowband scenario and c′ is given in Appendix E.

In the case of several sources of symmetric spectra w.r.t. f0, the spatial covariance matrix Rb is parametrized by

(θk)k=1,...,K , σ2
n and the diagonal and subdiagonal of (Rsk)k=1,...,K (see eq. (2.4)). And this time, this parametriza-

tion is no longer unique (i.e., these parameters are not identifiable from the knowledge of Rb alone). To overcome

this difficulty, we have to resort to side information. For example, if the normalized shape S(f) (see (2.3)) of the

spectra of the sources are known a priori, Rb is now uniquely parametrized by Ψ = (θ1, . . . , θK , fσ, σ
2
1 , . . . , σ

2
K , σ

2
n).

In this latter case, the approach developed for one source is no longer valid 11 and we have to resign to inverting

the Fisher information matrix I(Ψ) (see, e.g., [11, rel. (15.52)]):

[I(Ψ)]k,l = T Tr

(
R−1
b

∂Rb

∂ψk
R−1
b

∂Rb

∂ψl

)
,

and numerically extracting the DOA’s corner of I(Ψ)−1.

In the following, we illustrate the CRB of the DOA parameter in two situations. Fig.8 explores the case of one

source of centered flat spectrum of bandwidth b impinging on a linear array of 5 sensors with a SNR of 20dB and

T = 320, showing the mean square errors of the DOA estimated by the standard MUSIC algorithm with respect

to Mb/f0 compared with the CRB. We notice:

• a good agreement between the exact CRB (2) and the asymptotic CRB (3) CRBθ01

(
1 + c′

(
f2
σ

f2
0

))
up to

Mb
f0

= 0.6;

• a good agreement between the theoretical MSE and the estimated MSE given by the standard MUSIC

algorithm up to Mb
f0

= 1.8;

• the asymptotic CRB (w.r.t. b) (5.2) coincides with the asymptotic MSE (w.r.t. b) (4.13) given by the standard

MUSIC algorithm far all values of b.

Consequently, the standard MUSIC algorithm, which is efficient in the zero bandwidth scenario, remains efficient

with increasing bandwidth up to Mb
f0

= 0.6.

11We note that if the normalized shape S(f) and the standard deviation fσ of the spectra are known, Ψ = (Θ,Φ) with

Φ
def
= (σ2

1 , . . . , σ
2
K , σ

2
n) with Rb linear in the parameters comprising Φ. Consequently, the approach of [1, Appendix 4.C] to

directly extract a closed-form expression of the CRB for the DOA’s parameter Θ alone can be used.
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Fig.8 MSE and CRB of the spatial DOA φ1 = π sin θ1 versus Mb
f0

,

(1) analytical asymptotical (w.r.t. b and T ) MSE given by the MUSIC algorithm, (2) exact CRBθ1 (5.1),

(3) asymptotic CRBθ1 (w.r.t. b) (5.2) and asymptotic MSE (w.r.t. b) (4.13) given by the MUSIC algorithm,

(o) estimated (1000 runs) with 99% confidence interval (with error bars) MSE given by the MUSIC algorithm.

Fig.9 explores the case of two equipowered sources (DOA separation of 15◦ with θ1 = 25◦) of centered flat spectrum

of bandwidth b impinging on a linear array of 5 sensors with a SNR of 20dB and T = 320. We note the good

agreement between the theoretical and the estimated MSE given by the standard MUSIC algorithm up to Mb
f0

= 1.

Although the standard MUSIC algorithm is not efficient, this figure shows that it remains nearly efficient up to

Mb
f0

= 0.4.

Fig.9 MSE and CRB of the spatial DOA φ1 = π sin θ1 versus Mb
f0

,

(1) analytical asymptotically (w.r.t. b and T ) MSE given by the MUSIC algorithm, (2) exact CRBθ1 ,

(o) estimated (1000 runs) with 99% confidence interval (with error bars) MSE given by the MUSIC algorithm.

6 Comparison between narrowband and wideband algorithm

Naturally, a thorough comparison between narrowband and wideband algorithms would require a large quantity of

scenarios (various arrays, DOA’s, source spectra and SNR), and is beyond the scope of this paper. Moreover, com-

paring spatial covariance matrices based narrowband algorithms with cross-spectral density matrix based wideband

algorithms comes up against the problem of the choice of the parameters that characterize asymptotic performance.

It would seems natural to compare the respective asymptotic covariance of the estimated DOA’s w.r.t. the num-

ber of snapshots. However, we note that these snapshots represent temporal samples that are generally assumed
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independent in spatial covariance matrix based narrowband algorithms to simplify the performance analysis. By

contrast, in the cross-spectral density matrix-based wideband algorithms, the sensor outputs are sectioned and

windowed and the snapshots represent the Fourier transforms of these successive sections for the frequencies of

interest. Under these conditions, the only fair setting is to compare these two approaches with the same observation

interval. With the same sampling rate, this amounts to comparing them with the same number of consecutive

temporal samples.

In the following, we consider the two scenarios of Section 5 where the MUSIC algorithm and the focusing

algorithm by Friedlander and Weiss [9] process the same data (complex envelopes sampled at the Nyquist rate

1
Ts

= b). We note that, in this approach, the temporal samples are no longer independent and consequently the

CRB results and the performance of the MUSIC algorithm given in Section 5 are no longer valid. However, it

was shown in [8] that in the zero bandwidth scenario, the asymptotic performance of an arbitrary second-order

DOA algorithm does not depend on the spectra of the sources nor on the sampling frequency if 1
Ts
≥ b, but on the

observation time only.

Figs.10 and 11 show that the asympotic performance of the MUSIC algorithm (whose performance slightly

degrades w.r.t. those of Figs.8 and 9) and of the focusing algorithm (in the conditions of Fig. 2) are equivalent up

to Mb/f0 = 0.1 and that the focusing algorithm slightly outperforms the MUSIC algorithm 12 for 0.1 < Mb/f0 < 2.
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Fig.10 MSE of the spatial DOA φ1 = π sin θ1 versus Mb
f0

estimated (1000 runs) with 99% confidence interval by

the MUSIC algorithm (o) and by a focusing algorithm (*) versus Mb
f0

12Naturally, the MUSIC algorithm fails for Mb/f0 > 2.
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7 Conclusion

In this paper we have extended the analysis of [18] to the case of nonsymmetric spectra and/or offset of the centered

value of the spectra w.r.t. the demodulation frequency f0. We found that the behavior of the DOA estimators

strongly depends on the symmetry of the source spectra w.r.t. their centered value and on the offset of this centered

value w.r.t. f0. We showed in particular that the narrowband SOS-based algorithms are much more sensitive to

the frequency offset than to the bandwidth.

Considering the order detection, the Cramer-Rao bound and the comparison between narrowband and wideband

algorithms, we have proved that the vague definition of narrowband scenario often given in the literature, namely,

that the array aperture is much less than the inverse relative bandwidth (i.e., Mb
f0
� 1) is far too severe in the cases

of one source or two equipowered uncorrelated sources of the same symmetric bandwidth w.r.t. the demodulation

frequency.

Consequently, the narrowband DOA algorithms indeed are robust with respect to signal bandwidth, which

certainly explains their popularity in practical conditions. However, questions such as spatially correlated sources

and sources of different powers require further investigation.
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A Proof of rels. (2.6), (2.7) and (2.8)

From (2.5), we have

[Rsk ]m,n = σ2
kR

(
fσ
f0
αm,n,k

)
ei2π

fm
f0
αm,n,k

= σ2
k

[
1− 2π2

(
f2
σ

f2
0

)
α2
m,n,k +

1

6

(
f3
σ

f3
0

)
α3
m,n,kR

′′′(0) +O

(
f4
σ

f4
0

)][
1 + i2π

fm
f0
αm,n,k +O

(
f2
m

f2
0

)]
,

which straightforwardly gives (2.6) for an arbitrary spectrum. For an arbitrary spectrum centered at f0, fm = 0

which gives (2.7). For a symmetric spectrum w.r.t. f0, we have fm = 0 and R′′′(0) = 0, which gives (2.8).

B Proof of rels. (4.9), (4.10), (4.11) and (4.12)

First of all, we note that the differential matrix Dalg
R0

of the standard MUSIC algorithm deduced from perturbation

calculus (see, e.g., [7]) is

Dmusic
R0

(l, :) =
1

αθl

(
aTθlΓ

∗
s ⊗ a

′H

θl
Πn + a

′T

θl
Π∗n ⊗ aHθlΓs

)
, l = 1, . . . ,K (B.1)

where Πn and Γs denote the orthogonal projection onto the noise space associated with R0 and the Moore-Penrose

pseudoinverse (R0−σ2
nIM )#, respectively, and where aθl

def
= a(θl, f0), l = 1, . . . ,K and αθl is the geometrical factor

2a
′H

θl
Πna

′

θl
with a

′

θl

def
=

daθl
dθl

. Therefore the asymptotic bias becomes

[Dmusic
R0

Vec(δRb)]l =
2

αθl
<
(
aHθlΓsδRbΠna

′

θl

)
=

2

αθl
<
(
aHθlΓs(Rb − σ2

nIM )Πna
′

θl

)
=

2

αθl

K∑
k=1

∫ +B/2

−B/2
Sk(f)<

(
aHθkΓs∆θk,faθka

H
θk

∆H
θk,f

Πna
′

θl

)
df (B.2)

where <(.) denotes “the real part of” and ∆θk,f
def
= Diag(e−i2πfτk,1 , . . . , e−i2πfτk,M ).

Substituting the expressions Γs = 1
M2σ2

1
aθ1a

H
θ1

, Πn = IM −
aθ1a

H
θ1

M and a
′

θ1
= i∆

′

θ1
aθ1 with ∆

′

θ1

def
=

Diag(−2πf0τ
′

1,1, . . . ,−2πf0τ
′

1,M ) in (B.2) we get

[Dmusic
R0

Vec(δRb)]1 = − 2

Mαθ1σ
2
1

∫ +B/2

−B/2
S1(f)=

(
aHθ1∆θ1,faθ1a

H
θ1∆θ1,−f (IM −

aθ1a
H
θ1

M
)∆

′

θ1aθ1

)
df.

Because aHθ1∆θ1,faθ1 =
∑M
m=1 e

−i2πfτ1,m and aHθ1∆θ1,−f∆
′

θ1
aθ1 = −

∑M
n=1(2πf0τ

′

1,n)ei2πfτ1,n , the asymptotic bias

becomes, after some algebra,

[Dmusic
R0

Vec(δRb)]1 =
2

Mαθ1σ
2
1

M∑
n=1

2πf0τ
′

1,n=

(
M∑
m=1

∫ +B/2

−B/2
S1(f)ei2πf(τ1,n−τ1,m)df

)
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− 2

M2αθ1σ
2
1

M∑
n=1

2πf0τ
′

1,n=

 M∑
m,l=1

∫ +B/2

−B/2
S1(f)ei2πf(τ1,l−τ1,m)df


=

2

Mαθ1

M∑
n=1

2πf0τ
′

1,n=

(
M∑
m=1

R (fσ(τ1,n − τ1,m)) ei2πfm(τ1,n−τ1,m)

)

− 2

M2αθ1

M∑
n=1

2πf0τ
′

1,n=

 M∑
m,l=1

R (fσ(τ1,l − τ1,m)) ei2πfm(τ1,l−τ1,m)

 .

The normalized correlation R(t) satisfies R(t) = 1 − 2π2t2 + O(t3) which proves (4.9) in case of an arbitrary

spectrum and (4.10) in case of an arbitrary spectrum centered at f0. For a symmetric spectrum w.r.t. f0, R(t)

is real and symmetric. Consequently, the asymptotic bias is vanishing and thanks to the expression (2.9) of δRb,

(4.11) is proved.

In the specific case of an arbitrary linear array and of a symmetric spectrum w.r.t. f0 + fm, Rb can be written

as Rb = σ2
1a(θ1, f0 + fm)aH(θ1, f0 + fm) � R

′

s1 + σ2
nIM where R

′

s1 is symmetric and real. Therefore Rb may

be considered as a perturbation of R
′

0
def
= σ2

1a(θ1, f0 + fm)aH(θ1, f0 + fm): Rb = R
′

0 + δR
′

b and a first-order

perturbation analysis of a narrowband SOS-based algorithm estimating φ1 acting on Rb evaluated at point R
′

0

gives

alg(Rb) = alg(R
′

0) + (Dalg

R
′
0

, δR
′

b) +O(‖δR
′

b‖2)

= φ1
f0 + fm
f0

+ Dalg

R
′
0

Vec(δR
′

b) +O(‖δR
′

b‖2). (B.3)

Following the steps of the proof of (4.11) gives the proof of (4.12). We note that (4.12) can also be derived from

(4.9) applied to φ1 from straightforward but tedious calculus.

C Proof of rel. (4.13)

From result 2 where Dmusic
Rb

is replaced by Dmusic
R0

because Dmusic
Rb

= Dmusic
R0

+O(‖δRb‖2), Var(θb1(T )) is given by

Var(θb1(T )) = Var(θ0
1(T )) +

1

T

(
f2
σ

f2
0

)
Dmusic

R0

(
R∗0 ⊗ (σ2

1aHθ1aθ1 �U1) + (σ2
1aHθ1aθ1 �U1)∗ ⊗R0

) (
Dmusic

R0

)H
+ O

(
1

T 2

)
+O

(
f4
σ

f4
0

)
.

where from (B.1), Dmusic
R0

= 1
αθ1

(
aTθ1Γ

∗
s ⊗ a

′H

θ1
Πn + a

′T

θ1
Π∗n ⊗ aHθ1Γs

)
with αθ1 = 2

(
‖a′θ1‖

2 − |a
H
θ1

a′
θ1
|2

M

)
. (4.13) is

proved after some straightforward but tedious algebraic manipulations, where c becomes

c =
2

αθ1

σ2
1

σ2
n

(
dHθ1U1dθ1 +

2

M
=[(a

′H

θ1 aθ1)(dHθ1U11)] +
1

M

σ2
1 |aHθ1a

′
θ1
|2 + σ2

n‖a′θ1‖
2

σ2
n +Mσ2

1

(1TU11)

)
(C.1)
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thanks to the identities xT (A � B)y = Tr[Diag(x)ADiag(y)BT ] with Diag(aθ1) = ∆θ1 , Diag(a
′

θ1
) = i∆

′

θ1
∆θ1 ,

∆H
θ1

aθ1 = 1 and dθ1
def
= ∆

′

θ1
1.

D Proof of rel. (4.15)

Using the expression of δRb deduced from (2.8), viz.,

δRb =

(
f2
σ

f2
0

) 2∑
k=1

(aθka
H
θk
� σ2

kUk) +O

(
f4
σ

f4
0

)
,

expression (4.15) follows where the constant c1 and c2 are given by

cl =
1

αθl

(
aTθlΓ

∗
s ⊗ a

′H

θl
Πn + a

′T

θl
Π∗n ⊗ aHθlΓs

) 2∑
k=1

(a∗θk ⊗ aθk)� σ2Vec(Uk) l = 1, 2,

in which σ
def
= σ1 = σ2 and where Γs and Πn are given respectively by

Γs =
1

M2σ2(1− |β|2)2

(
(1 + |β|2)(aθ1a

H
θ1 + aθ2a

H
θ2)− 2β∗aθ2a

H
θ1 − 2βaθ1a

H
θ2

)
Πn = IM −

1

M(1− |β|2)

(
aθ1a

H
θ1 + aθ2a

H
θ2 − β

∗aθ2a
H
θ1 − βaθ1a

H
θ2

)
with β

def
=

aHθ1
aθ2

‖aθ‖2 .

E Proof of rel. (5.2)

Using RΦ = σ2
111T + (σ2

nIM + δRs1) with

(σ2
nIM + δRs1)−1 =

1

σ2
n

IM −
1

σ4
n

δRs1 +O(δR2
s1),

the matrix inversion lemma (see, e.g., [11, p.571]) gives, after some algebraic manipulations,

R−1
Φ =

(
1

σ2
n

IM −
1

σ4
n

δRs1

)
−
(

1

σ2
n

IM −
1

σ4
n

δRs1

)
(

σ2
nσ

2
1

Mσ2
1 + σ2

n

11T +
σ4

1

(Mσ2
1 + σ2

n)2
11T δRs111T +O(δR2

s1)

)(
1

σ2
n

IM −
1

σ4
n

δRs1

)
+O(δR2

s1)

=
1

σ2
n

IM −
σ2

1

σ2
n(Mσ2

1 + σ2
n)

11T + a(δRs1) +O(δR2
s1)

where a(δRs1) is the following linear expression of δRs1 :

a(δRs1)
def
= − 1

σ4
n

δRs1 +
σ2

1

σ4
n(Mσ2

1 + σ2
n)

(δRs111T + 11T δRs1)− σ4
1

σ4
n(Mσ2

1 + σ2
n)2

11T δRs111T

= σ2
1

(
f2
σ

f2
0

)(
− 1

σ4
n

U1 +
σ2

1

σ4
n(Mσ2

1 + σ2
n)

(U111T + 11TU1)− σ4
1

σ4
n(Mσ2

1 + σ2
n)2

(11TU111T )

)
+ O

(
f4
σ

f4
0

)
= σ2

1

(
f2
σ

f2
0

)
R̄s1 +O

(
f4
σ

f4
0

)
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with R̄s1
def
= − 1

σ4
1
U1 +

σ2
1

σ4
n(Mσ2

1+σ2
n)

(U111T + 11TU1) − σ4
1

σ4
n(Mσ2

1+σ2
n)2

(11TU111T ), and where U1 is defined in

Result 1. To derive the CRB of the parameter θ1, we must consider matrices ∆
′

θ1
R−1

Φ ∆
′

θ1
RΦ and ∆

′

θ1

2
(see (5.1)).

Substituting the expressions of RΦ and R−1
Φ , we get after some tedious algebraic manipulations

−Tr(∆
′

θ1

2
) + Tr(∆

′

θ1R
−1
Φ ∆

′

θ1RΦ) =

(
σ4
1

σ4
n

)(
‖aθ1‖2‖a′θ1‖

2 − |a′H

θ1
aθ1 |2

)
1 +M

(
σ2
1

σ2
n

) (
1− c′

(
f2
σ

f2
0

)
+O

(
f4
σ

f4
0

))
with

c′ =
1

‖aθ1‖2‖a′θ1‖
2 − |a′H

θ1
aθ1 |2

=
[
β1d

T
θ1U1dθ1 + β21

TU11− 2dTθ1∆
′

θ1U11 + β3=(dTθ1U11a
′H

θ1 aθ1)
]

where

β1
def
=

Mσ2
1 + 2σ2

n

σ2
n

, β2
def
=

σ2
1σ

2
n‖a′θ1‖

2 + σ4
1 |a

′H

θ1
aθ1 |2

σ2
n(Mσ2

1 + σ2
n)

and β3
def
= 2

σ2
1

σ2
n

.

Consequently applying (5.1), result 6 is proved if we note that the CRB given in the narrowband scenario (see e.g.,

[15, rel. (17)]) becomes with our notations,

CRBθ01 =
1

2T

1 +M
(
σ2
1

σ2
n

)
(
σ4
1

σ4
n

)
(
(
‖a′

θ1
‖2‖aθ1‖2 − |aHθ1a

′
θ1
|2
) .

References

[1] M. Bengtsson, Antenna array signal processing for high rank data models, PhD thesis, Royal Institute of

technology, Stockholm, Sweden, December 1999. TRITA-S3-SB-9938.

[2] O. Besson, P. Stoica, “Decoupled estimation of DOA and angular spread for spatially distributed source,” IEEE

Trans. on Signal Processing, vol. 48, no. 7, pp. 1872-1882, June 2000.

[3] D.R. Brillinger, Times series, data analysis and theory. Expanded Edition, Holden-Day, Inc., 1980.

[4] K. Buckley, “Spatial/spectral filtering with linearly constrained minimum variance beamformers,” IEEE Trans.

Acoust. Speech and Signal Process., vol. 35, no. 3, pp. 249-266, March 1987.

[5] K. Buckley, L. Griffiths, “Broadband signal-subspace spatial-spectrum (BASS-ALE) estimation for sensor array

processing,” IEEE Trans. Acoust. Speech and Signal Process., vol. 36, no. 7, pp. 953-964, July 1988.

[6] P.E. Caines, Linear stochastic systems, Wiley series in probability and mathematical statistics, 1988.

[7] J.F. Cardoso, E. Moulines, “Asymptotic performance analysis of direction-finding algorithms based on fourth-

order cumulants,” IEEE Trans. Signal Processing, vol. 43, no. 1, pp. 214-224, Jan. 1995.

23



[8] J.P. Delmas, “Asymptotic performance of second-order algorithms,” IEEE Trans. Signal Processing, vol. 50,

no. 1, pp. 49-57, January 2002.

[9] B. Friedlander, A.J. Weiss, “Direction finding for wide-band signals using an interpolated array,” IEEE Trans.

on Signal Processing, vol. 41, no. 4, pp. 1618-1634, April 1993.

[10] M. Kaveh, A.J. Barabell, “The statistical performance of MUSIC and the minimum-norm algorithms in

resolving plane waves in noise,” IEEE Trans. Acoust. Speech, Signal Processing, vol. 34, no. 2, pp. 331-341,

April 1986.

[11] S.M. Kay, Fundamentals of statistical signal processing, Estimation theory, New York: Prentice Hall, 1993.

[12] J. Krolick, Focused wideband array processing for spatial estimation in Advances in spectrum analysis and

array processing, vol. II, Simon Haykin, Editor, Prentice Hall, 1991.

[13] A.P. Liavas, P.A. Regalia and J.P. Delmas, “Blind channel approximation: Effective channel order determi-

nation,” IEEE Trans. Signal Processing, vol. 47, no. 12, pp. 3336-3344, Dec. 1999.

[14] A.P. Liavas, P.A. Regalia, “On the behavior of information theoretical criteria for model order selection,”

IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 1689-1695, Aug. 2001.

[15] B. Ottersten, M. Viberg and T. Kailath, “Analysis of subspace fitting and ML techniques for parameter

estimation from sensor array data,” IEEE Trans. on Signal Processing, vol. 40, no. 3, pp. 590-599, March 1992

[16] B. Ottersten, P. Stoica and R. Roy, “Covariance matching estimation techniques for array signal processing,”

Digital Signal Processing, vol. 8, pp. 185-210, 1998.

[17] S.V. Schell, W.A. Gardner, “High-resolution direction finding,” in Handbook of Statistics 10, Signal Processing

and its Applications, edited by N.K. Bose and C.R. Rao, Elsevier Science, 1994.
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