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Abstract

This paper addresses asymptotically minimum variance (AMV) algorithms within the class of

algorithms based on second-order statistics for estimating direction of arrival (DOA) parameters of

possibly spatially correlated (even coherent) narrowband non-circular sources impinging on arbitrary

array structures. To reduce the computational complexity due to the nonlinear minimization required

by the matching approach, the covariance matching estimation techniques (COMET) is included in

the algorithm. Numerical examples illustrate the performance of the AMV algorithm.
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91011 Evry Cedex, FRANCE. Fax: +33-1-60 76 44 33, e-mail: jean-pierre.delmas@int-evry.fr

1



1 Introduction

There is considerable literature about second-order statistics-based algorithms for estimating DOA of narrowband

sources impinging on an array of sensors. The interest in these algorithms stems from a large number of applications

including mobile communications systems [?]. In this application, after frequency down-shifting the sensor signals

to baseband, the in-phase and quadrature components are paired to obtain complex signals. And complex non-

circular signals [?], for example, binary phase shift keying (BPSK) modulated signals are often used. However,

only a few contributions, such as [?],[?],[?],[?] have been devoted to non-circular signals.

The DOA second-order algorithms devoted to complex circular signals rely on the positive definite Hermitian

covariance matrix E(yty
H
t ), and naturally they can be used in the context of non-circular signals. Because, the

second-order statistical characteristics are also contained in the complex symmetric covariance matrix E(yty
T
t ) for

non-circular signals, a potentially performance improvement ought to be obtained if these two covariance matrices

are used. In the context of spatially uncorrelated amplitude modulated or BPSK modulated sources impinging on

a linear uniform array, a significant performance improvement has been already observed by simulations in [?] and

[?] thanks to a MUSIC-like algorithm and a root-MUSIC like algorithm respectively.

To improve the performance of these algorithms and to extend DOA estimation to spatially correlated or even

coherent arbitrary non-circular sources and to arbitrary array structures, we propose to consider asymptotically (in

the number of measurements) minimum variance algorithms in the class of algorithms based on the two covariance

matrices. We extend to complex non-circular processes the result of Porat and Friedlander [?] devoted to the

estimating of MA and ARMA parameters of real non-Gaussian processes from sample high-order statistics. After a

general lower bound is derived for the covariance of the estimated DOAs, it is shown that a generalized covariance

matching algorithm attains this bound. Furthermore, the ideas of COMET [?] are exploited to reduce the dimension

of the optimization problem.

The paper is organized as follows. Section 2 presents the asymptotically minimum variance second-order

estimator for stationary complex non-circular processes with special attention to the statistics involved. As an

application, the estimation of the DOA parameters is considered in Section 3. The asymptotic performance is

analyzed in Section 4. Finally, illustrative examples with comparisons with the AMV estimators based on the first

covariance matrix only are given in Section 5.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper
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case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H, ∗

stand for transpose, conjugate transpose, conjugate, respectively. eK,k is the kth unit vector in RK . vec(·) is the

“vectorization” operator that turns a matrix into a vector by stacking the columns of the matrix one below another

and v(.) denotes the operator obtained from vec(.) by eliminating all supradiagonal elements of the matrix. They

are used in conjunction with the Kronecker product A⊗B as the block matrix whose (i, j) block element is ai,jB

and with the vec-permutation matrix K which transforms vec(.) to vec(.T ) for any square matrix. The notation

f(x) = o(x) means that limx→0
f(x)
x = 0.

2 Asymptotic minimum variance second-order estimator

We consider a zero-mean strict-sense stationary M -variate complex, possibly non-circular process yt whose struc-

tured covariance matrices R(Θ)
def
= E(yty

H
t ) and R′(Θ)

def
= E(yty

T
t ) are parameterized by the real parameter

Θ ∈ RL. These covariance matrices are classically estimated by RT = 1
T

∑T
t=1 yty

H
t and R′T = 1

T

∑T
t=1 yty

T
t

respectively. This parameter is supposed identifiable from (R(Θ),R′(Θ)), in the following sense:

R(Θ) = R(Θ′) and R′(Θ) = R′(Θ′) ⇒ Θ = Θ′.

To consider the asymptotic performance of a second-order algorithm, we adopt a functional analysis which consists

in recognizing that the whole process of constructing an estimate ΘT of Θ is equivalent to defining a functional

relation linking this estimate ΘT to the statistics (RT ,R
′
T ) from which it is inferred. This functional dependence

is denoted

(RT ,R
′
T ) 7−→ ΘT = alg(RT ,R

′
T ).

By assumption, Θ = alg(R(Θ),R′(Θ)), so the different algorithms alg(.) constitute distinct extensions of the

mapping (R(Θ),R′(Θ)) 7−→ Θ generated by any unstructured Hermitian matrix RT and complex symmetric

matrix R′T .

To extend the ideas of Porat and Friedlander [?] concerning asymptotically minimum variance second-order

estimators, to complex non-circular processes, two conditions must be satisfied. First, the covariance C r

r′
(Θ) of the

asymptotic distribution of (RT ,R
′
T ) must be regular. Second, the involved second-order algorithm considered as a

mapping must be complex differentiable w.r.t. (RT ,R
′
T ) at the point (R(Θ),R′(Θ)). While these two conditions

are satisfied for a second-order algorithms based on RT only, none of these two conditions are satisfied in our
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situation for the following reasons. First, because R′T is symmetric, the rank of C r

r′
(Θ) which is the rank of the

set of the entries of (RT ,R
′
T ) is not full. Consequently C r

r′
(Θ) is singular. Second, because R′T is complex non

Hermitian, an algorithm considered as a mapping, is not complex differentiable w.r.t. R′T at point R′(Θ).

To satisfy these two conditions, we must eliminate the common terms in R′T and add complex conjugate

associated terms. Below, we consider the equivalent to (RT ,R
′
T ) statistics sT constituted by rT

def
= vec(RT ),

r̃′T
def
= v(R′T ) and r̃

′∗

T
def
= v(R

′∗

T ),

sT
def
=


rT

r̃′T

r̃
′∗

T


and the associated mapping:

sT 7−→ ΘT = alg(sT ).

r(Θ), r̃′(Θ) and s(Θ) are defined in the same way from R(Θ) and R′(Θ). Because vec(R∗T ) = vec(RT
T ) = Kvec(RT ),

s∗ = Ps, where P is the permutation matrix


K O O

O O I

O I O

. Consequently, any mapping alg(.) differentiable

w.r.t. (<(s),=(s)) becomes differentiable w.r.t. s alone if δs is structured as δs =


δr

δr̃

δr̃
′∗

, in which case

alg[s(Θ) + δs] = alg[s(Θ)] + [Ds,D
∗
s]

 δs

δs∗

+ o(δs) = Θ + Dalg
s δs + o(δs)

where Ds and D∗s denote the Jacobian matrices of this differential at point s(Θ), with Dalg
s

def
= Ds + D∗sK. And

because alg[s(Θ)] = Θ for all Θ, we have with S
def
= ds(Θ)

dΘ :

alg[s(Θ + δΘ)] = alg[s(Θ) + SδΘ + o(δΘ)] = Θ + Dalg
s SδΘ + o(δΘ) = Θ + δΘ.

Therefore Dalg
s is a left inverse of S:

Dalg
s S = IL, (2.1)

and this time, the rank of the set of the entries of sT is generally M2 + M(M + 1) and so, the covariance Cs(Θ)

of the asymptotic distribution of sT is a Hermitian positive definite matrix. Therefore, we obtain by application

of theorem 2 of [?], extended to the complex case:
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Theorem 1 The asymptotic covariance matrix CΘ of an estimator of Θ given by an arbitrary second-order algo-

rithm is bounded below by the real symmetric matrix
(
SHC−1

s (Θ)S
)−1

:

CΘ = Dalg
s Cs(Θ)(Dalg

s )H ≥
(
SHC−1

s (Θ)S
)−1

. (2.2)

Proof: From (??), we get

0 ≤
[
Dalg
s − (SHC−1

s (Θ)S)−1SHC−1
s (Θ)

]
Cs(Θ)

[
Dalg
s − (SHC−1

s (Θ)S)−1SHC−1
s (Θ)

]H
= Dalg

s Cs(Θ)(Dalg
s )H −Dalg

s S(SHC−1
s (Θ)S)−1 − (SHC−1

s (Θ)S)−1SH(Dalg
s )H + (SHC−1

s (Θ)S)−1

= Dalg
s Cs(Θ)(Dalg

s )H − (SHC−1
s (Θ)S)−1,

and furthermore, because s∗ = Ps implies S∗ = PS and CT
s (Θ) = PCs(Θ)P (SHC−1

s (Θ)S)T = ST (C−1
s (Θ))TS∗ =

SHP(CT
s (Θ))−1PS = SHC−1

s (Θ)S, the Hermitian matrix (SHC−1
s (Θ)S)−1 is real symmetric.

Furthermore, we prove that this lowest bound is asymptotically tight, i.e., there exists an algorithm alg(.)

whose covariance of the asymptotic distribution of ΘT satisfies (??) with equality. Therefore, theorem 3 of [?]

extends to the complex non-circular case.

Theorem 2 The following nonlinear least square algorithm is an AMV second-order algorithm.

ΘT = arg min
α∈RL

[sT − s(α)]HC−1
s (α)[sT − s(α)]. (2.3)

Proof: By a perturbation analysis, ΘT = Θ + δΘ is associated with sT = s(Θ) + δs (with δs stru-

tured). If V (α)
def
= [s(Θ) − s(α)]HC−1

s (α)[s(Θ) − s(α)] and VT (α)
def
= [sT − s(α)]HC−1

s (α)[sT − s(α)], we

have: dV (α)
dα |α=Θ

= 0 and dVT (α)
dα |α=Θ+δΘ

= 0. Expanding these two derivatives, we straightforwardly obtain:(
SHC−1

s (Θ)S + STC−1
s (Θ)∗S∗

)
δΘ + o(δΘ) = SHC−1

s (Θ)δs+STC−1
s (Θ)∗δs∗+ o(δs). Consequently the algorithm

(??) satisfies:

alg[s(Θ) + δs] = Θ +
(
SHC−1

s (Θ)S + STC−1
s (Θ)∗S∗

)−1 (
SHC−1

s (Θ),STC−1
s (Θ)∗

) δs

δs∗

+ o(δs)

= Θ +
(
SHC−1

s (Θ)S
)−1

SHC−1
s (Θ)δs + o(δs),

by using S∗ = PS and CT
s (Θ) = C∗s(Θ) = PCs(Θ)PT in the second equality. Consequently the derivative of

the mapping alg(.) involved by (??) is Dalg
s =

(
SHC−1

s (Θ)S
)−1

SHC−1
s (Θ) and CΘ = Dalg

s Cs(Θ)(Dalg
s )H =

(SHC−1
s (Θ)S)−1.
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In practice, it is difficult to optimize the nonlinear function (??) where it involves the computation of C−1
s (α).

Porat and Friedlander proved for the real case in [?], that the lowest bound (??) is also obtained if an arbitrary

consistent estimate Cs,T of Cs(α) is used in (??). This property extends to the complex non-circular case and to

any Hermitian positive definite weighting matrix. And we prove:

Theorem 3 The covariance of the asymptotic distribution of ΘT given by an arbitrary nonlinear least square

algorithm

ΘT = arg min
α∈RL

[sT − s(α)]HW(α)[sT − s(α)], (2.4)

is preserved if the Hermitian positive definite weighting matrix W(α) is replaced by an arbitrary consistent estimate

WT that satisfies WT = W(Θ) +O(sT − s(Θ)).

Proof: Following a perturbation analysis similar to those of the proof of theorem ??, it is straightforward to show

that the differential Dalg
s =

(
SHW(Θ)S

)−1
SHW(Θ) of the mapping alg(.) involved by (??) is preserved.

So the minimization (??) can be preferably replaced by the following

ΘT = arg min
α∈RL

[sT − s(α)]HC−1
s,T [sT − s(α)]. (2.5)

3 Application to estimation of DOA

In the following, we will be concerned with the signal model

yt = Axt + nt, t = 1, . . . , T

where (yt)t=1,...,T represents the independent identically distributed M -vectors of observed complex envelope at

the sensor output. A = [a1, . . . ,aK ] is the steering matrix where each vector ak is parameterized by the real

scalar parameter θk to avoid unnecessary notational complexity. But the results presented here apply to a general

parameterization. xt = (xt,1, . . . , xt,K)T and nt model signals transmitted by K sources and additive measurement

noise respectively. xt and nt are multivariate independent, zero-mean, complex wide-sense stationary. nt is

assumed Gaussian complex circular, spatially uncorrelated with E(ntn
H
t ) = σ2

nIM , while xt is complex circular or

not, Gaussian or not and possibly spatially correlated or even coherent with Rx
def
= E(xtx

H
t ) and R′x

def
= E(xtx

T
t ).

Consequently this leads to the covariance matrices of yt:

R(Θ) = ARxA
H + σ2

nIM and R′(Θ) = AR′xA
T .

6



(R(Θ),R′(Θ)) is generically parametrized by the L = K + K2 + K(K +

1) + 1 real parameters Θ = (Θ1,Θ2) with Θ1
def
= (θ1, . . . , θK)T and Θ2

def
=(

(<([Rx]i,j),=([Rx]i,j),<([R′x]i,j),=([R′x]i,j))1≤j<i≤K , ([Rx]i,i,<([R′x]i,i),=([R′x]i,i))i=1,...,K , σ
2
n

)T
.

For performance analysis, some extra hypotheses are needed. The rank of Rx is denoted K̃. Clearly K̃ ≤ K, and

strict inequality implies linear dependence among the signal waveforms emanating from, e.g., specular multipath or

smart jamming in communication applications. We suppose that the signal waveforms are linearly issued from K̃

independent signals (x̃t,k)k=1,...,K̃ , i.e., there exists a full colomn rank matrix B such that xt = Bx̃t. The fourth-

order cumulants of these K̃ sources are denoted by κx̃k

def
= Cum(x̃t,k, x̃

∗
t,k, x̃t,k, x̃

∗
t,k), κ′x̃k

def
= Cum(x̃t,k, x̃t,k, x̃t,k, x̃t,k)

and κ′′x̃k

def
= Cum(x̃t,k, x̃

∗
t,k, x̃

∗
t,k, x̃

∗
t,k).

We note that s(Θ) is linear with respect to Θ2. Consequently (see e.g., [?]) there exists 1 a known matrix

Ψ(Θ1) of the unknown DOA parameters Θ1:

s(Θ) = Ψ(Θ1)Θ2.

Because, we suppose 2 in this paper that Θ is identifiable from (R(Θ),R′(Θ)), Θ must be identifiable from s(Θ),

and necessarily Ψ(Θ1) has column full rank [?]. In these conditions, the minimization (??) with respect to Θ2 is

immediate if Θ2 is not restricted to be real. With a geometric procedure, we obtain:

Θ̂2 = [ΨH(Θ1)WΨ(Θ1)]−1ΨH(Θ1)WsT (3.1)

with W
def
= C−1

s,T . Because vec(yty
H
t ) = y∗t ⊗yt and v(yty

T
t ) = U(yt⊗yt), where U is the M(M+1)

2 ×M2 selection

matrix that satisfies v(.) = Uvec(.) for all M ×M matrices, sT can be written as

sT =
1

T

T∑
t=1

s(t) with s(t)
def
=


y∗t ⊗ yt

U(yt ⊗ yt)

U(y∗t ⊗ y∗t )

 .

Consequently, sT is the mean of the T independent equidistributed random variables s(t). Therefore Cov(sT ) =

1
T Cov(s(t)) = 1

T E
[
(s(t)− E(s(t))) (s(t)− E(s(t)))

H
]

and

Cs,T =
1

T

T∑
t=1

(s(t)− 1

T

T∑
t=1

s(t)

)(
s(t)− 1

T

T∑
t=1

s(t)

)H
1An explicit expression for Ψ(Θ1) will depend on the parameterization of R(Θ) and R′(Θ).
2We note that sufficient conditions for the identifiability will be application specific since they will depend on the structure

of the array, the spatial correlation and the type of non-circularity of the sources.
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is a consistent estimate of Cs(Θ) structured as sT sHT for the real/imaginary part point of view. With arguments

similar to that of COMET [?], we prove that Θ̂2 is real-valued.

Proof: If J denotes the linear invertible transformation that associates to sT , the real-valued vector γT

comprised of the real and imaginary parts of sT , γT = JsT and Θ̂2 given by (??) assumes the form:

[(JΨ)H(JW−1JH)−1(JΨ)]−1(JΨ)H(JW−1JH)−1JsT , where JsT is real and so is JΨ. It remains to exam-

ine JW−1JH . Because JsT sHT JH = γT γ
H
T is real-valued and because Cs,T is structured as sT sHT , the matrix

JW−1JH = JCs,TJH is real-valued.

Thus Θ̂2 given by (??) is the real value that minimizes (??). Θ1,T is obtained by subtituting Θ̂2 in (??):

Θ1,T = arg max
α1∈RK

V ′(α1) (3.2)

with

V ′(α1)
def
= sHT WΨ(α1)[ΨH(α1)WΨ(α1)]−1ΨH(α1)WsT .

This COMET estimate is in general obtained by maximizing a multidimensional non-linear cost function. The

reader interested in some implementational aspects (scoring technique, initialization of the multidimensional search,

regularization of the sample covariance matrices. . . ) may refer to [?].

To evaluate the improvement provided by the use of the covariance matrix R′T compared to the case in which

only RT is considered, we first consider AMV second-order algorithms based on RT only.

4 Performance analysis

4.1 AMV estimator based on RT only

We suppose here that Θ is identifiable from R(Θ) only. In this case, the asymptotic minimum variance of the

estimated parameters relies on the following standard central limit theorem applied to the independent equidis-

tributed complex non-circular random variables y∗t ⊗ yt. Thanks to simple algebraic manipulations of Cr =

E
(
(y∗t ⊗ yt − vec(R(Θ)))(y∗t ⊗ yt − vec(R(Θ)))H

)
and C′r = E

(
(y∗t ⊗ yt − vec(R(Θ)))(y∗t ⊗ yt − vec(R(Θ)))T

)
,

we straightforwardly prove:

Lemma 1
√
T (vec(RT )− vec(R(Θ))) converges in distribution to the zero-mean complex non-circular Gaussian
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distribution of covariances Cr and C′r = CrK, where 3

Cr = (A∗ ⊗A)Crx(AT ⊗AH) + σ4
nIM2 + σ2

nIM ⊗ARxA
H + A∗R∗xA

T ⊗ σ2
nIM (4.3)

with 4

Crx = R∗x ⊗Rx + K(R′x ⊗R
′∗

x ) + Qx and Qx = (B∗ ⊗B)

 K̃∑
k=1

κx̃k
(eK̃,k ⊗ eK̃,k)(eT

K̃,k
⊗ eT

K̃,k
)

 (BT ⊗BH).

First, we note that theorems 1-3 apply to the statistics rT , because a second-order algorithm based on RT only is

a mapping RT → ΘT = alg(RT ) which is complex differentiable w.r.t. RT at the point R(Θ) and the covariance

Cr(Θ) of the asymptotic distribution of RT is regular. By application of theorem ?? applied to the statistics rT ,

the covariance of the asymptotic distribution of the minimum variance second-order DOA estimator (??) based on

RT only is given by the top left K ×K “DOA corner” of (SHC−1
r (Θ)S)−1 where Cr(Θ) is given by (??). If we

note here that S
def
= dr

dΘ = [S1,Ψ] with S1
def
= ∂r

∂Θ1
and Ψ given by r = Ψ(Θ1)Θ2, the partitioned matrix inversion

lemma gives

(
SHC−1

r S
)−1

(1:K,1:K)
=

(
SH1 C−1

r S1 − SH1 C−1
r Ψ

[
ΨHC−1

r Ψ
]−1

ΨHC−1
r S1

)−1

=
(
SH1 C−1/2

r P⊥
C
−1/2
r Ψ

C−1/2
r S1

)−1

,

where P⊥
C
−1/2
r Ψ

denotes the projector onto the ortho-complement of the colomns of C
−1/2
r Ψ. Consequently, we

prove the following theorem:

Theorem 4 For Gaussian or non Gaussian and complex circular or non-circular sources, the covariance of the

asymptotic distribution of the minimum variance second-order DOA estimator based on RT only has the common

closed-form expression:

CΘ1
=
(
SH1 C−1/2

r P⊥
C
−1/2
r Ψ

C−1/2
r S1

)−1

. (4.4)

This expression (??) extends to non Gaussian and/or complex non-circular sources, the expression of the

asymptotic covariance given in [?] for Gaussian complex circular sources. On the other hand, we note that this

expression is no longer equal to the Cramer-Rao bound because this AMV second-order estimator based on RT

3Because, vecT (yty
H
t − R(Θ)) = vecH(yty

H
t − R(Θ))K, C′

r = CrK and the non-circular complex Gaussian asymptotic

distribution of RT is characterized by Cr only.

4If the K sources are independent, Qx is reduced to Qx =
∑K

k=1
κxk (eK,k ⊗ eK,k)(eT

K,k ⊗ eT
K,k).
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only is no longer efficient for non Gaussian and/or complex non-circular sources.

Remark 1: The expression of CΘ1
is generally sensitive to the non-circularity and the distribution of the sources.

Furthermore, we note that a parameterization of Rx and R′x may be introduced to incorporate a priori knowledge

on the spatial correlation of the sources. For example, if the sources are supposed to be spatially uncorrelated, Rx

will be parameterized by ([Rx]i,i)i=1,...,K and if, moreover, they are independent, Rx and R′x will be parameterized

by ([Rx]i,i,<([R′x]i,i),=([R′x]i,i))i=1,...,K only. Consequently the expression of CΘ1
is generally sensitive to these a

priori information as well.

Remark 2: Note that the derivative DAMV1
r of the mapping which associates to RT , the estimate Θ1,T depends

on the non-circularity and the distribution of the sources through the expression of the weighting matrix C−1
r

(see (??)). Consequently, the lemma proved in [?] which states that the constraints DAMV1
r (A∗ ⊗ A) = O or

DAMV1
r (a∗k⊗ak) = 0, k = 1, . . . ,K that satisfy the derivative DAMV1

r if the sources are not supposed to be spatially

uncorrelated or respectively supposed spatially uncorrelated does not allow us to conclude that the expression of

CΘ1 is generally unsensitive to the non-circularity and the distribution of the sources.

Remark 3: Note that in the particular case of one source, the numerical value of CΘ is block diagonal CΘ1
0T

0 CΘ2

 where CΘ1 does not depend on the non-circularity and the distribution of the source, but we

have not succeeded in proving these properties analytically.

4.2 AMV estimator based on (RT ,R
′
T )

To extend lemma ?? to the statistic sT , we need to consider the asymptotic joint distribution of

vec(RT ) and vec(R′T ). The standard central limit theorem of the previous section extends similarly

to the independent equidistributed complex non-circular random variables

 y∗t ⊗ yt

yt ⊗ yt

. From simple al-

gebraic manipulations of C r

r′
= E


 y∗t ⊗ yt − vec(R(Θ))

yt ⊗ yt − vec(R′(Θ))


 y∗t ⊗ yt − vec(R(Θ))

yt ⊗ yt − vec(R′(Θ))


H and C′ r

r′
=

E


 y∗t ⊗ yt − vec(R(Θ))

yt ⊗ yt − vec(R′(Θ))


 y∗t ⊗ yt − vec(R(Θ))

yt ⊗ yt − vec(R′(Θ))


T, we straightforwardly prove:
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Lemma 2
√
T

 vec(RT )− vec(R(Θ))

vec(R′T )− vec(R′(Θ))

 converges in distribution to the zero-mean complex non-circular

Gaussian distribution of covariances C r

r′
=

 Cr Cr,r′

CH
r,r′ Cr′

 and C′ r
r′

=

 CrK KC∗r,r′

CH
r,r′K C′r′

 where Cr is

given by (??) and

Cr′ = (A⊗A)Cr′x
(AH ⊗AH) + σ4

n(IM2 + K)

+ (IM2 + K)(σ2
nIM ⊗ARxA

H + ARxA
H ⊗ σ2

nIM )

C′r′ = (A⊗A)C′r′x(AT ⊗AT )

Cr,r′ = (A∗ ⊗A)Crx,r′x
(AH ⊗AH)

with

Cr′x
= Rx ⊗Rx + K(Rx ⊗Rx) + Qx

C′r′x = R′x ⊗R′x + K(R′x ⊗R′x) + Q′x

Crx,r′x
= R

′∗

x ⊗Rx + K(Rx ⊗R
′∗

x ) + Q′′x

where Qx is given in lemma ?? and5

Q′x = (B⊗B)

 K̃∑
k=1

κ′x̃k
(eK̃,k ⊗ eK̃,k)(eT

K̃,k
⊗ eT

K̃,k
)

 (BT ⊗BT )

Q′′x = (B∗ ⊗B)

 K̃∑
k=1

κ′′x̃k
(eK̃,k ⊗ eK̃,k)(eT

K̃,k
⊗ eT

K̃,k
)

 (BH ⊗BH).

And thanks to the standard continuity theorem, the asymptotic behavior of sT and (RT ,R
′
T ) are directly related.

Therefore lemma ?? extends to the statistic sT :

√
T (sT − s(Θ))

L→ Nc (0; Cs(Θ),C′s(Θ))

with

Cs(Θ) =


Cr Cr,r′U

T KC∗r,r′U
T

UCH
r,r′ UCr′U

T UC′r′U
T

UCT
r,r′K UC

′H
r′ UT UC∗r′U

T

 and C′s(Θ) = Cs(Θ)P. (4.5)

5If the K sources are independent, Q′
x and Q′′

x are reduced to Q′
x =

∑K

k=1
κ′
xk

(eK,k ⊗ eK,k)(eT
K,k ⊗ eT

K,k) and Q′′
x =∑K

k=1
κ′′
xk

(eK̃,k ⊗ eK̃,k)(eT
K̃,k

⊗ eT
K̃,k

) respectively.
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Consequenlty, theorem ?? extends to the minimum variance second-order DOA estimator (??) based on (RT ,R
′
T )

by direct application of theorem ??. Following the same procedure used to prove theorem ?? where here S1
def
= ∂s

∂Θ1
,

Ψ given by s = Ψ(Θ1)Θ2 and Cr(Θ) is replaced by Cs(Θ) given in (??), we prove:

Theorem 5 For Gaussian or non Gaussian and complex circular or non-circular sources, the covariance of the

asymptotic distribution of the minimum variance second-order DOA estimator based on RT and R′T has the common

closed-form expression:

CΘ1
=
(
SH1 C−1/2

s P⊥
C
−1/2
s Ψ

C−1/2
s S1

)−1

. (4.6)

Remark 1 : If the sources are Gaussian complex non-circular, the stochastic maximum likelihood estimator is a

second-order algorithm based on RT and R′T . Because it is asymptotically efficient, the closed-form expression

(??) where the fourth order terms Qx, Q′x and Q′′x are canceled in Cs(Θ) equals the Cramer-Rao bound on the

DOA parameters alone in these conditions.

Remark 2 : If the sources are complex circular up to the fourth order, R′x = O, Q′x = Q′′x = O, and consequently

Cr,r′ = O and C′r′ = O. Therefore Cs is block diagonal: Cs =


Cr O O

O × O

O O ×

. Consequently, the AMV of a

second-order algorithm based on (RT ,R
′
T ) given by theorem ?? reduces to

CΘ =

(drHdΘ
,0T

) C−1
r O

O ×


 dr

dΘ

0



−1

=

(
drH

dΘ
C−1
r (Θ)

dr

dΘ

)−1

,

which is the AMV given by a second-order algorithm based on RT only.

5 Simulations

In this section, numerical comparisons and Monte Carlo simulations are made between the AMV estimator based

on RT only and the AMV estimator based on (RT ,R
′
T ). This will give an indication of the information contributed

by the second covariance matrix. The sources emit equipowered unfiltered BPSK modulated signals. We consider

a uniform linear array of M = 6 sensors separated by a half-wavelength for which ak = (1, eiθk , . . . , ei(M−1)θk)T

where θk = π sin(αk) with αk, the DOAs relative to the normal of the array.

In the first experiment, the two sources are independent and matrices Rx and R′x are parameterized by their

diagonal terms. Fig.1 exhibits the theoretical and empirical (averaged on 1000 independent Monte Carlo runs)

12



Var(θ1,T ) given by

• the AMV estimator based on RT only,

• the AMV estimator based on (RT ,R
′
T ),

• the MUSIC-like algorithm introduced in [?] 6

• the standard MUSIC algorithm,

versus the signal noise ratio for θ2 − θ1 = 0.2rd and T = 500. This figure shows a good agreement between the

theoretical and empirical curves and we notice that the AMV estimator based on (RT ,R
′
T ) outperforms the AMV

estimator based on RT only, for all values of the signal noise ratio. Naturally, the AMV estimators based on RT

only and (RT ,R
′
T ) perform better than the MUSIC algorithms based on respectively RT only and (RT ,R

′
T ). Fig.2

exhibits the theoretical normalized asymptotic variance [CΘ1
]1,1 given by the AMV estimator based on RT only

and the AMV estimator based on (RT ,R
′
T ), versus the DOA separation for a SNR of 10dB. The AMV estimator

based on (RT ,R
′
T ) clearly outperforms the AMV estimator based on RT only, and the difference is particularly

prominent when the sources are very close.

6Because no performance study is available in the literature, only the empirical Var(θ1,T ) is plotted for this algorithm.
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Fig.1 Theoretical and empirical Var(θ1,T ) given by the AMV estimator based on RT only (?), by the AMV estimator

based on (RT ,R
′
T ) (×), by the MUSIC-like algorithm given in [?] (o) and by the standard MUSIC algorithm (+) versus

the signal noise ratio.
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Fig.2 Theoretical normalized asymptotic variance of θ1,T ([CΘ1 ]1,1) given by the AMV estimator based on (RT only (1)

and the AMV estimator based on (RT ,R
′
T ) (2), versus the DOA separation.
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In the second experiment, we select a scenario where the second covariance matrix contributes almost no

additional information beyond the information in the first covariance matrix. We consider two spatially correlated

waveforms including coherence. The matrices Rx and R′x are parameterized by the real and imaginary parts of their

entries (i.e., by <([Rx]2,1),=([Rx]2,1),<([R′x]2,1),=([R′x]2,1), ([Rx]i,i,<([R′x]i,i),=([R′x]i,i))i=1,2). We suppose the

signals consist of two equipowered multipaths issued from the DOAs θ1 and θ2. Referenced on the first sensor

and from the DOA θ1, we have equivalently: xt,1 = x̃t,1 and xt,2 = cos(α)x̃t,1 + sin(α)x̃t,2 with Rx̃ = σ2
1I2 and

R′x̃ = σ2
1

 ei2φ1 0

0 ei2φ2

. Consequently

Rx = σ2
1

 1 cos(α)

cos(α) 1

 and R′x = σ2
1

 e2iφ1 cos(α)e2iφ1

cos(α)e2iφ1 cos2(α)e2iφ1 + sin2(α)e2iφ2

 .

Fig.3 exhibits the theoretical normalized asymptotic variance [CΘ1 ]1,1 given by the AMV estimator based on RT

only and the AMV estimator based on (RT ,R
′
T ), versus the DOA separation for uncorrelated (α = π

2 ) and coherent

(α = 0) sources, for a SNR of 10dB. We see that the AMV estimators based on RT and on (RT ,R
′
T ) have the

same performance with coherent signals, whereas the AMV estimator based on (RT ,R
′
T ) slightly outperforms

the AMV estimator based on RT for uncorrelated sources. Compared with Fig.1, we see the crucial role of the

parameterization of Rx and R′x. If the sources are known to be uncorrelated, we must parameterize these matrices

by their diagonal only to benefit from the second covariance matrix.
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Fig.3 Theoretical normalized asymptotic variance of θ1,T ([CΘ1 ]1,1) given by the AMV estimator based on RT only (1)

and the AMV estimator based on (RT ,R
′
T ) (2) for uncorrelated or coherent sources, versus the DOA separation.

6 Conclusion

This paper has introduced asymptotically minimum variance algorithms in the class of algorithms based on second-

order statistics for estimating DOA parameters of possibly spatially correlated even coherent narrowband non-

circular sources impinging on arbitrary array structures. The performance of the proposed algorithms were evalu-

ated by closed-form expressions of the asymptotic covariance of the DOA estimates which can be used as a lower

bound for assessing the performance of any suboptimal second-order algorithms. These asymptotic covariances

were numerically compared with that obtained by AMV algorithms based on the first covariance matrix only. We

have then realized that the expected benefits due to the non-circular property mainly happens for uncorrelated

sources and furthermore if the parameterization takes this information into account. Naturally, these conclusions

must be mitigated because a thorough comparison between these two AMV algorithms would need a large quantity

of scenarios (various geometry arrays, number of sources, non-circularity, correlation and SNR).

An issue which was not addressed in this paper is the sufficient conditions that guarantee the identifiability of

the DOA parameters from the two covariance matrices for non-circular signals. This crucial question is not trivial

and it is in fact application specific since it depends on the structure of the array, the spatial covariance and the

type of non-circularity of the sources. A study to deal with this issue is underway.
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