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Abstract

After providing an extension of the Slepian-Bangs formula for general non-circular complex

Gaussian distributions, this paper focuses on the stochastic Cramer-Rao bound (CRB) on direction

of arrival (DOA) estimation accuracy for non-circular sources. We derive an explicit expression of the

CRB for DOA parameters alone in the case of non-circular complex Gaussian sources by two different

methods. One of them consists in computing the asymptotic covariance matrix of the maximum like-

lihood (ML) estimator, and the other is obtained directly from our extended Slepian-Bangs formula.

Some properties of this CRB are proved and finally, it is numerically compared with the CRBs under

circular complex Gaussian and complex discrete distributions of sources.
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1 Introduction

Deterministic and stochastic CRB’s play an important role in parametric estimation because the statistical perfor-

mances of numerous estimation methods are known to be comparable to these bounds under certain mild conditions.

Moreover, the stochastic CRB can be achieved asymptotically (in the number of measurements) by the stochastic

ML method. Most of the contributions on the stochastic CRB are dedicated to Gaussian distributions for which

a particularly convenient CRB formula was obtained for real Gaussian distributions by Slepian [1] and Bangs [2]

referred to as the Slepian-Bangs formula, then extended to circular complex Gaussian distributions (see e.g., [3,

rel. (B.3.25)]). As is well known the importance of the Gaussian CRB formulas lies in the fact that Gaussian data

are rather frequently encountered in applications. Another important point is that under rather general condi-

tions, the real [resp. circular complex] Gaussian CRB matrix is the largest of all CRB matrices among the class

of arbitrary real [resp. circular complex] distributions with given mean and covariance matrices (see e.g., [3, p.

293]). However non-circular complex signals are frequently encountered in digital communications. For example,

binary phase shift keying (BPSK) are often used. And no closed-form expression of the CRB is available for these

signals. Consequently for non-circular complex signals, we need an upper bound of this CRB. But to the best of our

knowledge, the Slepian-Bangs formula has not been yet extended to non-circular complex Gaussian distributions.

The first contribution of this paper is to give an extended Slepian-Bangs formula based on the work of [4].

Then, we concentrate on DOA estimation. For non-circular Gaussian sources, an explicit expression of the CRB

for DOA parameters alone is derived from two different methods. One of them is obtained in an indirect manner

by an asymptotic analysis of the ML estimator by slight modifications of the proof given by Stoica et al [7]. And

the other is obtained directly from our extended Slepian-Bangs formula by following along the lines of the paper

by Stoica et al [5]. We prove that this CRB generally outperforms the circular complex Gaussian CRB associated

with the same Hermitian covariance matrix. Next we prove that this CRB decreases monotonically as the non-

circularity rate increases in the particular case of one source. Finally, numerical comparison of the CRB under

BPSK and non-circular Gaussian distributions are given. In particular we show that for one source, the CRB under

the BPSK distribution and under the non-circular complex Gaussian distribution approximately coincide. But for

two equipowered uncorrelated BPSK sources, the CRB under the BPSK distribution outperforms the CRB under

the non-circular complex Gaussian distribution and the difference between them is more prominent for small DOA

and phase separations.
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The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H, ∗ stand

for transpose, conjugate transpose, conjugate respectively. ¯ is the Hadamard matrix product (i.e. (A ¯B)i,j =

(A)i,j(B)i,j) and ⊥ is the ortho-complement of a projector matrix. Tr(.), Det(.), ln(.), <(.) and =(.) denote the

trace, the determinant, the logarithm, the real and the imaginary part operator, respectively.

2 Stochastic Cramer-Rao bound for non-circular Gaussian signals

We consider a n-variate complex Gaussian random variable (RV) z def= x + iy, whose structured mean mz
def=

mx + imy
def= E(x)+ iE(y) and covariance matrices Rz

def= E[(z−mz)(z−mz)H ] and R′
z

def= E[(z−mz)(z−mz)T ]

are parameterized by the real parameter Θ ∈ RL. Considering the Fisher information matrix, we prove the

following result:

Result 1 The Fisher information matrix corresponding to the non-negative definite and non-circular complex

Gaussian distribution is given (elementwise) by

(IF )k,l =
(

∂mz̃

∂θk

)H

R−1
z̃

∂mz̃

∂θl
+

1
2
Tr

[
∂Rz̃

∂θk
R−1

z̃

∂Rz̃

∂θl
R−1

z̃

]
(2.1)

with mz̃
def=




mz

m∗
z


Ê and Rz̃

def=




Rz R′
z

R′∗
z R∗

z


 1.

Proof: Because the non-singular n-variate complex Gaussian RV z is simply a 2n-variate real Gaussian RV

(xT ,yT )T , with mean (mT
x ,mT

y )T and arbitrary non-negative definite symmetric covariance matrix Γ2r, the real

Slepian-Bangs formula (see e.g., [3, rel. (B.3.3)]) can be applied:

(IF )k,l =
∂

∂θk

(
mT

x ,mT
y

)
Γ−1

2r

∂

∂θl




mx

my


 +

1
2
Tr

[
∂Γ2r

∂θk
Γ−1

2r

∂Γ2r

∂θl
Γ−1

2r

]
. (2.2)

1We note that contrary to Γ2r, Rz̃ is block structured where Rz and R′
z are respectively Hermitian complex and

symmetric complex. Consequently, the sample matrix Rz̃,T is not described by a traditional 2n-variate complex Wishart

distribution.
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Then, thanks to the relation Rz̃ = MΓ2rMH with M def= 1
2




In In

−iIn iIn


 proved in [4], using




mx

my


 = M




mz

m∗
z


 and

∂Γ2r

∂θk
Γ−1

2r

∂Γ2r

∂θl
Γ−1

2r = M−1 ∂Rz̃

∂θk
R−1

z̃

∂Rz̃

∂θl
R−1

z̃ M

in (2.2), result 1 is proved.

Remark: We note that for circular complex Gaussian RVs, Rz̃
def=




Rz O

O R∗
z


; and consequently (2.1) reduces

to the circular complex Gaussian Slepian-Bangs formula [3, rel. B.3.25].

3 Application to DOA estimation for non-circular sources

In the following, we will be concerned with the signal model

zt = Ast + nt, t = 1, . . . , T

where (zt)t=1,...,T represents the independent identically distributed M -vectors of observed complex envelope at

the sensor output. A = [a1, . . . ,aK ] is the steering matrix where each vector ak is parameterized by the real scalar

parameter θk. st = (st,1, . . . , st,K)T and nt model signals transmitted by K sources and additive measurement

noise respectively. st and nt are multivariate independent, complex zero-mean. nt is assumed circular complex

Gaussian, spatially uncorrelated with E(ntnH
t ) = σ2

nIM , while st is either non-circular complex Gaussian or complex

discrete distributed, and possibly spatially correlated or even coherent with Rs
def= E(stsH

t ) and R′
s

def= E(stsT
t ).

Consequently this leads to the covariance matrices of zt:

Rz(Θ) = ARsAH + σ2
nIM and R′

z(Θ) = AR′
sA

T .

If no a priori information is available, (Rz(Θ),R′
z(Θ)) is generically parametrized by the L = K +

K2 + K(K + 1) + 1 real parameters Θ = (ΘT
1 , ΘT

2 )T with Θ1
def= (θ1, . . . , θK)T and Θ2

def=

(
(<([Rs]i,j),=([Rs]i,j),<([R′

s]i,j),=([R′
s]i,j))1≤j<i≤K , ([Rs]i,i,<([R′

s]i,i),=([R′
s]i,i))i=1,...,K , σ2

n

)T . The parameter

Θ is supposed identifiable from (Rz(Θ),R′
z(Θ)), in the following sense:

Rz(Θ) = Rz(Θ′) and R′
z(Θ) = R′

z(Θ
′) ⇒ Θ = Θ′. (3.1)
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3.1 Indirect derivation of the stochastic CRB for non-circular sources

To derive the stochastic CRB of the parameter Θ1 alone, we consider the asymptotic covariance of the ML estimator.

We first note that the probability density function (PDF) of z considered as a 2M -variate real Gaussian RV is given

by an expression which is similar to that of the PDF in the circular case, provided it is expressed as a function of

z̃ def=




z

z∗


. From [4, rel. (15)], we have

p(x,y) = p′(z̃) = (π)−M [Det(Rz̃)]−1/2exp[−1
2
z̃HR−1

z̃ z̃] (3.2)

where

Rz̃
def= E(z̃tz̃H

t ) = ÃRs̃ÃH + σ2
nI2M with Rs̃ =




Rs R′
s

R′∗
s R∗

s


 (3.3)

and Ã def=




A O

O A∗


. Then, classically (see e.g., [6],[7]), after dropping the constants, the log-likelihood function

can be written as

L(Θ1, Θ2) = −T

2
(
ln[Det(Rz̃)] + Tr(R−1

z̃ Rz̃,T )
)

(3.4)

with Rz̃,T
def= 1

T

∑T
t=1 z̃tz̃H

t where the parameters Θ1 and Θ2 are imbedded in the covariance matrix Rz̃. In (3.4),

Rz̃ depends on Rs̃, which is structured via (3.3). Due to these constraints, the ML estimation of (Θ1,Θ2) becomes

a constrained optimization problem which is not standard. Despite this difficulty, we prove in the following that

the ML estimate of the DOA parameters Θ1 and source and noise covariance parameters Θ2 may be obtained in a

separable form. We restrict here to the case where K < M and A is full column rank.

Result 2 If the sample covariance matrix Rz̃,T is positive definite, the joint ML estimates which maximize the

log-likelihood function (3.4) subject to the constraints (3.3) are given by the following:

Θ̂1,ML is obtained by the minimizing with respect to Θ1

FT (Θ1) = ln[Det(ÃR̂s̃,MLÃH + σ̂2
n,MLI2M )] (3.5)

where R̂s̃,ML and σ̂2
n,ML are given by

R̂s̃,ML = [ÃH(Θ1)Ã(Θ1)]−1ÃH(Θ1)[Rz̃,T − σ̂2
n,MLI2M ]Ã(Θ1)[ÃH(Θ1)Ã(Θ1)]−1 (3.6)

and

σ̂2
n,ML =

1
M −K

Tr
(
Π⊥

A(Θ1)Rz,T

)
,
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with ΠA(Θ1) is the projection matrix A(Θ1)[AH(Θ1)A(Θ1)]−1AH(Θ1). Furthermore

R̂s,ML = [AH(Θ̂1,ML)A(Θ̂1,ML)]−1AH(Θ̂1,ML)[Rz,T − σ̂2
n,MLIM ]A(Θ̂1,ML)[AH(Θ̂1,ML)A(Θ̂1,ML)]−1 (3.7)

and

R̂′
s,ML = [AH(Θ̂1,ML)A(Θ̂1,ML)]−1AH(Θ̂1,ML)R′

z,T A∗(Θ̂1,ML)[AT (Θ̂1,ML)A∗(Θ̂1,ML)]−1. (3.8)

where Rz,T
def= 1

T

∑T
t=1 ztzH

t and R′
z,T

def= 1
T

∑T
t=1 ztzT

t .

Proof: Maximizing the log-likelihood (3.4) without any constraint on the Hermitian matrix Rs̃ reduces to a

standard maximization problem. Its solution is given (e.g., in [6], [7]) by the minimization of (3.5) where R̂s̃,ML is

given by (3.6) and σ̂2
n,ML by

σ̂2
n,ML =

1
2M − 2K

Tr
(
Π⊥

Ã(Θ1)
Rz̃,T

)
.

Because Rz̃,T , ÃH(Θ1)Ã(Θ1), then [ÃH(Θ1)Ã(Θ1)]−1 and [ÃH(Θ1)Ã(Θ1)]−1ÃH(Θ1) are all partitioned of the

form




(¦) (×)

(×)∗ (¦)∗


, the expression (3.6) is also partitioned of this form where the matrices (¦) and (×) are given

by (3.7) and (3.8) respectively. Finally, because ΠÃ(Θ1)
=




ΠA(Θ1) O

O Π∗
A(Θ1)


 and Rz̃,T =




Rz,T R′
z,T

R′∗
z,T R∗

z,T


,

result 2 is proved.

Because the dimension of Θ that parametrizes our model is fixed, it follows from the standard statistical theory

of ML estimator (see e.g., [8]) that the ML estimator of Θ1 asymptotically (in the number of measurements)

achieves the CRB for Θ1 estimation. Consequently, an explicit expression of the CRB of Θ1 alone can be derived

thanks to an asymptotic analysis of the ML estimate of Θ1 given by result 2. Thus, by adapting the proof given

in [7], the following result is proved.

Result 3 The normalized (i.e. for T = 1) DOA-related block of CRB for non-circular complex Gaussian (NCG)

sources is given by the following explicit expression:

CNCG
Θ1

=
σ2

n

2




<


DHΠ⊥

AD¯


[RsAH ,R′

sA
T ]R−1

z̃




ARs

A∗R
′∗
s







T 






−1

(3.9)

with D def= dA(Θ1)
dΘ1

.
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Proof: Deriving the covariance CΘ1 of the asymptotic distribution of the minimizing Θ1,T of the function FT (Θ1)

(see (3.5)) depending on the unknown Θ1 and the statistics Rz̃,T is a standard problem. It solution is given by

(see e.g., [5])

CΘ1 =
[
F
′′
(Θ1)

]−1
(

lim
T→∞

E
([

F
′
T (Θ1)

] [
F
′
T (Θ1)

]T
))[

F
′′
(Θ1)

]−1

(3.10)

where F
′
T (Θ1) is the gradient of FT (Θ1) and F

′′
(Θ1) is the limit of the Hessian of FT (Θ1) when T →∞. Because, it

is proved in result 2, that the constrained ML estimate of Θ1 (i.e. with Rs̃ satisfying the constraints (3.3)) coincides

with the unconstrained ML estimate of Θ1 (i.e. where Rs̃ is an arbitrary Hermitian matrix), we can follow along the

lines of the derivation given in [7] where Rz = ARsAH +σ2
nIM is replaced here by Rz̃ = ÃRs̃ÃH +σ2

nI2M . F
′
T (Θ1)

and F
′′
(Θ1), then CNCG

Θ1
are derived in Appendix A thanks to slight modifications w.r.t. [7]. More precisely, [7,

rel. (3.7)] is generalized to

(
F
′
T (Θ1)

)
k

= 2<
[
hH

k,T Rz,T Π⊥
Adk + gH

k,T R′∗
z,T Π⊥

Adk

]
, k = 1, . . . , K (3.11)

and [7, rel. (3.8)] is generalized to

F
′′
(Θ1) =

2
σ2

n

<


DHΠ⊥

AD¯


[RsAH ,R′

sA
T ]R−1

z̃




ARs

A∗R
′∗
s







T 
 (3.12)

where hH
k,T and gH

k,T are respectively the kth row of the matrices
[(

ÃHRz̃,T Ã
)−1

(1:K,1:K)
− 1

σ2
n

(
AHA

)−1
]
AH and

(
ÃHRz̃,T Ã

)−1

(1:K,K+1:2K)
AT

Remark 1: We note that for circular complex Gaussian (CG) sources, R′
s = O and Rz̃ =




Rz O

O R∗
z


. Conse-

quently (3.9) reduces to

CCG
Θ1

=
σ2

n

2

{
<

[
DHΠ⊥

AD¯ (
RsAHR−1

z ARs

)T
]}−1

indirectly derived in [7], then directly derived from the circular complex Stepian-Bangs formula in [5].

The next result compares the CRBs CNCG
Θ1

and CCG
Θ1

associated with sources with the same first covariance

matrix Rs.

Result 4 The DOA-related block of CRB for non-circular complex Gaussian sources is upper bounded by the

associated CRB for circular complex Gaussian sources corresponding to the same first covariance matrix Rs.

CNCG
Θ1

≤ CCG
Θ1

. (3.13)
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Proof: First, from [7, lemma A.4], we have B1 − B2 ≥ O with B1
def= [RsAH ,R′

sA
T ]R−1

z̃




ARs

A∗R
′∗
s


 and

B2
def= RsAHR−1

z ARs and this inequality applies to the transpose of these matrices: BT
1 − BT

2 ≥ O. Then,

because B3
def= DHΠ⊥

AD ≥ O, we have thanks to a standard result of linear algebra (see e.g., [3, Appendix

A, result R.19], B3 ¯
(
BT

1 −BT
2

) ≥ O. This inequality is extended to the associated real symmetric matrices

< [
B3 ¯BT

1

]−< [
B3 ¯BT

2

] ≥ O, then by inversion {< [
B3 ¯BT

1

]}−1 − {< [
B3 ¯BT

2

]}−1 ≤ O.

In the particular case of one source, we prove the following:

Result 5 The CRB of θ1 for a non-circular complex Gaussian source decreases monotonically as the non-

circularity rate increases and is given by the expression

CNCG
θ1

=
1
α 1

[
2r−1

1 + ‖a1‖−2r−2
1 + ‖a1‖2 − ‖a1‖2ρ2

1

‖a1‖2r1 + 1 + (1− ‖a1‖2r1)ρ2
1

]
(3.14)

where the non-circularity rate ρ1 is defined by E(s2
t,1) = ρ1e

iφ1E|s2
t,1| and satisfies 0 ≤ ρ1 ≤ 1. φ1 is the circularity

phase of st,1, (it will be used in Section 3.3). The SNR is defined by r1
def= σ2

1
σ2

n
and α1 is the purely geometrical

factor 2a
′
1

H
Π⊥

a1
a
′
1 with a

′
1

def= da1
dθ1

.

Proof: First, note that the structure of the inverse of Rz̃ in (3.9) is preserved, i.e. R−1
z̃ =




G G
′

G
′∗ G∗


 with

G =
(
Rz −R

′
zR

∗
z
−1R

′∗
z

)−1

and G
′
= −GR

′
zR

∗
z
−1. With Rz = σ2

1a1aH
1 + σ2

nIM and R
′
z = σ2

1ρ1e
iφ1a1aT

1 , (3.14)

follows thanks to straightforward but tedious calculations. The monotony of CNCG
θ1

with ρ1 is proved in Appendix

B.

Consequently for one source, the CRB decreases from Cθ1 = 1
α1r1

(
1 + 1

‖a1‖2r1

)
(ρ1 = 0, circular case) to

Cθ1 = 1
α1r1

(
1 + 1

2‖a1‖2r1

)
(ρ1 = 1, unfiltered BPSK case).

3.2 Direct derivation of the stochastic CRB for non-circular sources

To directly prove result 3 from the Fisher information matrix (2.1), we first note that thanks to the proof of result

2, the constrained ML estimate of Θ1 coincides with the unconstrained ML estimate of Θ1. Consequently the

associated CRBs of Θ1 coincide for these two models. Using the unconstrained model, let Θ = (ΘT
1 ,ΘT

2 )T with

here Θ2
def= (ρT , σ2

n)T where ρ
def= ((<([Rs̃]i,j),=([Rs̃]i,j))1≤j<i≤2K , ([Rs̃]i,i))i=1,...,2K)T . With this unconstrained

8



model, we can follow along the lines of the derivation given in [5] where Rz = ARsAH + σ2
nIM is replaced here

by Rz̃ = ÃRs̃ÃH + σ2
nI2M because the key point of the derivation, i.e. the relation vec(Rs̃) = Jρ where J is

a constant nonsingular complex matrix is preserved. And rel. (3.9) is proved in Appendix C thanks to slight

modifications of the direct derivation given in [5].

We note that the validity conditions of result 2 are “K < M and A is full column rank”, whereas the identifi-

ability condition (3.1) does not impose such conditions if a priori knowledge is available. For example, in the case

of a uniform linear array and K independent sources of maximum non-circularity rates (ρk = 1, k = 1, . . . , K), it is

shown in the simulations of [9] that up to K = 2M − 2 sources can be identified. In these cases, we have to resort

to the CRB derived from the closed-form expression of the asymptotic minimum variance for complex non-circular

Gaussian signals [11]. This remark extends to non-circular Gaussian signals, the discussion considered in [10] for

circular Gaussian signals.

3.3 Illustrative examples

The purpose of this section is to illustrate results 3, 4 and 5 and to compare these CRBs to the CRB associated

with BPSK distributed sources. We consider throughout this section one or two independent and equipowered

sources with identical non-circularity rate. These sources impinge on a uniform linear array of M sensors separated

by a half-wavelength for which ak = (1, eiθk , . . . , ei(M−1)θk)T where θk = π sin(αk) with αk, the DOAs relative to

the normal of array broadside.

The first experiment illustrates results 3 and 4. We consider two non-circular complex Gaussian sources with

M = 6 and SNR = 20dB. Figs. 1, 2 and 3 exhibit the dependence of
(
CNCG

Θ1

)
(1,1)

2 with the non-circularity

rate ρ1 = ρ2, the circularity phase separation φ2 − φ1 and the DOA separation θ2 − θ1 respectively. Fig. 1 shows

that
(
CNCG

Θ1

)
(1,1)

decreases as the non-circularity rate incresases (this extends to two equipowered sources result

5 proved in the one source case). Furthermore this decrease is more prominent for low DOA separations. Fig.

2 shows that
(
CNCG

Θ1

)
(1,1)

is sensitive to the circularity phase separation for low DOA separations. And Fig. 3

illustrates the inequality (3.13) of result 4. It shows that the difference between these two values is very sensitive

for very low DOA separations only. Fig. 4 compares the non-circular complex Gaussian CRB CNCG
Θ1

with the

non-circular complex Gaussian CRB CNCG′
Θ1

under the a priori information that the two sources are independent

2All the CRBs are computed for T = 1. That means that the actual CRBs associated with the signal model defined in

section 3 are obtained from the results given in this section by dividing by T .
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3 given in [11] by a non-explicit expression. Fig. 4 shows that this a priori information is quite informative, but

this information gain decreases as the non-circularity rate increases. This is particularly prominent for low DOA

separations.
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∆θ=0.01 rd 

Fig.1 Ratio ra
def
=

�
CNCG

Θ1

�
(1,1)�

CCG
Θ1

�
(1,1)

as a function of the non-circularity rate for different values of DOA separation (∆θ) for

φ1 = π/2 and φ2 = π/3.

3We note that the explicit expression (3.9) does not take account of this a priori information because it has been derived

without any constraint on Rs and R′
s.
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as a function of the DOA separation for ρ1 = ρ2 = 1 and φ1 = π/2 and φ2 = π/3.
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φ1 = π/2 and φ2 = π/3.

The second experiment illustrates result 5 where a non-circular complex Gaussian source and M = 3 are

considered. Fig. 5 shows that the CRB decreases monotonically as the non-circularity rate increases but it is

relatively insensitive to the increase of ρ1, except for very low SNR (i.e. for ‖a1‖2r1 ≈ 1).
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The two last experiments compare the numerical values of the non-circular complex Gaussian CRB CNCG′
Θ1

4

with those of the CRB CBPSK
Θ1

associated with several BPSK distributed sources. Because the associated PDF of

zt is a mixture of 2K Gaussian PDFs, this latter CRB appears to be prohibitive to compute, we use a numerical

approximation derived from the strong law of large numbers, i.e.

CBPSK
Θ1

=
(
I−1
F

)
(1:K,1:K)

with (IF )k,l = lim
T→∞

1
T

T∑
t=1

(
∂ln p(zt; Θ)

∂θk

)(
∂ln p(zt; Θ)

∂θl

)

where

p(zt; Θ) =
1

2KπMσ2M
n

2K−1∑

l=0

e
− ‖zt−A(Θ1)sl‖2

σ2
n with sl

def= (a1ε1,le
iφ1 . . . , aKεk,le

iφK )T

where εk,l = −1, +1 are given by the dyadic expansion l =
∑K

k=1
(εk,l+1)

2 2k−1, l = 0, . . . , 2K −1, for K independent

unfiltered (i.e. ρk = 1) BPSK sources for which Θ = (ΘT
1 , ΘT

2 )T with here Θ2
def= (σ2

1 , . . . , σ2
K , φ1, . . . , φK , σ2

n)T .

In the third experiment, we consider the one source case where M = 3. Fig. 6 compares CNCG
θ1

, CCG
θ1

and

CBPSK
θ1

. This figure shows that the CRBs under the BPSK distribution and under the non-circular complex Gaussian

distribution (with ρ1 = 1) approximately coincide. They outperform the CRB under the circular complex Gaussian

distribution for low SNR only.

4We note that in the one source case CNCG′
Θ1 and CNCG

Θ1 coincide.
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Fig.6 CNCG
θ1 , CCG

θ1 and CBPSK
θ1 as a function of the SNR.

The last experiment illustrates the sensitivity of the CRB of the DOA to the distribution of the sources for two

sources with M = 6 when the a priori information that the two sources are independent are taken into account.

Figs. 7, 8 and 9 exhibit the difference between
(
CNCG′

Θ1

)
(1,1)

5 (for ρ1 = ρ2 = 1) and
(
CBPSK

Θ1

)
(1,1)

as a function of

the SNR, the circularity phase separation φ2−φ1 and the DOA separation θ2− θ1, respectively. Fig. 7 shows that

for the same a priori information,
(
CBPSK

Θ1

)
(1,1)

slightly outperforms
(
CNCG′

Θ1

)
(1,1)

for all SNRs but tremendously

outperforms the CRBs
(
CCG

Θ1

)
(1,1)

and
(
CNCG

Θ1

)
(1,1)

which do not take account of this a priori information. Figs. 8

and 9 show a weak sensitivity of
(
CBPSK

Θ1

)
(1,1)

to the circularity phase separation φ2−φ1 and to the DOA separation

θ2 − θ1 w.r.t.
(
CNCG′

Θ1

)
(1,1)

which is very sensitive. They also show that the difference between
(
CNCG′

Θ1

)
(1,1)

(for

ρ1 = ρ2 = 1) and
(
CBPSK

Θ1

)
(1,1)

increases as the circularity phase separation or the DOA separation decreases.

5We note that comparing directly CBPSK
Θ1 to CNCG

Θ1 would be unfair because these CRBs are not associated with the same

a priori information.
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�
CBPSK

Θ1

�
(1,1)

(o o o), and
�
CNCG′

Θ1

�
(1,1)

,
�
CNCG

Θ1

�
(1,1)

,
�
CCG

Θ1

�
(1,1)

as a function of the SNR for a DOA separation of

0.1rd, ρ1 = ρ2 = 1 and φ1 = π/2, φ2 = π/3.
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as a function of the circularity phase separation for different values of DOA

separation (∆θ) for SNR = 20dB.
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separation (∆φ) for SNR = 20dB.

4 Conclusion

This paper has provided an extension of the Slepian-Bangs formula for general non-circular complex Gaussian

distributions then has focused on the stochastic CRB on DOA estimation accuracy for non-circular Gaussian

sources. An explicit expression of the CRB for DOA parameters alone in the case of non-circular complex Gaussian

sources by two different methods has been derived. Some properties of this CRB have been proved and finally, it

has been numerically compared with the CRBs under BPSK distribution.

An issue which was not addressed in this paper is the stochastic CRB of BPSK or QPSK distributed sources

and the comparison of these CRBs with those of the non-circular or circular complex Gaussian distribution. A

paper has just been submitted to deal with this issue.

A Appendix: Proof of (3.9)

All the steps of the derivation of [7] apply with slight modifications. For the stochastic gradient and the deterministic

hessian calculations, [7, rel. B(.16)] and [7, rel. B(.15)] apply where A and Rz,T are replaced respectively by Ã

16



and Rz̃,T . Using the partitioning of Ã, Π⊥
Ã

and Rz̃,T , the expressions (3.11) and (3.12) follow.

For the derivation of (3.9) from (3.10), all the steps of [7] apply to prove that

limT→∞ E
([

F
′
T (Θ1)

] [
F
′
T (Θ1)

]T
)

= F
′′
(Θ1) except that here four terms are concerned from the expres-

sion of (3.11).

B Appendix: Proof of the monotony of Cθ1
with ρ1

Because (3.14) may be written as the following function of x
def= ‖a1‖2r1

CNCG
θ1

=
‖a1‖2
α1c

(
−1 +

a + b

b + ρ2
1

)
with a

def=
(1 + x)2

x2
, b

def=
1 + x

1− x
and c

def= 1− x

and that a+b
c = (1+x)

x2(1−x)2 > 0, CNCG
θ1

is a decreasing function of ρ1.

C Appendix: Indirect proof of (3.9)

All the steps of the direct derivation of [5] apply where [5, rel. (15)] is replaced by

Rs = [c1, . . . , cK ] =




cH
1

...

cH
K




and R′
s = [c′1, . . . , c

′
K ] =




c′1
T

...

c′K
T




and [5, rels. (16),(17),(18)] become respectively

dRz̃

dθk
= DkCH

k ÃH + ÃCkDH
k with Dk

def=




dk 0

0 d∗k


 , dk

def=
dak

dθk
and Ck

def=




ck c′k

c′∗k c∗k




and

Zk = R−1/2
z̃ ÃCkDH

k R−1/2
z̃ .

Consequently [5, rel. (30)] becomes

(IF )k,l = <
[
Tr

(
R−1/2

z̃ ÃCkDH
k R−1/2

z̃ Π⊥
R
−1/2
z̃ Ã

R−1/2
z̃ DlCH

l ÃHR−1/2
z̃

)]
.
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Then, thanks to R−1/2
z̃ Π⊥

R
−1/2
z̃ Ã

R−1/2
z̃ = 1

σ2
n
Π⊥

Ã
= 1

σ2
n




Π⊥
A O

O Π⊥
A∗


, [5, rel. (32)] must be replaced by

(IF )k,l =
1
σ2

n

<


Tr







dH
k O

O dT
k







Π⊥
A O

O Π⊥
A∗







dl O

O d∗l













cH
l c′Tl

c′Hl cT
l







AH O

O AT


R−1

z̃




A O

O A∗







ck c′k

c′∗k c∗k








 .

Exploiting the structure




G G
′

G
′∗ G∗


 of R−1

z̃ , relation (3.9) is straightforwardly deduced.
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