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Abstract—This paper focuses on the stochastic Cramer-
Rao bound (CRB) of direction of arrival (DOA) estimates
for binary phase-shift keying (BPSK) and quaternary
phase-shift keying (QPSK) modulated signals corrupted
by additive circular complex Gaussian noise. Explicit ex-
pressions of the CRB for the DOA parameter alone in
the case of a single signal waveform are given. These
CRB’s are compared, on the one hand, with those ob-
tained with different a priori knowledge, and on the other
hand with CRB’s under the non-circular and circular
complex Gaussian distribution and with different deter-
ministic CRB’s. It is shown in particular, that the CRB’s
under the non-circular [resp. circular] complex Gaussian
distribution are tight upper bounds on the CRB’s un-
der the BPSK [resp. QPSK] distribution at very low and
very high signal to noise ratios (SNR) only. Finally, these
results and comparisons are extended to the case of two
independent BPSK or QPSK distributed sources where
an explicit expression of the CRB for the DOA parame-
ters alone is given for large SNR.

Keywords— Stochastic Cramer-Rao bound, DOA esti-
mation, Fisher information matrix, BPSK and QPSK sig-
nals.

I. Introduction

DETERMINISTIC and stochastic CRB’s play an im-
portant role in DOA estimation because they serve

as a benchmark for the performance of actual esti-
mators (see e.g., [1]). Moreover, the stochastic CRB
can be achieved asymptotically (in the number of mea-
surements) by the stochastic maximum likelihood (ML)
method. Unfortunately, this stochastic CRB appears to
be prohibitive to compute for non-Gaussian processes
including discrete signal waveforms. And to the best of
our knowledge, no contribution has dealt with stochas-
tic CRB for discrete signal waveforms in DOA estima-
tion yet, despite some recent works on stochastic CRB
for non-circular signals (e.g., [2],[3]). To cope with this
difficulty, a method sometimes used is to assume that
the signals are arbitrary deterministic sequences while
the noise is circular complex Gaussian, so that the dis-
tribution is still Gaussian and the associated determin-
istic CRB is easily deduced (see e.g., [4, rel. (2.13)]).
But the corresponding deterministic (or conditional) ML
method does not achieve this deterministic CRB because
the deterministic likelihood function does not meet the
required regularity conditions. Consequently, this deter-
ministic CRB is only a non-attainable lower bound on

the variance of any unbiased DOA estimator. To deal
with non-Gaussian processes, another solution is to sup-
pose that the signals are Gaussian but not necessarily
complex circular. In that case, the associated CRB is
under rather general conditions (see e.g., [5, p. 293]) the
largest CRB among the class of arbitrary distributions
with given covariance matrices. This approach was used
in [6] for non-circular complex signal waveforms such as
discrete signals. But the associated CRB is only an up-
per bound on the true stochastic CRB. Faced with the
drawbacks of the two aforementioned approximations,
we need an explicit expression of the stochastic CRB
under non-Gaussian distributions.

In this paper, we derive explicit expressions of the sto-
chastic CRB for the DOA parameter alone in the case
of BPSK and QPSK signal waveforms observed in addi-
tive circular complex Gaussian noise. More specifically,
the main contribution of this paper is devoted to the
case of a single BPSK and QPSK signal waveform. Be-
cause the distribution of these models are simple mixed
Gaussian, an explicit expression of the Fisher informa-
tion matrix (FIM) is derived using well known properties
of the Gaussian distribution. An explicit expression of
the stochastic CRB for the DOA parameter alone is de-
duced. We note that apart from the DOA applications,
the recent papers (e.g., [7], [8]) that deal with stochastic
CRB’s for estimating the carrier phase and frequency of
BPSK and QPSK waveforms, do not give analytic solu-
tions (see e.g., [7, rels.(9)(16)], [8, rels.(16)]). Our CRB’s
are compared with those obtained with different a pri-
ori knowledge and are confronted with the non-circular
and circular complex Gaussian CRB’s and with differ-
ent deterministic CRB’s presented in [9]. It is shown in
particular, that the CRB’s under the non-circular [resp.
circular] complex Gaussian distribution are tight upper
bounds on the CRB’s under the BPSK [resp. QPSK] dis-
tribution at very low and very high SNR’s only. Finally,
the case of two independent BPSK distributed sources
is dealt with. Due to the computational complexity, an
explicit expression of the DOA parameters alone is given
for large SNR only. Furthermore numerical comparisons
of the stochastic CRB’s associated with BPSK and non-
circular Gaussian distributed sources are given for all
SNR’s. In particular, they show that the CRB under the
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non-circular Gaussian distribution is a very loose upper
bound on the CRB under the BPSK distribution. And
the difference between these CRB’s is more prominent
for small DOA and phase separation.

The following notations are used throughout the pa-
per. Matrices and vectors are represented by bold upper
case and bold lower case characters, respectively. Vec-
tors are by default in column orientation, while T , H, ∗,
<, = and i stand for transpose, conjugate transpose, con-
jugate, real and imaginary part and

√−1, respectively.
⊗ is the standard Kronecker product of matrices. The
symbol 1A denotes the indicator function of the condi-
tion A, which assumes the value 1 if this condition is
satisfied and 0 otherwise, and the symbol N (m; v) de-
notes the univariate Gaussian distribution with mean m
and variance v.

II. Data model

Consider a BPSK or QPSK modulated signal imping-
ing on an arbitrary array of M sensors. We assume that
the array is perfectly calibrated for which the steering
vector is a kwown function of the source’s DOA. The
received signals are bandpass filtered and after down-
shifting the sensor signal to baseband, the in-phase and
quadrature components are paired to obtain complex
signals. We assume Nyquist shaping and ideal sample
timing so that the inter-symbol interference at each sym-
bol spaced sampling instance can be ignored. In the ab-
sence of frequency offset but with possible phase offset,
the signals at the output of the matched filter can be
represented as:

yt = sta1 + nt t = 1, . . . , T

where a1 is the steering vector parametrized by the
scalar DOA parameter θ1. We suppose ‖a1‖2 = M .
st = σ1e

iφ1εt where (εt)t=1,...,T are independent, iden-
tically, distributed (IID) random symbols taking val-
ues ±1 [resp. ±√2/2 ± i

√
2/2] with equal probabil-

ities for BPSK [resp. QPSK] modulations, where φ1

and σ1 are considered as unknown parameters. The
symbols εt are assumed to be independent from nt.
(nt)t=1,...,T are IID M -variate zero-mean complex cir-
cular Gaussian random vectors with E(ntnH

t ) = σ2
nIM .

Consequently (yt)t=1,...,T are IID M -dimensional ran-
dom variable whose probability density function (PDF)
is mixed circular Gaussian:

p(yt;α) =
1

LπMσ2M
n

L∑

l=1

e
− ‖yt−σ1eiφ1 εla1‖2

σ2
n (1)

with L = 2 and εl = ±1 [resp. L = 4 and εl = ±√2/2±
i
√

2/2] for BPSK [resp. QPSK] modulated signals and
where α

def= (σn, σ1, φ1, θ1)T .

III. Stochastic CRB for BPSK and QPSK
signals

The main result of the paper proved in Appendix A
is contained in the following theorem

Theorem 1: The FIM associated with the parameter
(σn, σ1, φ1, θ1) of stochastic BPSK and QPSK modu-
lated signals are given by the explicit closed-form ex-
pressions:

IBPSK
F = T

[
IBPSK
F1

O
O IBPSK

F2

]
,

IQPSK
F = T

[
IQPSK
F1

O
O IQPSK

F2

]

with

IBPSK
F1

=

[
4M
σ2

n
(1− 2σ2

1
σ2

n
f1(ρ)) 4Mσ1

σ3
n

f1(ρ)
4Mσ1

σ3
n

f1(ρ) 2M
σ2

n
(1− f1(ρ))

]

IBPSK
F2

=




2Mσ2
1

σ2
n

(1− f2(ρ))
2σ2

1(ia
′
1

H
a1)

σ2
n

(1− f2(ρ))

2σ2
1(ia

′
1

H
a1)

σ2
n

(1− f2(ρ))
2σ2

1‖a
′
1‖2

σ2
n

(1− f2(ρ))




IQPSK
F1

=

[
4M
σ2

n
(1− 2σ2

1
σ2

n
f1(ρ

2 )) 4Mσ1
σ3

n
f1(ρ

2 )
4Mσ1

σ3
n

f1(ρ
2 ) 2M

σ2
n

(1− f1(ρ
2 ))

]

IQPSK
F2

=




2Mσ2
1

σ2
n

(
1− (1 + ρ)f2(ρ

2 )
)

2σ2
1(ia

′
1

H
a1)

σ2
n

(
1− (1 + ρ)f2(ρ

2 )
)

2σ2
1(ia

′
1

H
a1)

σ2
n

(
1− (1 + ρ)f2(ρ

2 )
)

2σ2
1‖a

′
1‖2

σ2
n

(
1− (1 + ρ

M
|aH

1 a
′
1|2

‖a′1‖2
)f2(ρ

2 )
)




with ρ
def= Mσ2

1
σ2

n
and a

′
1

def= da1
dθ1

and where f1 and f2

are the following decreasing function of ρ: f1(ρ) def=
e−ρ√

2π

∫ +∞
−∞

u2e−
u2
2

cosh(u
√

2ρ)
du, f2(ρ) def= e−ρ√

2π

∫ +∞
−∞

e−
u2
2

cosh(u
√

2ρ)
du,

We note the similarity of the 2 × 2 top left corner of
these FIM’s with those derived in [10] used for the es-
timation of the SNR of BPSK and QPSK modulated
signals. Because these Fisher information matrices are
block diagonal, the following explicit expressions for the
CRB for the parameter DOA alone are easily derived:

CRBBPSK(θ1) =
1
T

(
1
γ1

σ2
n

σ2
1

)(
1

1− f2(ρ)

)
(1)

CRBQPSK(θ1) =
1
T

(
1
γ1

σ2
n

σ2
1

)(
1

1− f2(ρ
2 )

)
(2)

where γ1 is the purely geometrical factor 2a
′
1

H
Π⊥

a1
a
′
1

with Π⊥
a1

def= IM − a1a
H
1

M . We note that thanks to the
decreasing function f2, CRBBPSK(θ1) < CRBQPSK(θ1).
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In the absence of phase offset or after correcting it
(i.e., parameter φ1 known), these CRB’s for θ1 become
1

CRBCO
BPSK(θ1) =

1
T

(
1

2‖a′1‖2
σ2

n

σ2
1

)(
1

1− f2(ρ)

)
(3)

CRBCO
QPSK(θ1) =

1
T

(
1

2‖a′1‖2
σ2

n

σ2
1

)


 1

1− (1 + ρ
M
|aH

1 a
′
1|2

‖a′1‖2
)f2(ρ

2 )


 .(4)

Comparing (3) to (1), we note that the phase informa-
tion for a BPSK source is quite informative for all SNR’s
because 2‖a′1‖2 > γ1 for the DOA perspective contrary
to a QPSK source, as shown in section V-A (Fig.3).

IV. Comparison with related CRB’s

Depending on the presence of different a priori infor-
mation on the parameters and on the distribution of the
sources, several CRB’s can be considered.
Data-aided CRB: If we assume that transmitted sym-
bols are known at the array receiver, the modulation can
be removed perfectly and the resulting signal yt is circu-
lar Gaussian distributed with mean σ1e

iφ1εta1 and co-
variance σ2

nIM and consequently (yT
1 , . . . ,yT

T )T is circu-
lar Gaussian distributed as well, with mean ε⊗σ1e

iφ1a1

and covariance σ2
nIMT where ε

def= (ε1, . . . , εT )T . Ap-
plying the Slepian-Bangs formula (see e.g., [5, rel.
(B.3.25)]), we obtain

(
IDA
F

)
k,l

=
1
σ4

n

Tr
(

∂σ2
nIMT

∂αk

∂σ2
nIMT

∂αl

)

+
2
σ2

n

T∑
t=1

|εt|2<
(

∂σ1e
−iφ1aH

1

∂αk

∂σ1e
iφ1a1

∂αl

)
,

then the following FIM is straightforwardly derived by
noting that 1

T

∑T
t=1 |εt|2 = 1 and ‖a1‖2 = M which im-

plies aH
1 a

′
1+(aH

1 a
′
1)

H = 0, and consequently <(aH
1 a

′
1) =

0 and =(aH
1 a

′
1) = ia

′
1

H
a1:

IDA
F = T




4M
σ2

n
0 0 0

0 2M
σ2

n
0 0

0 0 2Mσ2
1

σ2
n

2σ2
1(ia

′
1

H
a1)

σ2
n

0 0 2σ2
1(ia

′
1

H
a1)

σ2
n

2σ2
1‖a

′
1‖2

σ2
n




and consequently

CRBDA(θ1) =
1
T

(
1
γ1

σ2
n

σ2
1

)
.

Because limρ→∞ f1(ρ) = limρ→∞f2(ρ) = 0, we note
that the FIM’s IBPSK

F and IQPSK
F of section III approach

1Where the exponent CO of CRBCO
BPSK(θ1) and CRBCO

QPSK(θ1)

means coherent.

IDA
F and consequently CRBBPSK(θ1) and CRBQPSK(θ1)

approach CRBDA(θ1) for large SNR values. On the
contrary, because 2‖a′1‖2 > γ1, CRBCO

BPSK(θ1) and
CRBCO

QPSK(θ1) are lower than CRBDA(θ1) for large SNR
values. The phase information is quite informative com-
pared with the training symbols from the DOA perspec-
tive.
Deterministic CRB: For the deterministic or condi-
tional model of the signal waveform, the CRB for θ1

does not depend on the realization of (εt)t=1,...,T be-
cause 1

T

∑T
t=1 |εt|2 = 1 and is given by (see e.g., [4, rel.

(2.11)])

CRBDET(θ1) =
1
T

(
1
γ1

σ2
n

σ2
1

)
.

We note that if side information is available such as the
constant modulus of BPSK and QPSK modulation [11]
and some training symbols among the T symbols εt [9,
rel. (50)], the previous CRB for θ1 is preserved. Fur-
thermore, the data-aided and deterministic CRB are the
same, implying that knowing the signal or not is not im-
portant.
Stochastic complex Gaussian CRB: Because the
BPSK [resp. QPSK] modulation is non-circular [resp.
circular] complex to the second-order, it makes sense to
compare the stochastic CRB’s (1) and (2) to the CRB’s
associated with respectively non-circular 2 (NCG) [6, rel.
(3.14)] or circular (CG) complex Gaussian distribution
that can be considered as upper bounds on the true sto-
chastic CRB’s (see e.g., [5, p. 293]). More precisely, after
recalling these CRB’s under Gaussian distributions for
the convenience of the reader

CRBNCG(θ1) =
1
T

(
1
γ 1

[
σ2

n

σ2
1

+
1

2M

σ4
n

σ4
1

])
,

CRBCG(θ1) =
1
T

(
1
γ1

[
σ2

n

σ2
1

+
1
M

σ4
n

σ4
1

])
,

we have

CRBBPSK(θ1)
CRBNCG(θ1)

=
1

(1− f2(ρ))(1 + 1
2ρ )

and
CRBQPSK(θ1)
CRBCG(θ1)

=
1

(1− f2(ρ
2 ))(1 + 1

ρ )
.

We note that these ratios depend on ρ
def= Mσ2

1
σ2

n
only and

tend to 1 when ρ tends to ∞. However this dependence
in ρ is not monotone as it is numerically shown in the
next section.

2Because E(ε2t ) = E|ε2t | for the BPSK modulation, we consider
the non-circular complex Gaussian distribution associated with
E(ε2t ) = E|ε2t | = 1, i.e., with ρ1 = 1 in [6, rel. (3.14)] where
the non-circularity rate ρ1 and the circularity phase φ1 of εt are
defined here by E(ε2t ) = ρ1e2iφ1E|ε2t |.
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V. Numerical examples

The purpose of this section is to illustrate the re-
sults of section IV and to extend them to the case of
two independent BPSK distributed sources. We con-
sider throughout this section, one or two independent
sources impinging on a uniform linear array (ULA) of
M sensors spaced a half-wavelength apart for which
ak = (1, eiθk , . . . , ei(M−1)θk)T .

A. Single source case

The first experiment illustrates the results of section
IV. Fig.1 shows the ratios CRBBPSK(θ1)

CRBNCG(θ1)
and CRBQPSK(θ1)

CRBCG(θ1)

as a function of ρ
def= Mσ2

1
σ2

n
. We see from that figure that

the CRB’s under the non-circular [resp. circular] com-
plex Gaussian distribution are tight upper bounds on
the CRB’s under the BPSK [resp. QPSK] distribution
at very low and very high SNR’s only.

Figs.2 and 3 show the different CRB’s 3 as a func-
tion of the SNR for the BPSK and QPSK modula-
tions respectively. From these figures, we see that
the CRB’s achieved in the absence of phase off-
set outperform all the other CRB’s except for very
low SNR’s. It is shown that there is no signif-
icant difference between the bounds for non-data-
aided and data-aided estimations except at low SNR.

−10 −5 0 5 10 15 20 25 30
0.85

0.9

0.95

1

ρ (dB)

r 1(θ
1)

QPSK BPSK 

Fig.1 Ratios r1(θ1)
def
=

CRBBPSK(θ1)
CRBNCG(θ1)

and r1(θ1)
def
=

CRBQPSK(θ1)

CRBCG(θ1)

as a function of ρ
def
=

Mσ2
1

σ2
n

.
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10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

SNR (dB)

C
R

B
(θ

1)

NCG
BPSK
BPSK−DA
BPSK−CO

M=3 

M=8 

3All the CRB’s are computed for T = 1. That means that the
actual CRB’s associated with the signal model defined in section
II are obtained from the results given in this section by dividing
by T .

Fig.2 Normalized (T = 1) CRB’s for BPSK modulation:

CRBNCG(θ1), CRBBPSK(θ1), CRBDA
BPSK(θ1) and CRBCO

BPSK(θ1)
as a function of the SNR.
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Fig.3 Normalized (T = 1) CRB’s for QPSK modulation:

CRBCG(θ1), CRBQPSK(θ1), CRBDA
QPSK(θ1) and CRBCO

QPSK(θ1) as

a function of the SNR.

B. Two sources case

We consider now two independent BPSK or QPSK
distributed sources. Because the PDF of yt is a mixture
of 4 or 16 Gaussian PDFs, the associated stochastic CRB
appears to be prohibitive to compute. Consequently we
use a numerical approximation derived from the strong
law of large numbers, i.e.

CRBPSK(θ1, θ2) =
(
I−1
F

)
([4 7],[4 7])

with

1
T

(IF )k,l = lim
T ′→∞

1
T ′

T ′∑
t=1

(
∂ln p(yt; α)

∂αk

)(
∂ln p(yt;α)

∂αl

)

(5)
where

(
I−1
F

)
([4 7],[4 7])

denotes the 2×2 submatrix of I−1
F

derived from the rows and columns 4 and 7.

p(yt; α) =
1

L2πMσ2M
n

L2∑

j=1

e
− ‖yt−Asj‖2

σ2
n

with sj
def= (σ1ηj,1e

iφ1 , σ2ηj,2e
iφ2)T with L = 2

[resp. L = 4] for BPSK [resp. QPSK] modu-
lated signals where (ηj,1, ηj,2)j=1...,L2 = (±1,±1) [resp.

(±√2/2 ± i
√

2/2,±√2/2 ± i
√

2/2)] and where α
def=

(σn, σ1, φ1, θ1, σ2, φ2, θ2)T and A def= (a1,a2). At high
SNR’s (more precisely for M

σ2
1

σ2
n
À 1 and M

σ2
2

σ2
n
À 1) it

is proved in Appendix B that the FIM associated with
BPSK and QPSK signals are approximated by the same
following explicit expression:

IBPSK
F ≈ IQPSK

F ≈ T




4M
σ2

n
0T 0T

0 I1 O
0 O I2


 (6)
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with Ik =




2M
σ2

n
0 0

0 2Mσ2
k

σ2
n

2σ2
k(ia

′
k

H
ak)

σ2
n

0 2σ2
k(ia

′
k

H
ak)

σ2
n

2σ2
k‖a

′
k‖2

σ2
n


, k = 1, 2.

We clearly see that the entries corresponding to sources 1
and 2 are decoupled. Consequently, for large SNR’s and
independent sources, the CRB for the DOA of one source
is independent of the parameters of the other source and

CRBBPSK(θ1, θ2) ≈ CRBQPSK(θ1, θ2)

≈ 1
T




1
γ1

σ2
n

σ2
1

0

0 1
γ2

σ2
n

σ2
2


 (7)

where γi
def= 2a

′
i

H
Π⊥

ai
a
′
i, i = 1, 2. This quite curious

result reminds one of a similar result in cissoid para-
meter estimation (see e.g., [12]) where the asymptotic
CRB of the frequencies is independent of the frequency
separation. Furthermore, the CRB’s CRBBPSK(θk) ≈
CRBQPSK(θk) and CRBCO

BPSK(θk) ≈ CRBCO
QPSK(θk) for

each DOA are those of the single source case (because
the 4× 4 top left corner of the FIM (6) is the FIM given
in theorem 1 for high SNR). We note that this property
is quite different from the behavior of the CRB under
the Gaussian distribution and the deterministic CRB,
for which the CRB for the DOA of one source depends
on the DOA separation. More precisely, it is proved [4,
result R9] that these latter two CRB’s tend to the same
limit as all SNR’s increase. For independent sources,
they are given by (from e.g. [4, rel. (2.13)])

CRBDET(θ1, θ2) = CRBCG(θ1, θ2)

=
1
T




1
β1

σ2
n

σ2
1

0

0 1
β2

σ2
n

σ2
2




with βk
def= 2

(
‖a′k‖2 − γk(θ1, θ2)

)
, k = 1, 2, where

γk(θ1, θ2)
def= 1

M2−|aH
1 a2|2 M(|a′k

H
ak|2 + |a′k

H
a3−k|2) −

2<(aH
k a

′
ka

H
3−kaka

′
k

H
a3−k), k = 1, 2.

If the transmitted symbols are known, the deriva-
tion of the FIM IDA

F follows the same lines that for
the single source case. And more specifically because
limT→∞ 1

T

∑T
t=1 εt,1εt,2 = E(εt,1εt,2) = 0, the parame-

ter associated with the two sources are decoupled and
it is straightforward to prove that the asymptotic (for
T À 1) FIM IDA

F is given by (6) as well.

The second experiment considers two independent and
equipowered BPSK or QPSK distributed sources. Fig.4
compares CRBBPSK(θ1) given by (5) with the CRB
under the non-circular complex Gaussian distribution.
And to be fair, this comparison must be done under
the same a priori that the two sources are indepen-
dent with (ρk = 1)k=1,2, i.e., with the same parame-

ter α
def= (σn, σ1, φ1, θ1, σ2, φ2, θ2)T . For that reason,

we use the non-explicit expression of CRBNCG(θ1) ob-
tained in [13] which can take this a priori information
into account. Fig.4 exhibits the ratio CRBBPSK(θ1)

CRBNCG(θ1)
as a

function of the DOA separation θ2 − θ1 for three values
of the phase separation ∆φ

def= φ2 − φ1. We see that
the CRB is very sensitive to the phase separation except
for large DOA separation. This figure shows, that con-
trary to the single source case, the CRB under the non-
circular complex Gaussian distribution is a very loose
upper bound on the CRB under the BPSK distribution
except for large values of the DOA and phase separation.

0 0.1 0.2 0.3 0.4 0.5 0.6
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−2

10
−1

10
0

DOA separation (rd)
r 2(θ

1)

∆φ=0.1 rd 

∆φ=0.02 rd

∆φ=0.3 rd

Fig.4 Ratio r2(θ1)
def
=

CRBBPSK(θ1)
CRBNCG(θ1)

as a function of the DOA

separation for different values of the phase separation ∆φ for M =
6 and SNR = 20dB.

Fig.5 exhibits the domain of validity of the high SNR
approximation. We see from this figure that this domain
depends not only on M , SNR and DOA separation, but
also on the distributed sources. It is shown that this
domain reduces for QPSK sources compared to BPSK
sources. The larger the DOA separation is or the larger
M is, the larger the domain of validity of the approxi-
mation is.

Since the CRB under the noncircular [resp. circular]
Gaussian distribution is a very loose upper bound on
the CRB under the discrete BPSK [resp. QPSK] distri-
bution, specifically for small DOA or phase separation,
the ML estimators that take these discrete distributions
into account outperform the stochastic ML estimator un-
der the circular Gaussian distribution (see e.g., [4]) and
the weighed subspace fitting estimator (see e.g., [14])
which both reach CRBCG(θ1). Consequently, the EM
approaches [15] that are iterative procedures capable of
implementing the stochastic ML estimator under these
discrete distributions outperform the ML estimator un-
der noncircular or circular Gaussian distribution.
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Fig.5 Approximate and exact value (obtained thanks to (5) with
T ′ = 10000) of CRBBPSK(θ1) and CRBQPSK(θ1) as a function of
the SNR for different values of the DOA separation.
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Fig.6 CRBBPSK(θ1) and estimated MSE E(θ1,T − θ1)2 given by
the deterministic EM algorithm (10 iterations) as a function of the
DOA separation for ∆φ = 0.1rd.
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Fig.7 CRBBPSK(θ1), CRBNCG(θ1) and estimated MSE E(θ1,T −
θ1)2 given by the deterministic EM algorithm (5 iterations), for
∆θ = 0.3rd and ∆φ = 0.1rd, versus SNR.

Fig.6 exhibits CRBBPSK(θ1) and the estimated mean
square error (MSE) E(θ1,T − θ1)2 given by the deter-
ministic EM algorithm initialized by the estimate given
by the MUSIC-like algorithm described in [16], as a
function of the DOA separation for two SNR’s. We
see that contrary to CRBNCG(θ1), CRBBPSK(θ1) does
not increase significantly when decreasing the DOA
separation. Fig.7 compares the MSE E(θ1,T − θ1)2

given by the deterministic EM algorithm (initialized
as in Fig.6) to CRBBPSK(θ1) and CRBNCG(θ1), as a
function of the SNR. We see from this figure, that
the EM estimate reaches CRBBPSK(θ1) which largely
outperforms CRBNCG(θ1). To show the asymptotic
domain (domain of sample size and SNR for which
E(θ1,T − θ1)2 ≈ CRBBPSK(θ1)), Figs.8 and 9 compare

these CRBs to the estimated mean square error given
by the deterministic EM algorithm initialized by val-
ues θ1,0 and θ2,0 in the vicinity of θ1 and θ2. We
see that the estimates given by the ML estimator un-
der the discrete distribution reach CRBBPSK(θ1) in a
very large domain (from SNR=−5dB for T = 500
and from T = 5 for SNR=10dB) in our scenario.
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Fig.8 CRBBPSK(θ1), CRBNCG(θ1) and estimated (1000 inde-
pendent runs) mean square error E(θ1,T − θ1)2 given by the de-
terministic EM algorithm (10 iterations), for T = 500, M = 6,
∆θ = 0.05rd and ∆φ = 0.1rd, versus SNR.
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Fig.9 CRBBPSK(θ1), CRBNCG(θ1) and estimated (1000 inde-
pendent runs) mean square error E(θ1,T −θ1)2 given by the deter-
ministic EM algorithm (10 iterations), for SNR= 10dB, M = 6,
∆θ = 0.05rd and ∆φ = 0.1rd, versus T .

VI. Conclusion

This paper developed explicit expressions for the sto-
chastic CRB of the DOA parameter estimates for BPSK
and QPSK modulated signals corrupted by additive cir-
cular complex Gaussian noise. These stochastic CRB’s
have been compared, on the one hand, with those ob-
tained with different a priori knowledge, and on the
other hand with CRB’s under the non-circular and cir-
cular complex Gaussian distribution and with different
deterministic CRB’s.

For a single source, we have proved that the CRB’s
under the non-circular [resp. circular] complex Gaussian
distribution are tight upper bounds on the CRB’s under
the BPSK [resp. QPSK] distribution at very low and
very high SNR only. And for the case of two indepen-
dent BPSK [resp. QPSK] distributed sources, we have
exhibited an important difference of behavior of the sto-
chastic CRB compared to those obtained under the non-
circular [resp. circular] Gaussian distribution. Because
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we have proved that the stochastic CRB for the DOA of
one source is independent of the parameters of the other
source over wide SNR ranges, the CRB under the non-
circular [resp. circular] complex Gaussian distribution is
a very loose upper bound on the CRB under the BPSK
[resp. QPSK] distribution except for large values of the
DOA and phase separation. Consequently, ML imple-
mentations such as the EM approaches outperform the
ML estimator under the circular Gaussian distribution,
specifically for small DOA or phase separation.

Appendix

I. Appendix: Proof of theorem 1

The Fisher information matrix is given (elementwise)
by:

1
T

(IF )k,l = −E
(

∂2ln p(yt; α)
∂αk∂αl

)
k, l = 1, . . . , 4,

(8)
where the PDF (1) are written after straightforward ma-
nipulations as

pBPSK(yt; α) =
1

πMσ2M
n

e
− ‖yt‖2+Mσ2

1
σ2

n cosh
(

σ1

σ2
n

g1(yt)
)

pQPSK(yt; α) =
1

πMσ2M
n

e
− ‖yt‖2+Mσ2

1
σ2

n

cosh
(

σ1

σ2
n

√
2
g1(yt)

)
cosh

(
σ1

σ2
n

√
2
k1(yt)

)

with g1(yt)
def= 2<(eiφ1yH

t a1) and k1(yt)
def=

2=(eiφ1yH
t a1).

We evaluate (8) for the BPSK modulation by taking
partial derivatives as follows:

∂2ln p(yt; α)
∂σ2

1

= −2M

σ2
n

+
g2
1(yt)
σ4

n

1

cosh2
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt; α)
∂σ1∂σn

=
4σ1M

σ3
n

− 2σ1g
2
1(yt)

σ5
n

1

cosh2
(

σ1g1(yt)
σ2

n

)

− 2g1(yt)
σ3

n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂σ2

n

=
2σ2

nM − 6(σ2
1M + |yt|2)

σ4
n

+
4σ2

1g2
1(yt)

σ6
n

1

cosh2
(

σ1g1(yt)
σ2

n

)

+
6σ1g1(yt)

σ4
n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂φ2

1

=
σ2

1k2
1(yt)
σ4

n

1

cosh2
(

σ1g1(yt)
σ2

n

)

− σ1g1(yt)
σ2

n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂σ1∂φ1

= −σ1g1(yt)k1(yt)
σ4

n

1

cosh2
(

σ1g1(yt)
σ2

n

)

− k1(yt)
σ2

n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂σn∂φ1

=
2σ2

1g1(yt)k1(yt)
σ5

n

1

cosh2
(

σ1g1(yt)
σ2

n

)

+
2σ1k1(yt)

σ3
n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂σ1∂θ1

=
σ1g1(yt)g

′
1(yt)

σ4
n

1

cosh2
(

σ1g1(yt)
σ2

n

)

+
g
′
1(yt)
σ2

n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂σn∂θ1

= −2σ2
1g1(yt)g

′
1(yt)

σ5
n

1

cosh2
(

σ1g1(yt)
σ2

n

)

− 2σ1g
′
1(yt)

σ3
n

tanh
(

σ1g1(yt)
σ3

n

)

∂2ln p(yt;α)
∂θ2

1

=
σ2

1g
′
1

2
(yt)

σ4
n

1

cosh2
(

σ1g1(yt)
σ2

n

)

+
σ1g

′′
1 (yt)
σ2

n

tanh
(

σ1g1(yt)
σ2

n

)

∂2ln p(yt;α)
∂θ1∂φ1

= −σ2
1g

′
1(yt)k1(yt)

σ4
n

1

cosh2
(

σ1g1(yt)
σ2

n

)

− σ1k
′
1(yt)
σ2

n

tanh
(

σ1g1(yt)
σ2

n

)

with g
′
1(yt)

def= 2<(eiφ1yH
t a

′
1), g

′′
1 (yt)

def= 2<(eiφ1yH
t a

′′
1 )

and k
′
1(yt)

def= 2=(eiφ1yH
t a

′
1).

Using the regularity condition ∂
∂αk

∫
p(y;α)dy =∫ ∂p(y;α)

∂αk
dy (see e.g., [17, rel. (a.9)]) which is ful-

filled for finite mixtures of Gaussian distributions, the
following property holds: E

(
∂ln p(yt;α)

∂σ1

)
= 0. With
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∂ln p(yt;α)
∂σ1

= − 2Mσ1
σ2

n
+ g1(yt)

σ2
n

tanh
(

σ1g1(yt)
σ2

n

)
, we obtain

E
(

g1(yt)tanh
(

σ1g1(yt)
σ2

n

))
= 2Mσ1. (9)

This identity enables us to straightforwardly derive
the terms (IF)(σn,σn), (IF)(σn,σ1) and (IF)(σ1,σ1) of IBPSK

F

thanks to the definition of the function f1(ρ).
To evaluate (IF)(φ1,φ1), we note that g1(yt) =

2Mσ1εt +
(
eiφ1nH

t a1 + e−iφ1aH
1 nt

)
and k1(yt) =

1
i

(
eiφ1nH

t a1 − e−iφ1aH
1 nt

)
. Because εt and the cou-

ple
(
eiφ1nH

t a1 + e−iφ1aH
1 nt,

1
i (e

iφ1nH
t a1 − e−iφ1aH

1 nt)
)

are independent, and that these last two Gaussian ran-
dom variables are uncorrelated and consequently inde-
pendent, the three random variables εt, eiφ1nH

t a1 +
e−iφ1aH

1 nt and 1
i

(
eiφ1nH

t a1 − e−iφ1aH
1 nt

)
are collec-

tively independent and thus g1(yt) and k1(yt) are in-
dependent. Therefore

E


 k2

1(yt)

cosh2
(

σ1g1(yt)
σ2

n

)

 = E

(
k2
1(yt)

)

E


 1

cosh2
(

σ1g1(yt)
σ2

n

)



with E
(
k2
1(yt)

)
= 2Mσ2

n. With E


 1

cosh2
�

σ1g1(yt)
σ2

n

�

 =

f2(ρ) and thanks to the identity (9), (IF)(φ1,φ1) is
straightforwardly derived.

Noting that g
′
1(yt) = eiφ1nH

t a
′
1 + e−iφ1a

′
1

H
nt, thanks

to a
′
1

H
a1 + aH

1 a
′
1 = 0 derived from ‖a1‖2 = M . Con-

sequently for the same reason that g1(yt) and k1(yt),
g1(yt) and g

′
1(yt) are independent as well. And be-

cause k1(yt) and g
′
1(yt) are zero-mean, the expectations

of the two terms of ∂2ln p(yt;α)
∂σ1∂φ1

, ∂2ln p(yt;α)
∂σn∂φ1

, ∂2ln p(yt;α)
∂σ1∂θ1

and ∂2ln p(yt;α)
∂σn∂θ1

vanish and therefore (IF)(σ1,φ1) =
(IF)(σn,φ1) = (IF)(σ1,θ1) = (IF)(σn,θ1) = 0.

Considering the first term of ∂2ln p(yt;α)
∂θ2

1
, in the same

way

E


 g

′
1

2
(yt)

cosh2
(

σ1g1(yt)
σ2

n

)

 = E

(
g
′
1

2
(yt)

)

E


 1

cosh2
(

σ1g1(yt)
σ2

n

)



With E(g
′
1

2
(yt)) = 2‖a′1‖2σ2

n.
For the first term of ∂2ln p(yt;α)

∂θ1∂φ1
, we note that the ran-

dom variables εt and(
eiφ1nH

t a1 + e−iφ1aH
1 nt, (g

′
1 (yt), k1(yt))

)
are inde-

pendent. And since the zero-mean Gaussian random

variables eiφ1nH
t a1 + e−iφ1aH

1 nt and
(
g
′
1(yt), k1(yt)

)

are independent too, the three random variables εt,
eiφ1nH

t a1 + e−iφ1aH
1 nt and

(
g
′
1(yt), k1(yt)

)
are collec-

tively independent. Consequently the sum g1(yt) of
these first two random variables is independent of the
last random variable

(
g
′
1(yt), k1(yt)

)
and thus

E


 g

′
1(yt)k1(yt)

cosh2
(

σ1g1(yt)
σ2

n

)

 = E

(
g
′
1(yt)k1(yt)

)

E


 1

cosh2
(

σ1g1(yt)
σ2

n

)



with E
(
g
′
1(yt)k1(yt)

)
= −2σ2

n(ia
′
1

H
a1) (see Section 4).

Finally, regarding the second term of ∂2ln p(yt;α)
∂θ2

1

and ∂2ln p(yt;α)
∂θ1∂φ1

, we have to elaborate a little bit.

Because g
′′
1 (yt) = −2‖a′1‖2σ1εt + x

′′
t with x

′′
t

def=
eiφ1nH

t a
′′
1 + e−iφ1a

′′
1

H
nt and g1(yt) = 2Mσ1εt + xt with

xt
def= eiφ1nH

t a1 +e−iφ1aH
1 nt where (x

′′
t , xt) is zero-mean

Gaussian distributed, we have 4

g
′′
1 (yt) = −‖a

′
1‖2

M
g1(yt)+x

′
t with x

′
t

def= x
′′
t +

‖a′1‖2
M

xt

where (xt, x
′
t) is zero-mean Gaussian distributed with

E(xtx
′
t) = E(xtx

′′
t ) + ‖a′1‖2

M E(x2
t ) = −2‖a′1‖2σ2

n +
‖a′1‖2

M (2Mσ2
n) = 0 and thus xt and x

′
t are independent.

Because g1(yt) = 2Mσ1εt+xt where the discrete random
variable εt is independent of the noise random variables
xt
′, the random variables g1(yt) and x

′
t are independent

and then

E
(

g
′′
1 (yt)tanh

(
σ1g1(yt)

σ2
n

))

= E

(
−‖a

′
1‖2

M
g1(yt)tanh

(
σ1g1(yt)

σ2
n

))

+ E(x
′
t)E

(
tanh

(
σ1g1(yt)

σ2
n

))

= −‖a
′
1‖2

M
E

(
g1(yt)tanh

(
σ1g1(yt)

σ2
n

))

and (IF)(θ1,θ1) follows from identity (9). The same

approach applies to evaluate E
(
k
′
1(yt)tanh

(
σ1g1(yt)

σ2
n

))

and gives the term (IF)(θ1,φ1).
For the QPSK modulation, evaluating the partial

derivatives ∂2ln p(yt;α)
∂αk∂αl

and taking their expectation are
derived in the same way, provided the log-likelihoods

4Because ‖a1‖2 = M implies
d2‖a1‖2

dθ2
1

= aH
1 a

′′
1 + a

′′
1

H
a1 +

2‖a′1‖2 = 0.
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associated with g1(yt) and k1(yt) are gathered as well
as the hypothesis of independence of <(εt) and =(εt) is
taken into account.

II. Appendix: Proof of (6)

The derivation of (6) results from the following alter-
native form of the FIM:

1
T

(IF )k,l = E
(

∂ln p(yt;α)
∂αk

∂ln p(yt; α)
∂αl

)
(10)

k, l = 1, . . . , 7.
We consider only the terms of (10) associated with φ1

and φ2 because the other terms follow along the same
lines. For the BPSK derivation, the PDF of yt is a
mixture of 4 Gaussian PDFs and

∂ln p(yt; α)
∂φk

= − 1
σ2

n

∑4
j=1

∂hj

∂φk
e
− hj

σ2
n

∑4
j=1 e

− hj

σ2
n

k = 1, 2.

(11)
with

h1 = g1 + g2 + g1,2, h2 = g1 − g2 − g1,2,

h3 = −g1 + g2 − g1,2 and h4 = −g1 − g2 + g1,2

where the random variable (gk)k=1,2 are defined by gk
def=

2<(eiφkyH
t ak) = σk(eiφkyH

t ak + e−iφkaH
k yt) with yt =

σ1e
iφ1εt,1a1 + σ2e

iφ2εt,2a2 + nt, k = 1, 2 and g1,2
def=

σ1σ2(ei(φ1−φ2)aH
2 a1 + e−i(φ1−φ2)aH

1 a2).
Because the random variables (εt,1, εt,2) and nt are
independent, we can condition the random vari-
able ∂ln p(yt;α)

∂αk

∂ln p(yt;α)
∂αl

w.r.t. the different couples
(εt,1, εt,2) = (ηl,1, ηl,2)l=1,4 of symboles to compute the
expectation (10). In the following, we prove, that among
the four exponentials in (11), three of them are insignif-
icant w.r.t. one of them that is dominant. For example,
for (ηl,1, ηl,2)l=1 = (−1,−1), we have for k = 1, 2

gk = −2Mσ2
k − g1,2 + σk(eiφknH

t ak + e−iφkaH
k nt),

and for M
σ2
1

σ2
n
À 1 and M

σ2
2

σ2
n
À 1:

−h1

σ2
n

=
2M(σ2

1 + σ2
2)

σ2
n

− n
′
1 +

g1,2

σ2
n

≈ 2M(σ2
1 + σ2

2)
σ2

n

+
g1,2

σ2
n

−h2

σ2
n

=
2M(σ2

1 − σ2
2)

σ2
n

− n
′
2 +

g1,2

σ2
n

≈ 2M(σ2
1 − σ2

2)
σ2

n

+
g1,2

σ2
n

−h3

σ2
n

=
2M(σ2

2 − σ2
1)

σ2
n

+ n
′
2 +

g1,2

σ2
n

≈ 2M(σ2
2 − σ2

1)
σ2

n

+
g1,2

σ2
n

−h4

σ2
n

= −2M(σ2
1 + σ2

2)
σ2

n

+ n
′
1 −

3g1,2

σ2
n

≈ −2M(σ2
1 + σ2

2)
σ2

n

− 3g1,2

σ2
n

where (n
′
k)k=1,2 are zero-mean Gaussian random vari-

ables of variance

2
σ2

n

(
M(σ2

1 + σ2
2)− (−1)k<(σ1σ2e

i(φ1−φ2)aH
1 a2)

)

>
2M(σ2

1 + σ2
2 − σ1σ2)

σ2
n

.

Consequently

−h1

σ2
n

−
(
−h2

σ2
n

)
≈ 2Mσ2

2

σ2
n

À 1

−h1

σ2
n

−
(
−h3

σ2
n

)
≈ 2Mσ2

1

σ2
n

À 1

−h1

σ2
n

−
(
−h4

σ2
n

)
≈ 4M(σ2

1 + σ2
2)

σ2
n

+
4g1,2

σ2
n

≥ 4M(σ2
1 + σ2

2 − 2ασ1σ2)
σ2

n

≥ 8Mσ1σ2(1− α)
σ2

n

≥ 8M(1− α)Inf(σ2
1 , σ2

2)
σ2

n

À 1

where α defined by Inf(g1,2) = −2Mασ1σ2 is related
to the height of first sidelobe of the beam pattern of
the array and satisfies for all standard array α < 0.55.

Therefore it is proved that the term e
− h1

σ2
n is dominant

w.r.t. the terms e
− h2

σ2
n , e

− h3
σ2

n and e
− h4

σ2
n and

∂ln p(yt; α)
∂φk

≈ − 1
σ2

n

∂h1

∂φk
= − 1

σ2
n

(
∂gk

∂φk
+

∂g1,2

∂φk

)

= − iσk

σ2
n

(eiφknH
t ak − e−iφkaH

k nt)

and for an arbitrary couple of symbols:

∂ln p(yt; α)
∂φk

≈ − iσk

σ2
n

(eiφknH
t ak − e−iφkaH

k nt)
(
1(εt,1,εt,2)=(−1,−1) − (−1)k1(εt,1,εt,2)=(−1,+1)

+(−1)k1(εt,1,εt,2)=(+1,−1) − 1(εt,1,εt,2)=(+1,+1)

)
,

5For a uniform linear array of M sensors, g1,2 = 2σ1σ2 cos(∆φ+

(M−1)∆θ
2

)

�
sin( M∆θ

2 )

sin(∆θ
2 )

�
and α ≈ 0.224.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. Y, MONTH 2005 10

k = 1, 2. Consequently

∂ln p(yt; α)
∂φ1

∂ln p(yt; α)
∂φ2

≈ −σ1σ2

σ4
n

(eiφ1nH
t a1 − e−iφ1aH

1 nt)

(eiφ2nH
t a2 − e−iφ2aH

2 nt)(
1(εt,1,εt,2)=(−1,−1) − 1(εt,1,εt,2)=(−1,+1)

−1(εt,1,εt,2)=(+1,−1) + 1(εt,1,εt,2)=(+1,+1)

)

∂ln p(yt; α)
∂φk

∂ln p(yt; α)
∂φk

≈ −σ2
k

σ4
n

(eiφknH
t ak − e−iφkaH

k nt)2

(
1(εt,1,εt,2)=(−1,−1) + 1(εt,1,εt,2)=(−1,+1)

+1(εt,1,εt,2)=(+1,−1) + 1(εt,1,εt,2)=(+1,+1)

)

and because (εt,1, εt,2) and nt are independent and the
four couples of symbols are equiprobable

E
(

∂ln p(yt; α)
∂φ1

∂ln p(yt; α)
∂φ2

)

≈ −σ1σ2

σ4
n

E
(
(eiφ1nH

t a1 − e−iφ1aH
1 nt)

(eiφ2nH
t a2 − e−iφ2aH

2 nt)
)

(P [(εt,1, εt,2) = (−1,−1)]− P [(εt,1, εt,2) = (−1,+1)]
−P [(εt,1, εt,2) = (+1,−1)] + P [(εt,1, εt,2) = (+1, +1)])

= 0,

E
(

∂ln p(yt; α)
∂φk

∂ln p(yt; α)
∂φk

)

≈ −σ2
k

σ4
n

E
(
(eiφknH

t ak − e−iφkaH
k nt)2

)

(P [(εt,1, εt,2) = (−1,−1)] + P [(εt,1, εt,2) = (−1,+1)]
+P [(εt,1, εt,2) = (+1,−1)] + P [(εt,1, εt,2) = (+1, +1)])

=
2Mσ2

k

σ2
n

.

Using a mixture of 16 Gaussian PDFs, the extension to
two QPSK sources follows along the same lines.
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Télécommunications where he is presently

a Professor in the CITI department and in UMR-CNRS 5157. His
teaching and research interests are in the areas of statistical signal
processing with application to communications and antenna array.
He is currently an Associate Editor for the IEEE Transactions on
Signal Processing.

Habti Abeida was born in Settat, Mo-
rocco, on october 20, 1977. He received
the Mastery engineering degrees in ap-
plied mathematics from Hassan II univer-
sity, Casablanca, Morocco in 2000 and from
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the Institut National des Télécommunications, Evry, France. His
research interests are in statistical signal processing.


