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Abstract

This paper addresses asymptotically minimum variance (AMV) of parameter estimators within the

class of algorithms based on second-order statistics for estimating parameter of strict-sense stationary

complex circular processes. As an application, the estimation of the frequencies of cisoids for mixed

spectra time series containing a sum of cisoids and an MA process is considered.
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1 Introduction

There is considerable literature about second-order statistics-based algorithms. To provide a benchmark for the

efficiency of such existing algorithms, it has been proposed to consider a general lower bound for the variance of

consistent estimators based on second-order moments which is asymptotically tight (in the number of measure-

ments). Stoica et al. with their asymptically best consistent (ABC) estimators [10] and Porat and Friedlander

[7] with their asymptotically minimum variance (AMV) estimator were the first to derive such estimators for es-

timating the ARMA parameters of real Gaussian processes from second-order statistics. Then, this approach was

extended to high-order statistics [8] for real-valued processes and was used in many applications (see e.g., the work

by Giannakis and Halford [3] for blind real-valued channel estimation). We propose to consider in this paper the

case of second-order statistics derived from stationary complex circular processes.

The paper is organized as follows. Section 2 presents the AMV second-order estimator for stationary complex

circular processes with a special attention to the statistics involved. It is proved that this AMV estimator is not a

direct extension of the real-valued associated AMV estimator using the conjugate transpose instead of transpose.

As an application, the estimation of the frequencies of cisoids for mixed spectra time series containing a sum of

cisoids and an MA process is considered in Section 3. Finally, illustrative examples with comparisons with the

modified Pisarenko decomposition (MPD) estimator [9] which is devoted to MA noise are given in Section 4.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H, ∗

stand for transpose, conjugate transpose, conjugate, respectively. Vec(·) is the “vectorization” operator that turns

a matrix into a vector by stacking the columns of the matrix one below another. arg min [resp. arg max] refers to

the minimizing [resp. maximizing] argument of the proceeding expression.

2 Asymptotic minimum variance second-order estimator

We consider a strict-sense stationary complex circular process xt whose M ×M Hermitian Toeplitz structured

covariance matrix R(Θ) = E(xtx
H
t ) with xt

def
= (xt, . . . , xt−M+1)T , is parameterized by the real parameter Θ ∈ RL.

This parameter is supposed identifiable from R(Θ) in the following sense:

R(Θ) = R(Θ′) ⇔ Θ = Θ′.
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The covariance matrix R(Θ) is traditionally estimated by RT = 1
T

∑T
t=1 xtx

H
t or by the Hermitian Toeplitz matrix

Rto
T built by averaging along the diagonals of RT .

In the sequel, we restrict our study to the following mixed-spectrum processes:

xt = st + nt, with st
def
=

K∑
k=1

ake
i2πfkteiφk and nt

def
=

+∞∑
q=−∞

bqut−q,

where (ut)t=0,±1,±2,... is a sequence of circular complex zero-mean i.i.d. random variables where E|u4
t | < ∞, with

κu
def
= Cum(ut, u

∗
t , ut, u

∗
t ) and E|u2

t | = σ2
u. (ak)k=1,...,K and (bq)q=−∞,...,+∞ are fixed positive real and complex

numbers respectively with
∑+∞
q=−∞ |bq| < ∞, (fk)k=1,...,K are fixed distinct real numbers in (−1/2,+1/2), φk are

random variables uniformly distributed on [0, 2π) and (φk)k=1,...,K and ut are mutually independent.

To extend the notion of AMV estimators [7] (also called asymptotically best consistent (ABC) estimators in

[10]) to complex circular processes, two solutions can be considered. First, stacking the real and imaginary parts

of the data, existing real asymptotic results can be applied. However this real-valued procedure is often more

tedious and/or lacking of engineering insight. Consequently, the second approach that consists in adapting the

real-valued procedure to the complex-valued data is considered. We note that because the asymptotic distribution

of the second-order statistics is not circular, simply replacing the transpose operator by the conjugate transpose in

the existing results has no sense.

To adapt the existing results, two conditions must be satisfied. First, the covariance CR of the asymptotic

distribution of RT must be nonsingular. Second, an arbitrary second-order algorithm considered as a mapping

which associates to RT , the estimate ΘT

RT 7−→ ΘT = alg(RT )

must be complex differentiable w.r.t. RT at the point R(Θ). While, the second condition is satisfied for any

mapping alg(.) differentiable w.r.t. the real and imaginary part of the entries of RT because RT is Hermitian,

the first one is not for the following reason. The covariance Cto
R of the asymptotic distribution of Rto

T is singular

because the set of the M2 entries of Rto
T considered as random variables are linearly dependent and consequently

CR is singular as well because CR = Cto
R as it is proved in [1].

To solve this difficulty, we could work only with the first column rT of RT because the first column r(Θ) of

R(Θ) is one to one related to R(Θ). But this choice leads to an algorithm rT 7−→ ΘT = alg(rT ) that is not

differentiable w.r.t. rT at the point r(Θ). To make this algorithm differentiable, we consider in the following the

3



statistics sT equivalent to rT constituted by rT and r∗T where the first common real term r0,T appears only once,

i.e.

sT
def
=


Jr′
∗
T

r0,T

r′T

 with rT
def
=

 r0,T

r′T

 ,

where J is the reversal permutation matrix of appropriate order (1 in the antidiagonal and 0 elsewhere). So s∗(Θ) =

Js(Θ) where s(Θ) is deduced from r(Θ) as sT is deduced from rT . Consequently, all algorithm differentiable w.r.t.

(<(s),=(s)) or equivalently w.r.t. (s, s∗) becomes differentiable w.r.t. s alone if δs is structured as δs =


Jδr′

∗

δr0

δr′


and

alg[s(Θ) + δs] = alg[s(Θ)] + [Ds,D
∗
s]

 δs

δs∗

+ o(δs) = Θ + Dalg
s δs + o(δs)

with Dalg
s

def
= Ds + D∗sJ where Ds and D∗s are the Jacobian matrices w.r.t. s and s∗ associated with the mapping

alg(.) at the point s(Θ). And because alg[s(Θ)] = Θ for all Θ:

alg[s(Θ + δΘ)] = alg[s(Θ) + SδΘ + o(δΘ)] = Θ + Dalg
s SδΘ + o(δΘ) = Θ + δΘ.

Therefore Dalg
s is a left inverse of S

def
= ds(Θ)

dΘ :

Dalg
s S = IL, (2.1)

and this time, the covariance matrix Cs of the asymptotic distribution of sT is an Hermitian positive definite

matrix thanks to its algebraic structure given by the following lemma directly deduced from [1] and [4].

Lemma 1 The statistics sT converge in distribution to the complex non-circular Gaussian distribution of covari-

ances Cs and C′s:

√
T (sT − s(Θ))

L→ Nc(0; Cs,C
′
s)

1,

with

Cs =

∫ +1/2

−1/2

S2
n(f)e(f)eH(f)df + 2

K∑
k=1

a2
kSn(fk)e(fk)eH(fk) + κuγγ

H and C′s = CsJ, (2.2)

where e(f)
def
= (e−i2π(M−1)f , . . . , e−i2πf , 1, ei2πf , . . . , ei2π(M−1)f )H , e(fk)

def
=

(e−i2π(M−1)fk , . . . , e−i2πfk , 1, ei2πfk , . . . , ei2π(M−1)fk)H , γ
def
= (γM−1, . . . , γ1, γ0, γ

∗
1 , . . . , γ

∗
M−1)H with

γk
def
= E(ntn

∗
t−k) = σ2

u

∑+∞
q=−∞ bqb

∗
q−k and Sn(f)

def
=
∑+∞
k=−∞ γke

−i2πkf .

1We note that the non-circular complex Gaussian asymptotic distribution of sT is characterized by Cs only.
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S is a full column matrix from (2.1) and we prove in Appendix A by application of theorem 2 of [8], extended to

the complex circular case:

Theorem 1 The asymptotic covariance of an estimator of Θ given by an arbitrary consistent second-order algo-

rithm is bounded below by the real symmetric positive definite matrix (SHC−1
s S)−1:

CΘ = Dalg
s Cs(D

alg
s )H ≥ (SHC−1

s S)−1. (2.3)

Furthermore, we prove in Appendix A that this lowest bound is asymptotically tight, i.e., there exists an

algorithm alg(.) whose covariance of the asymptotic distribution of ΘT satisfies (2.3) with equality. Therefore,

theorem 3 of [8] extends to the complex case.

Theorem 2 The following nonlinear least square algorithm is an AMV second order algorithm.

ΘT = arg min
α

[sT − s(α)]HC−1
s [sT − s(α)]. (2.4)

In practice, it is difficult to optimize the nonlinear function (2.4) which it involves the computation of C−1
s that

depends on α. Porat and Friedlander proved in [2], in the real case that the lowest bound (2.3) is also obtained if

an arbitrary consistent estimate Cs,T of Cs is used in (2.4). This property extends to the complex case and to any

Hermitian positive definite weighting matrix and we prove in Appendix A:

Theorem 3 The covariance of the asymptotic distribution of ΘT given by an arbitrary nonlinear least square

algorithm defined by

ΘT = arg min
α

[sT − s(α)]HW(α)[sT − s(α)], (2.5)

is preserved if the Hermitian positive definite weighting matrix W(α) is replaced by an arbitrary consistent estimate

WT that satisfies WT = W(Θ) +O(sT − s(Θ)).

So the minimization (2.4) can be preferably replaced by the following

ΘT = arg min
α

[sT − s(α)]HC−1
s,T [sT − s(α)]. (2.6)

Remark : Naturally, thanks to the one to one mapping sT ↔ rT , the following ad-hoc nonlinear least square

algorithm:

ΘT = arg min
α

[rT − r(α)]HC−1
r (α)[rT − r(α)] (2.7)
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where Cr(α) denotes the covariance of the asymptotic distribution of rT , can be considered as a second-order

algorithm that is complex differentiable w.r.t. s alone. Consequently, its asymptotic covariance matrix satisfies

CΘ ≥ (SHC−1
s S)−1. But we will see in section 4 that CΘ does not attain this lower bound (SHC−1

s S)−1. So this

ad-hoc algorithm is no longer an AMV algorithm.

3 Application to the estimation of frequencies for mixed spectra time

series

3.1 AMV estimator

In the following, to satisfy the identifiability condition, we consider an MA of order Q process as linear process. In

this case, the M ×M covariance matrix of xt is given by:

R(Θ) =

K∑
k=1

a2
kẽ(fk)ẽH(fk) +



γ0 γ1 · · · γQ 0 · · · 0

γ∗1 γ0 · · · γQ−1 γQ
. . . · · ·

...
. . .

. . . γQ−2 γQ−1
. . . 0

γ∗Q γ∗Q−1

. . .
. . .

. . .
. . . γQ

0 γ∗Q γ∗Q−1

. . .
. . .

. . .
...

...
. . .

. . .
. . . γ∗1 γ0 γ1

0 · · · 0 γ∗Q · · · γ∗1 γ0


where ẽ(fk)

def
= (1, ei2πfk , . . . , ei2(M−1)πfk)H . R(Θ) is parametrized by the L = 2(Q + K) + 1 real parameters

Θ = (ΘT
1 ,Θ

T
2 )T with Θ1

def
= (f1, . . . , fK)T and Θ2

def
= [a2

1, .., a
2
K , γ0,<(γ1), ..,<(γQ),=(γ1), ..,=(γQ)]T . We note that

the first column r(Θ) of R(Θ) is linear with respect to Θ2 and consequently s(Θ) as well:

s(Θ) = Ψ(Θ1)Θ2 (3.1)
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where Ψ(Θ1) is the following (2M − 1)× (K + 2Q+ 1) matrix:

Ψ(Θ1) =


e(f1), . . . , e(fK)

0M−Q−1 OM−Q−1,Q OM−Q−1,Q

0Q JQ iJQ

1 0TQ 0TQ

0Q IQ −iIQ

0M−Q−1 OM−Q−1,Q OM−Q−1,Q


.

Therefore Ψ(Θ1) has column full rank (over the field R) iif M − Q − 1 ≥ K. This condition is equivalent to

having the number of unknown real parameters no larger than the number of estimating equations available, i.e.,

2(Q + K) + 1 ≤ 1 + 2(M − 1). This necessary condition is also sufficient to ensure identifiability because in this

case, the vector r”(Θ)
def
= (rQ+1, . . . , rM−1)T issued from r(Θ) satisfies:

r”(Θ) = Ψ′(Θ1)Θ′2

where Ψ′(Θ1)
def
= (ē(f1), . . . , ē(fK)) with ē(fk)

def
= (ei2π(Q+1)fk , . . . , ei2π(M−1)fk)H and Θ′2

def
= (a2

1, .., a
2
K)T and this

linear Vandermonde system has an unique solution iif its number of columns is less or equal than its number of

lines, i.e., M − Q − 1 ≥ K. We suppose in this paper, that this condition is satisfied. The minimization (2.6)

with respect to Θ2 is immediate thanks to (3.1) if Θ2 is not restricted to be real. With a geometric procedure, we

obtain:

Θ̂2 = [ΨH(Θ1)WΨ(Θ1)]−1ΨH(Θ1)WsT (3.2)

with W
def
= C−1

s,T . With arguments similar to that of COMET [6], we prove in Appendix A that Θ̂2 is real-valued

for all consistent estimate Cs,T of Cs structured as sT sHT . Thus Θ̂2 given by (3.2) is the real value that minimizes

(2.6). Θ1,T is obtained by substituting Θ̂2 in (2.5):

Θ1,T = arg max
α1

V (α1) (3.3)

with V (α1)
def
= sHT WΨ(α1)[ΨH(α1)WΨ(α1)]−1ΨH(α1)WsT .

3.2 Performance analysis

By application of theorem 1, the covariance of the asymptotic distribution of the minimum variance second-order

frequency estimator (3.3) is given by the top left K ×K “frequency corner” of (SHC−1
s S)−1 where Cs is given by

7



(2.2). If we note that S = [S1,Ψ] with S1
def
= ∂s

∂Θ1
, the matrix inversion lemma gives

CΘ1
=

(
SH1 C−1

s S1 − SH1 C−1
s Ψ

[
ΨHC−1

s Ψ
]−1

ΨHC−1
s S1

)−1

=
(
SH1 C−1/2

s P⊥
C
−1/2
s Ψ

C−1/2
s S1

)−1

, (3.4)

where P⊥
C
−1/2
s Ψ

denotes the projector onto the ortho-complement of the columns of C
−1/2
s Ψ.

Remark: In the case of non Gaussian additive noise, an AMV second-order algorithm devised under the Gaussian

assumption (i.e. with a weighting matrix associated with the Gaussian case) is no longer an AMV second-order

estimator. But in this case, the asympotic covariance of such an algorithm is insensitive to the distribution of the

additive noise nt thanks to a result proved in [1] and is given by (3.4) where Cs is associated with the Gaussian

case.

4 Illustrative examples

In this section we illustrate the loss of performance of several suboptimal least square algorithms compared to the

AMV algorithm and to the MPD estimator of [9] which is to the best of our knowledge the only second-order

algorithm specifically devoted to MA noise. More precisely, we consider the following algorithms:

• The first one is the ad-hoc algorithm (denoted AMVr) (2.7) obtained by considering the statistics rT only.

• The second ones (denoted AMVg
s and AMVg

r) are deduced from the AMV (2.6) and AMVr (2.7) estimator

when the weighting matrix C−1
s,T and C−1

r,T are respectively replaced by consistent estimates C−1
s,T and C−1

r,T

of the inverse of the asymptotic covariance matrices Cs and Cr associated with the asymptotic covariance

matrix Cr = r0(Θ)R(Θ) given by the erroneous signal model of independent Gaussian complex circular

observations xt for which:

Cs,T =


r0,TJR′

∗
TJ r0,TJr′

∗
T Jr′

∗
T r′

H
T

r0,T r′
T
TJ r2

0,T r0,T r′
H
T

r′T r′
T
TJ r0,T r′T r0,TR′T

 where RT
def
=

 r0,T r′
H
T

r′T R′T

 .

• The third ones (denoted LSs and LSr) are the unweighted least square algorithms ΘT = arg minα ‖sT−s(α)‖2

and ΘT = arg minα ‖rT − r(α)‖2.

• The fourth ones (denoted AMVs′ and AMVr′) are deduced from the AMV and AMVr algorithms by elimi-

nating the r0 term. For these algorithms, Θ2 does not contain the γ0 term.
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• The last ones (denoted MDP)2 is the MPD algorithm for which the asymptotic variance is given by

Var[θ1,T ] = 1
T DMPD

r Cr(D
MPD
r )H(1,1), where the Jacobian DMPD

r is given in Appendix B.

We show the case Q = 1 (b0 = b1 = 0.707), K = 2 (equipowered complex cisoids with f1 = −0.1, f1 = 0.25)

and T = 2000, M = 7 for different SNRs in Fig.1 and for SNR = 15 dB and different values of M in Fig.2.

We see that these algorithms are actually suboptimal except for M = Q + K + 1 3 for which they have the

asymptotic performances of the AMV algorithm and the ad-hoc algorithm (denoted AMVr) (2.7) obtained by

using the conjugate transpose instead of transpose in the real-valued associated AMV estimator is outperformed

by the AMV estimator. We see that the asymptotic variance Var[θ1,T ] given by the algorithms LSs and LSr, AMVr

and AMVr′ , AMV and AMVs′ coincide respectively. This later result generalizes a result proved in [11] for a white

noise.
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Fig.1 Theoretical variance Var[θ1,T ] given by the AMV and suboptimal estimators versus SNR.

2We note, that contrary to the AMV approach for which M ≥ Q + K + 1, the MPD estimator, based on an Hankel

matrix built from the “zero triangles” of R(Θ), requires the fixed order M = Q+ 2K + 2.
3We note that this property has been confirmed for several values of Q and K, but we have not succeeded in proving it

analytically.
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Fig.2 Theoretical variance Var[θ1,T ] given by the AMV and suboptimal estimators versus M .

5 Conclusion

This paper has extended the notion of AMV second-order estimation devoted to parameters of real stationary

processes to complex circular stationary processes. It has been shown that a special attention to the statistics

involved is required. In particular it is proved that the AMV estimator is not a direct extension of the real-valued

associated AMV estimator using the conjugate transpose instead of transpose. As an application, the estimation of

the frequencies of cisoids for mixed spectra time series containing a sum of cisoids and an MA process is considered.

A Proof of theorems

Proof of theorem 1: Using the proof of theorem 2 of [8] (replacing the superscript T by H), it is sufficient to prove

that the Hermitian matrix (SHC−1
s S)−1 is real symmetric. Because s∗ = Js implies S∗ = JS and CT

s = JCsJ, we

have (SHC−1
s S)T = ST (C−1

s )TS∗ = SHJ(CT
s )−1JS = SHC−1

s S.

Proof of theorem 2: By a perturbation analysis, ΘT = Θ + δΘ is associated with sT = s(Θ) + δs (with δs

structured). Because VT (α)
def
= [sT − s(α)]HC−1

s (α)[sT − s(α)] is minimum for α = ΘT , we have: VT (α)
dα |α=Θ+δΘ

=

0. Expanding this derivative, we straightforwardly obtain:
(
SHC−1

s S + STC−1
s
∗
S∗
)
δΘ + o(δΘ) = SHC−1

s δs +
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STC−1
s
∗
δs∗ + o(δs). Consequently, the algorithm (2.4) satisfies:

alg[s(Θ) + δs] = Θ +
(
SHC−1

s S + STC−1
s
∗
S∗
)−1 (

SHC−1
s ,STC−1

s
∗
) δs

δs∗

+ o(δs)

= Θ +
(
SHC−1

s S
)−1

SHC−1
s δs + o(δs), (A.1)

by using S∗ = JS and CT
s (Θ) = C∗s = JCsJ in the second equality.

Proof of theorem 3: Following a perturbation analysis similar to that of the proof of theorem 2, it is straight-

forward to show that the differential Dalg
s =

(
SHWS

)−1
SHW of this algorithm is preserved.

Proof of the real value of Θ̂2: If K
def
= 1

2


JM−1 0 IM−1

0T 2 0T

iJM−1 0 −iIM−1

 denotes the linear invertible transformation

that associates to sT , the real-valued vector ηT comprised of the real and imaginary parts of sT , ηT = KsT and

Θ̂2 given by (3.2) assumes the form: [(KΨ)H(KW−1KH)−1(KΨ)]−1(KΨ)H(KW−1KH)−1KsT , where KsT is

real and so is KΨ. It remains to examine KW−1KH . Because KsT sHT KH = ηTη
H
T is real-valued, the matrix

KW−1KH = KCs,TKH is real-valued.

B MPD algorithm

MPD principles: The MPD algorithm is based on the Hankel matrix of order K + 1

H(Θ) =



rQ+1 rQ+2 · · · rQ+K+1

rQ+2 rQ+3 · · · rQ+K+2

... . .
. ...

rQ+K+1 rQ+K+2 · · · rQ+2K+1


built from the “zero triangles” (i.e., the part excluding the terms γ0, . . . , γQ) of R(Θ) of order M = Q + 2K + 2

and it relies on the following lemma proved in [9]:

Lemma 2 {ei2πf1 , . . . , ei2πfK} are the roots of the polynomial
∑K
l=0 clz

l if and only if H(Θ)c = 0 with c
def
=

(c0, . . . , cK)T .

And the MPD algorithm is an extension of the mapping:

Vec(R(Θ))
g17−→ H(Θ)

g27−→ (c0, . . . , cK)T
g37−→ (ei2πf1 , . . . , ei2πfK )T

g47−→ (f1, . . . , fK)T
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generated by the unstructured matrix RT .

The Jacobian of the MPD algorithm: An extension of g1 is naturally obtained thanks to the Toeplization

of RT . So g1 is a linear operator whose associated matrix is D1. An extension of g2 can be obtained thanks to

the right singular vector of HT associated with its smallest singular value. The derivative D2 of this mapping

is derived from [5, Theorem 8, rel.4, p.162]. Finally, derivatives D3 and D4 of the mappings g3 (rooting of

polynomial C(z) =
∑K
l=0 clz

l) and g4 ((z1, . . . , zK)T 7−→ ( 1
2πarg(z1), . . . , 1

2πarg(zK))T ) are classically derived

from standard perturbation calculus. Applying the chain differential rule, the Jacobian of the MPD algorithm is

DMPD
r = D4D3D2D1.
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