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Abstract

This paper addresses subspace-based direction of arrival (DOA) estimation and its purpose is to

complement previously available theoretical results generally obtained for specific algorithms. We focus

on asymptotically (in the number of measurements) minimum variance (AMV) estimators based on

estimates of orthogonal projectors obtained from singular value decompositions of sample covariance

matrices in the general context of noncircular complex signals. After extending the standard AMV

bound to statistics whose first covariance matrix of its asymptotic distribution is singular and deriving

explicit expressions of this first covariance matrix associated with several projection-based statistics,

we give closed-form expressions of AMV bounds based on estimates of different orthogonal projectors.

This enable us to prove that these AMV bounds attain the stochastic Cramer-Rao bound (CRB) in

the case of circular or noncircular Gaussian signals.
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1 Introduction

DOA subspace-based estimates, i.e., estimates obtained by exploiting the orthogonality between a sample subspace

and a parameter-dependant subspace, have proved useful in many algorithms. There is considerable literature

about the performance of such algorithms in the context of circular Gaussian signals. The performance of such

algorithms are often evaluated using the stochastic and deterministic CRB (see e.g., [1],[2]). In particular Porat and

Friedlander [3] proved that the MUSIC algorithm is asymptotically efficient for a single source and for uncorrelated

sources when the signal to noise ratio (SNR) of all the sources tend to infinity, then Stoica and Nehorai [1] extended

this result when the number of sensors tend to infinity. Furthermore, they proved that the MUSIC algorithm is not

efficient if the sources are correlated and that the difference between the asymptotic covariance given by the MUSIC

algorithm and the CRB may be quite large if the sources are nearly coherent. These results have been recently

extended to noncircular Gaussian signals where it has been proved [4] that different subspace-based estimates used

in the context of noncircular digital modulations are asymptotically efficient for a single source, but for several

sources, the efficiency decreases dramatically for uncorrelated sources with low SNR, DOA and noncircularity phase

separations.

This paper offers generic asymptotic results about subspace-based estimates with emphasis on efficiency, based

on the notion of AMV and asymptotically best consistent estimator (ABC) introduced by Porat and Friedlander

[5] and Stoica et al [6] respectively and then applied to Gaussian noncircular signals [7]. But in all these papers,

the first1 covariance matrix of the asymptotic distribution of the involved statistics was nonsingular. In this paper,

this notion of AMV estimators is extended to the case of a singular first covariance matrix. This allows us to prove

the existence of a lower bound for the covariance of the asymptotic distribution of DOA estimates given by an

arbitrary consistent subspace-based algorithm. This bound can be used as a benchmark against which potential

subspace-based algorithms are tested. But this AMV bound is generally lower bounded by the CRB because this

later bound concerns arbitrary functions of the data. We will prove that this AMV bound associated with different

estimated projectors which is function of the second-order statistics of the involved processes only attains the

stochastic CRB in the case of circular or noncircular Gaussian signals.

The paper is organized as follows. The array signal model and a motivating example in the context of noncircular

1For noncircular random variables x, the matrices E[(x− E(x))(x− E(x))H ] and E[(x− E(x))(x− E(x))T ] are denoted

first and second covariance matrices, respectively.
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signals are given in Section 2. Section 3 extends the standard AMV results to arbitrary statistics whose first

covariance matrix of their asymptotic distribution is singular, applies these results to different projection-based

statistics, gives closed-form expressions of AMV bounds based on estimates of different orthogonal projectors and

finally proves that these AMV bounds attain the stochastic CRB in the case of circular or noncircular Gaussian

signals, which is the main contribution of this paper.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H, ∗, #

and ⊥ stand for transpose, conjugate transpose, conjugate, Moore-Penrose inverse and ortho-complement of range

space, respectively. E(.), Tr(.) and <(.) are the expectation, trace and real part operators. I is the identity matrix.

vec(·) is the “vectorization” operator that turns a matrix into a vector by stacking the columns of the matrix one

below another which is used in conjunction with the Kronecker product A ⊗ B as the block matrix whose (i, j)

block element is ai,jB and with the vec-permutation matrix K which transforms vec(C) to vec(CT ).

2 Array signal model and motivating example

Let an array of M sensors receive the signals emitted by K narrowband sources with K < M . The observations

are modeled as

yt = Axt + nt, t = 1, . . . , T,

where (yt)t=1,...,T are independent and identically distributed. A
def
= [a1, . . . ,aK ] is the array response matrix

where ak is parameterized by the parameter θk. In a more general setting, θk can contain more parameters per

source, e.g., azimuth, elevation, distance, etc. Applications of the presented results to the multiple parameter per

source case is straightforward (see Appendix D), but for notational simplicity we assume that θk is a real scalar,

referred to as the k-th DOA. A is supposed to have full rank for distinct DOA’s θk. xt = (xt,1, . . . , xt,K)T and

nt model signals transmitted by sources and additive measurement noise respectively. xt and nt are independent,

zero-mean, nt is assumed to be Gaussian complex circular, spatially uncorrelated with E(ntn
H
t ) = σ2

nIM , while

xt is complex noncircular, not necessarily Gaussian and possibly spatially correlated with nonsingular covariance

matrices Rx
def
= E(xtx

H
t ) and R′x

def
= E(xtx

T
t ). Consequently this leads to two covariance matrices of yt that convey

information about Θ
def
= (θ1, . . . , θK)T

Ry = ARxA
H + σ2

nIM
def
= Rs + σ2

nIM and R′y = AR′xA
T def

= Rs′ 6= O.
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The noncircularity of the signals xt allows us to exploit this second covariance matrix R′y to improve the perfor-

mances of the conventional algorithms based on R′y only. Exemples of such algorithms are given in the literature

(see e.g., [8] and [4]). We suppose that Θ is uniquely determined by the range space of A and consequently Θ is

uniquely determined by the common orthogonal projector Πy onto the noise subspace associated with Ry and R′y

as well. Using the extended observation ỹt
def
= (yTt ,yt

H)T ,

Rỹ
def
= E(ỹtỹ

H
t ) = ÃRx̃Ã

H + σ2
nI2M with Ã

def
=

 A O

O A∗

 and Rx̃
def
=

 Rx R
′

x

R
′∗
x R∗x

 ,

where we suppose here that Rx̃ is nonsingular2. Consequently Θ is determined by the orthogonal projector Πỹ

onto the 2(M −K)-dimensional noise subspace of Rỹ also.

These covariance matrices are traditionally estimated by Ry,T = 1
T

∑T
t=1 yty

H
t , R′y,T = 1

T

∑T
t=1 yty

T
t and

Rỹ,T = 1
T

∑T
t=1 yỹHt , respectively. There are different alternatives to combine the information conveyed by Ry,T

and R′y,T . The first ones are based directly on the matrices Ry,T and R′y,T using the AMV [7] or maximum

likelihood approaches [9] and the second ones are based on the orthogonal projectors (Πy,T , Π′y,T ) and Πỹ,T onto

the noise subspace of the sample covariance matrices Ry,T , R′y,T and Rỹ,T respectively. We note that there is not a

one-to-one mapping between (Πy,T ,Π
′
y,T ) and Πỹ,T , contrary to the-one-to one mapping (Ry,T ,R

′
y,T )←→ Rỹ,T .

It is the reason why we consider in the sequel these two statistics separately.

The first idea to estimate Θ from Ry,T and R′y,T is to use similar subspace-based algorithms derived from

the projection matrices Πy,T and Π′y,T . For example, the asymptotic performance of the estimates given by the

standard MUSIC algorithm and a MUSIC-like algorithm based on Πy,T and Π′y,T respectively are similar. In

particular for only one source, the associated asymptotic variances are respectively given by [4]:

Cθ1 =
1

α 1

[
σ2
n

σ2
1

+
1

M

σ4
n

σ4
1

]
and Cθ1 =

1

α1ρ2
1

[
σ2
n

σ2
1

+
1

M

σ4
n

σ4
1

]

with α1 is a purely geometric factor and where ρ1 (0 ≤ ρ1 ≤ 1) is the noncircularity rate of xt,1 defined by

E(x2
t,1) = ρ1e

iφ1E|x2
t,1| = ρ1e

iφ1σ2
1 where φ1 is the phase of noncircularity. Examples of such noncircular signals

are given by the rectilinear signals (e.g., unfiltered ASK modulations) for which xt,1 = |xt,1|eiφ1/2 and ρ1 = 1.

Consequently a problem crops up: how does one combine the statistics Πy,T and Π′y,T to improve the estimate

of Θ?

2The particular case Rx̃ singular is beyond the scope of this paper. This later case occurs for example for uncorrelated

rectilinear signals xk,t for which the dimension of the noise subspace becomes 2M −K.
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Another idea to estimate Θ from Ry,T and R′y,T is to use subspace-based algorithms derived from the projection

matrix Πỹ,T . Efficient subspace-based algorithms based on Πỹ,T have been proposed and analyzed in [4] in the

particular case of uncorrelated sources with maximum noncircularity rates. However in the general case of arbitrary

extended spatial covariance Rx̃ of the sources, only weighted MUSIC-like algorithms seem to take benefit of the

second covariance matrix R′y,T . But the asymptotic performances of these estimates are largely outperformed by

those of the AMV estimator based on Ry,T and R′y,T [4]. Therefore a question arises as well: Does there exist an

algorithm based on the projector Πỹ,T whose performance approaches that of the AMV estimator based on Ry,T

and R′y,T ?

A solution of the two aforementioned problems is to use the notion of AMV estimators based, respectively, on

the matrix-valued statistics (Πy,T ,Π
′
y,T ) and Πỹ,T . But to apply the standard results [10] on AMV estimators to

these projectors, two conditions must be satisfied. First, the involved subspace-based algorithm considered as a

mapping must be complex differentiable w.r.t. (Πy,T ,Π
′
y,T ) [resp., Πỹ,T ] at the point (Πy,Π

′
y) [resp., Πỹ]. Second,

the first covariance matrix Cs of the asymptotic distribution of sT
def
= vec(Πy,T ,Π

′
y,T ) [resp., sT

def
= vec(Πỹ,T )]

must be nonsingular. While the first condition is satisfied because the projection matrices are Hermitian, it will

be specified in Section 3.3, that the second is not satisfied. So we have to elaborate a little bit by considering the

case of arbitrary sequences of statistics.

3 Asymptotic efficiency of subspace-based AMV estimators

3.1 Asymptotically minimum variance estimator

Consider a general N -multidimensional mixture of real and complex-valued sequence of statistics sT which is a

consistent estimate of s(Θ) for which the real-valued parameter Θ ∈ RK is identifiable from s(Θ). We suppose that

sT is asymptotically zero-mean Gaussian distributed where the first covariance matrix Cs is possibly singular:

√
T (sT − s(Θ))

L→ N (0; Cs,C
′
s) .

To consider the asymptotic performance of an algorithm based on sT , we adopt a functional analysis approach

which consists in recognizing that the whole process of constructing an estimate ΘT of Θ is equivalent to defining a

functional relation linking this estimate ΘT to the statistics sT from which it is inferred. This functional dependence

is denoted sT 7−→ ΘT = Alg(sT ). Considering a mapping Alg(.) differentiable w.r.t. (<(s),=(s)), the following
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theorem is proved in [11].

Theorem 1 The covariance matrix CΘ of the asymptotic distribution of a consistent estimator of Θ given by an

arbitrary algorithm based on sT is bounded below by the real symmetric matrix C
AMV(s)
Θ =

(
SHC#

s S
)−1

CΘ ≥
(
SHC#

s S
)−1

(3.1)

if the following two conditions hold

Span (S) ⊂ Span (Cs) and s∗T = PsT (3.2)

where P is a permutation matrix3 and S def
= ds(Θ)

dΘ .

Remark 1: The second condition (3.2) holds for Hermitian matrix-valued statistics with P = K. For complex

symmetric matrix-valued statistics, the complex conjugate associated terms must be added.

Remark 2: In the trivial case where there are N − r linear relations between the components of sT with r

components statistically uncorrelated, there exists an N × (N − r) matrix B such that sT = Bs′T with Cov(s′T )

nonsingular. Consequently Span (S) ⊂ Span (B) and Span (Cov(sT )) = Span (B). Therefore, the first condition

(3.2) holds.

Remark 3: In their discussions about the generalization of the optimal weighted subspace fitting approach, Car-

doso and Moulines [12] have introduced a range space condition different from condition (3.2), and they have derived

(3.1) as a lower bound to the covariance of the asymptotic distribution of weighted subspace fitting estimates.

Remark 4: Under the assumptions of Theorem 1, it has been proved in [11], that the following nonlinear least

square estimate achieves the lower bound (3.1).

ΘT = arg min
α∈RK

[sT − s(α)]HC#
s [sT − s(α)]. (3.3)

3.2 Asymptotic distribution of projector estimator

To apply Theorem 1 to the statistics vec(Πy,T ), vec(Πy,T ,Π
′
y,T ) and vec(Πỹ,T ), we need the expression of the first

covariance matrice of their asymptotic distribution. They are given by the following lemma proved in [11]

3We note that in this case Cs = C′
sP, and the second covariance matrix C′

s of the asymptotic distribution of sT is

deduced from the first covariance matrix Cs.
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Lemma 1 The first covariance matrices CΠ, C Π
Π′

and CΠ̃ of the asymptotic distribution of vec(Πy,T ),

vec(Πy,T ,Π
′
y,T ) and vec(Πỹ,T ) are given by

CΠ = (Π∗y ⊗U) + (U∗ ⊗Πy) (3.4)

C Π
Π′

=

 Π∗y ⊗U Π∗y ⊗U′′

Π∗y ⊗U′′H Π∗y ⊗U′

+

 U∗ ⊗Πy U′′∗ ⊗Πy

U′′T ⊗Πy U′∗ ⊗Πy

 (3.5)

CΠ̃ = (I + K(J⊗ J))
(

(Π∗ỹ ⊗ Ũ) + (Ũ∗ ⊗Πỹ)
)

(3.6)

with U
def
= σ2

nR#
s RyR

#
s , U′

def
= σ2

nR
′∗#
s R∗yR

′#
s , U′′

def
= σ2

nR#
s R′yR

′#
s and Ũ

def
= σ2

nR#
s̃ RỹR

#
s̃ , and where K is

the vec-permutation matrix of appropriate dimension which transforms vec(.) to vec(.T ) for any square matrix and

J =

 O I

I O

.

We note that the previous expressions of CΠ, C Π
Π′

and CΠ̃, do not depend on the fourth-order moments of the

sources. Furthermore, CΠ does not depend on R′y. Consequently we have proved the following:

Theorem 2 The asymptotic performance given by an arbitrary subspace-based algorithm built from Ry,T ,

(Ry,T ,R
′
y,T ) or Rỹ,T depends on the distribution of xt through its second-order moments only. Furthermore,

for subspace-based algorithms built from Ry,T , this asymptotic performance depends only on the first covariance

matrix Rx.

3.3 Asymptotically minimum variance subspace-based estimator

We can now consider the two conditions (3.2) of Theorem 1 to prove that this theorem applies to the statistics

vec(Πy,T ), vec(Πy,T ,Π
′
y,T ) and vec(Πỹ,T ). It is proved in Appendix A that

Nullspace (CΠ) = Span {u∗l′ ⊗ ul′′ | 1 ≤ l′, l′′ ≤ K or K < l′, l′′ ≤M} (3.7)

Nullspace (C Π
Π′

) = Span


u∗l′ ⊗ ul′′

0

,
0

u∗l′ ⊗ ul′′

| 1 ≤ l′, l′′ ≤ K or K < l′, l′′ ≤M

 (3.8)

Nullspace (CΠ̃) = Span {ũ∗l′ ⊗ ũl′′ | 1 ≤ l′, l′′ ≤ 2K or 2K < l′, l′′ ≤ 2M}. (3.9)

This allows us to prove in Appendix B that:

∂vec(Πy)

∂θk
⊥ Nullspace (CΠ), k = 1, ...,K (3.10)
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and 
∂vec(Πy)
∂θk

∂vec(Πy)
∂θk

⊥ Nullspace (C Π
Π′

), k = 1, ...,K. (3.11)

Consequently, because the nullspaces of the Hermitian matrices CΠ and C Π
Π′

are the complementary orthogonal

of span(CΠ) and span(C Π
Π′

) respectively, the first condition (3.2) is satisfied for the statistics vec(Πy,T ) and

vec(Πy,T ,Π
′
y,T ). This condition is proved in the same way for vec(Πỹ,T ). Furthermore because these matrix-

valued statistics are Hermitian, the second condition of (3.2) is satisfied. Consequently, Theorems 1 applies to the

statistics vec(Πy,T ), vec(Πy,T ,Π
′
y,T ) and vec(Πỹ,T ).

Remark 5: We note that the asymptotic covariance of the nonlinear least square estimate (3.3) is preserved if the

weighting matrix is replaced by any consistent estimate WT of C#
s satisfying WT = C#

s +o(sT −s(Θ) by checking

that the Jacobian DAlg
s =

(
SHC#

s S
)−1 SHC#

s of the mapping Alg(.) involved by (3.3) is preserved by following

a perturbation analysis similar to that of the proof of Remark 4 given in [11]. Moreover, consistent estimates

of σ2, Πy, Πỹ, Rs, R′s, Rs̃ are available from the singular value decompositions of Ry,T , R′y,T and Rỹ,T and

consequently, consistent estimates of C#
Π , C#

Π
Π′

and C#

Π̃
can be derived as well from Lemma 1.

3.4 Relation to the Cramer-Rao bound in the Gaussian case

To evaluate the efficiency of the subspace-based AMV estimators previously introduced, we consider the particular

case where the sources xt are Gaussian distributed. The following main contribution of this paper is proved in

Appendix C.

Theorem 3 When the sources are Gaussian distributed, the AMV bound (3.1) associated with the statistics

vec(Πy,T ), [resp. vec(Πy,T ,Π
′
y,T ) and vec(Πỹ,T )] are equal to the statistical CRB associated with the circular

[resp. noncircular] Gaussian distribution.

C
AMV(Π)
Θ = CRBCG

Θ =
σ2
n

2

{
<
[
DHΠyD�

(
RxA

HR−1
y ARx

)T ]}−1

(3.12)

C
AMV(Π,Π′)
Θ = CRBNCG

Θ =
σ2
n

2

<
DHΠyD�

[RxA
H ,R′xA

T ]R−1
ỹ

 ARx

A∗R′∗x



T

−1

(3.13)

C
AMV(Π̃)
Θ = CRBNCG

Θ , (3.14)

with D
def
= dA(Θ)

dΘ .
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Consequently the nonlinear least square DOA estimators described at the end of Subsection 3.3 are asymptotically

efficient in the Gaussian context.

Remark 6: Because the statistic Πy,T is a function of (Πy,T ,Π
′
y,T ), we have C

AMV(Π,Π′)
Θ ≤ C

AMV(Π)
Θ and

consequently CRBNCG
Θ ≤ CRBCG

Θ for Gaussian sources of same first spatial covariance matrices Rx.

4 Conclusion

This paper provides generic asymptotic results about DOA subspace-based estimates with emphasis on efficiency.

The standard AMV bound has been extended to statistics whose first covariance matrices of their asymptotic

distributions are singular. This bound has been applied to several projector estimators using the first covariance

matrices of their asymptotic distributions that have been derived. This enables us to prove that these AMV bounds

attain the stochastic CRB in the case of circular or noncircular Gaussian signals. Consequently, there always exists

asymptotically efficient subspace-based DOA algorithms in the Gaussian context.

A Appendix: Proof of rels (3.7), (3.8) and (3.9)

(3.7) is straightforwardly proved thanks to the eigenvalue decomposition
∑M
l=1 λlulu

H
l of Ry which implies Πy =∑M

l=K+1 ulu
H
l and U =

∑M
l=1

λl

(λl−σ2
n)2 ulu

H
l . Consequently CΠ becomes from (3.4)

CΠ =
∑

l′,l′′∈L

λl′,l′′(u
∗
l′ ⊗ ul′′)(u

T
l′ ⊗ uHl′′)

where L is the set {(l′, l′′) |1 ≤ l′ ≤ K < l′′ ≤ M or 1 ≤ l′′ ≤ K < l′ ≤ M} and the values of λl′,l′′ 6= 0 are

irrelevant.

(3.8) is more involved to prove, but using the singular value decomposition of U′ and U′′, we can write from

the following expressions proved in [11]:

CΠ′ = (Π∗y ⊗U′) + (U
′∗ ⊗Πy) and CΠ,Π′ = (Π∗y ⊗U′′) + (U

′′∗ ⊗Πy).

CΠ′ =
∑

l′,l′′∈L

λ′l′,l′′(u
′∗
l′ ⊗ u

′

l′′)(u
′T
l′ ⊗ u

′H
l′′ )

CΠ,Π′ =
∑

l′,l′′∈L1

λ′′l′,l′′(u
∗
l′ ⊗ u

′′

l′′)(u
T
l′ ⊗ u

′′′H
l′′ ) +

∑
l′,l′′∈L2

λ′′l′,l′′(u
′′∗
l′ ⊗ ul′′)(u

′′′T
l′ ⊗ uHl′′)

where (u
′

l)l=1,...,K , (u
′′

l )l=1,...,K and (u
′′′

l )l=1,...,K are orthogonal basis of Span (A), (u
′

l)l=K+1,...,M is an orthogonal

bases of Span (A)⊥ and where L1 and L2 are the sets {(l′, l′′) |1 ≤ l′ ≤ K < l′′ ≤ M} and {(l′, l′′) |1 ≤ l′′ ≤ K <

9



l′ ≤ M} respectively and the values of λ′l′,l′′ 6= 0 and λ′′l′,l′′ 6= 0 are irrelevant. Considering the partitioned matrix

C Π
Π′

constituted by CΠ, CΠ′ and CΠ,Π′ , the proof of (3.8) follows.

(3.9) is proved similarly by considering the eigenvalue decomposition
∑2M
l=1 λ̃lũlũ

H
l of Rỹ which implies Πỹ =∑2M

l=2K+1 ũlũ
H
l and Ũ =

∑2K
l=1

λ̃l

(λ̃l−σ2
n)2

ũlũ
H
l . Consequently

(Π∗ỹ ⊗ Ũ) + (Ũ∗ ⊗Πỹ) =
∑

l′,l′′∈L

λ̃l′,l′′(ũ
∗
l′ ⊗ ũl′′)(ũ

T
l′ ⊗ ũHl′′)

where L is the set {(l′, l′′) |1 ≤ l′ ≤ 2K < l′′ ≤ 2M or 1 ≤ l′′ ≤ 2K < l′ ≤ 2M} and the values of λ̃l′,l′′ 6= 0 are

irrelevant. Then from (3.6) and the property [14, Th.9 (b), p.47] of K, we have

CΠ̃ =
∑

l′,l′′∈L

λ̃l′,l′′(ũ
∗
l′ ⊗ ũl′′ + Jũl′′ ⊗ Jũ∗l′)(ũ

T
l′ ⊗ ũHl′′)

and the proof is complete because ũ∗l′ ⊗ ũl′′ + Jũl′′ ⊗ Jũ∗l′ 6= 0 for all (l′, l′′) ∈ L.

B Appendix: Proof of (3.10) and (3.11)

Since {u1,u2, ...,uM} is an orthonormal basis of CM , we have:

[
∂vec(Πy)

∂θk

]H
(u∗l′ ⊗ ul′′) = −

K∑
k′=1

(
u∗k′ ⊗

∂uk′

∂θk
+
∂u∗k′

∂θk
⊗ uk′

)H
(u∗l′ ⊗ ul′′)

= −
K∑
k′=1

(
(uTk′u

∗
l′)(

∂uHk′

∂θk
ul′′) + (

∂uTk′

∂θk
u∗l′)(u

H
k′ul′′)

)
= 0, for K < l′, l′′ ≤M

= (uTl′u
∗
l′)(

∂uHl′

∂θk
ul′′) + (

∂uTl′′

∂θl′
u∗l )(u

H
l′′ul′′) =

∂(u
H
l′ ul′′)

∂θk
= 0, for 1 ≤ l′ < l′′ ≤ K

= (uTl u∗l )(
∂uHl
∂θk

ul) + (
∂uTl
∂θl

u∗l )(u
H
l ul) =

∂‖ul‖2

∂θk
= 0, for 1 ≤ l′ = l′′

def
= l ≤ K,

which proves (3.10) using (3.7). From the range space of C Π
Π′

given in (3.8), (3.11) is proved in the same way.

C Appendix: Proof of Theorem 3

We separately consider the three statistics where we will make relatively frequent use of the following identities

(see e.g., [13, th. 7.16 and 7.17])

vec(ABC) = (CT ⊗A)vec(B) (C.1)

Tr(ABCD) = vecT (AT )(DT ⊗B)vec(C) (C.2)

10



Projector vec(Πy,T ):

Because Nullspace (R#
s ) = Span(Πy), we have UΠy = O. This implies the two relations

(Π∗y ⊗U)(U∗ ⊗Πy)H = Π∗yU
T ⊗UΠy = O

(Π∗y ⊗U)H(U∗ ⊗Πy) = Π∗yU
∗ ⊗UΠy = O,

which, thanks to [13, Th.5.17], enables one to write, the Moore-Penrose inverse of CΠ given by (3.4) in the form:

C#
Π = (Π∗y ⊗U)# + (U∗ ⊗Πy)# = (Π#

y

∗ ⊗U#) + (U#∗ ⊗Π#
y ) = (Π∗y ⊗U#) + (U#∗ ⊗Πy)

=
1

σ2
n

(
(Π∗y ⊗AHAH) + (A∗H∗AT ⊗Πy)

)
,

where the second equality is by [14, Th.5 (xvii), p.33] and the last equality is deduced from U# = 1
σ2
n
RsR

−1
y Rs =

1
σ2
n
ARxA

HR−1
y ARxA

H = 1
σ2
n
AHAH with H

def
= RxA

HR−1
y ARx, thanks to [13, Th.5.6 and Th.5.7] because the

Hermitian matrices Rs and Ry have a common basis of orthonormal eigenvectors. So, from Theorem 1

[(
C

AMV(Π)
Θ

)−1
]
k,l

=
1

σ2
n

∂vecT (ΠT
y )

∂θk

(
(ΠT

y ⊗AHAH) + ((AHAH)T ⊗Πy)
) ∂vec(Πy)

∂θl

=
1

σ2
n

Tr

(
∂Πy

∂θk
AHAH ∂Πy

∂θl
Πy +

∂Πy

∂θk
Πy

∂Πy

∂θl
AHAH

)
=

2

σ2
n

<
[
Tr

(
AH ∂Πy

∂θk
Πy

∂Πy

∂θl
AH

)]
,

where we have used identity (C.2) in the second equality.

Then ΠyA = O implying

∂Πy

∂θi
A + Πy

∂A

∂θi
= O, i = k, l, (C.3)

we have

[(
C

AMV(Π)
Θ

)−1
]
k,l

=
2

σ2
n

<
[
Tr

(
∂AH

∂θk
Πy

∂A

∂θl
H

)]
=

2

σ2
n

<
[
daHk
dθk

Πy
dal
dθl

(H)l,k

]
. (C.4)

This proves (3.12) thanks to the expression of the circular Gaussian CRB (see e.g., [2]).

Projector vec(Πy,T ,Π
′
y,T ):

As for the statistic vec(Πy,T ), we have UΠy = U′Πy = U′′Πy = O, which implies after straightforward

11



algebraic manipulations, the two relations Π∗y ⊗U Π∗y ⊗U′′

Π∗y ⊗U′′H Π∗y ⊗U′


 U∗ ⊗Πy U′′∗ ⊗Πy

U′′T ⊗Πy U′∗ ⊗Πy


H

= O

 Π∗y ⊗U Π∗y ⊗U′′

Π∗y ⊗U′′H Π∗y ⊗U′


H  U∗ ⊗Πy U′′∗ ⊗Πy

U′′T ⊗Πy U′∗ ⊗Πy

 = O. (C.5)

This enables one to write, thanks to [13, Th.5.17], the Moore-Penrose inverse of C Π
Π′

given by (3.5) in the form:

C#
Π
Π′

=

 Π∗y ⊗U Π∗y ⊗U′′

Π∗y ⊗U′′H Π∗y ⊗U′


#

+

 U∗ ⊗Πy U′′∗ ⊗Πy

U′′T ⊗Πy U′∗ ⊗Πy


#

=


 K O

O K



 U U′′

U′′H U′

⊗Π∗y


 K O

O K




#

+


 U∗ U′′∗

U′′T U′∗

⊗Πy


#

=


 K O

O K



 U U′′

U′′H U′


#

⊗Π∗y


 K O

O K


+


 U∗ U′′∗

U′′T U′∗


#

⊗Πy

 , (C.6)

where we have used the identity A ⊗B = K(B ⊗A)K [14, Th.(4), p.47] in the second equality, and [13, Th.5.8]

and [14, Th.5 (xvii), p.33] in the third equality. Noting that K O

O K

 ∂vec(Πy,Πy)

∂θi
=

 K
∂vec(Πy)

∂θi

K
∂vec(Πy)

∂θi

 =


∂vec(Π∗y)

∂θi

∂vec(Π∗y)

∂θi

 , i = k, l,

we have from (C.6)

[(
C

AMV(Π,Π′)
Θ

)−1
]
k,l

= 2<

∂vecT

∂θk

 Πy

Πy


T


 U U′′

U′′H U′


#

T

⊗Πy

 ∂vec(Πy,Πy)

∂θl



= 2<

Tr




∂Πy

∂θk

∂Πy

∂θk

Πy

(
∂Πy

∂θl

∂Πy

∂θl

) U U′′

U′′H U′


#


where identity (C.2) is used in the second equality. Then from the definition of the matrices U, U′ and U′′ given

in Lemma 1, we have  U U′′

U′′H U′

 = σ2
n

 R#
s O

O R
′∗
s

#

Rỹ

 R#
s O

O R
′

s

#

 .

Since

rank

 R#
s O

O R′s
∗#

 = rank

Rỹ

 R#
s O

O R′s
#


 ,
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theorem [13, Th.5.9] applies and using [13, Th.5.14], we get: U U
′′

U
′′H U

′


#

=
1

σ2
n

Rỹ

 R#
s O

O R′s
#




# Rs O

O R′s
∗

 . (C.7)

Now, we must prove that Rỹ

 R#
s O

O R′s
#




#

=

 Rs O

O R′s

R−1
ỹ . (C.8)

With A def
= Rỹ

 R#
s O

O R′s
#

 and X def
=

 Rs O

O R′s

R−1
ỹ , let us prove that X is the Moore Penrose inverse

of A, by proving that it satisfies the four axioms [13, Def.5.1] defining this Moore Penrose inverse. Since R#
s and

R′s
#

satisfy these four axioms, we get after some algebraic manipulations:

AXA = Rỹ

 R#
s RsR

#
s O

O R′s
#

R′sR
′
s
#

 = Rỹ

 R#
s O

O R′s
#

 = A

XAX =

 RsR
#
s Rs O

O R′sR
′
s
#

R′s

R−1
ỹ =

 Rs O

O R′s

R−1
ỹ = X

(XA)H =

 RsR
#
s O

O R′sR
′
s
#

 = XA.

It remains to prove (AX )H = AX . Since Span(R′s) = Span(Rs) implies

R′s
∗
R#
s Rs = R′s

∗

R∗sR
′
s
#

R′s = R∗s, (C.9)

this give with the decomposition Rỹ =

 Rs R′s

R′s
∗

R∗s

+ σ2
nI2M

def
= Rs̃ + σ2

nI2M :

Rs̃

 R#
s Rs O

O R′s
#

R′s

 =

 RsR
#
s Rs R′sR

′
s
#

R′s

R′s
∗
R#
s Rs R∗sR

′
s
#

R′s

 = Rs̃. (C.10)

After straightforward algebraic manipulations using R−1
ỹ = σ−2

n I2M − σ−2
n Rs̃R

−1
ỹ and (C.10), we get:

Rỹ

 R#
s Rs O

O R′s
#

R′s

R−1
ỹ =

 R#
s Rs O

O R′s
#

R′s

+

Rs̃ −

 R#
s Rs O

O R′s
#

R′s

Rs̃

R−1
ỹ
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and using

 R#
s Rs O

O R′s
#

R′s

Rs̃ =

 R#
s RsRs R#

s RsR
′
s

R′s
#

R′sR
′
s
∗

R′s
#

R′sR
∗
s

 = Rs̃ obtained from [14, Th.5, rel.(vii),

p.33] and (C.9), we get:

AX = Rỹ

 R#
s Rs O

O R′s
#

R′s

R−1
ỹ =

 R#
s Rs O

O R′s
#

R′s

 ,

and therefore (AX )H = AX is proved. Consequently from (C.7) and (C.8), we get: U U′′

U′′H U′


#

=
1

σ2
n

 Rs O

O R
′

s

R−1
ỹ

 Rs O

O R
′∗
s



=
1

σ2
n

 ARxA
H O

O AR′xA
T

R−1
ỹ

 ARxA
H O

O A∗R′∗x AH



=
1

σ2
n

 A O

O A


 RxA

H O

O R′xA
T

R−1
ỹ

 ARx O

O A∗R′∗x


 AH O

O AH



=
1

σ2
n

 A O

O A

 H̃
 AH O

O AH

 ,

with H̃ def
=

 RxA
H O

O R′xA
T

R−1
ỹ

 ARx O

O A∗R′∗x

. Consequently,

[(
C

AMV(Π,Π′)
Θ

)−1
]
k,l

=
2

σ2
n

<

Tr




∂Πy

∂θk

∂Πy

∂θk

Πy

(
∂Πy

∂θl

∂Πy

∂θl

) A O

O A

 H̃
 AH O

O AH





=
2

σ2
n

<

Tr


 AH ∂Πy

∂θk

AH ∂Πy

∂θk

Πy

(
∂Πy

∂θl
A

∂Πy

∂θl
A

)
H̃


 .

Applying identity (C.3), we obtain:

[(
C

AMV(Π,Π′)
Θ

)−1
]
k,l

=
2

σ2
n

<

Tr


 ∂AH

∂θk
Πy

∂A
∂θl

∂AH

∂θk
Πy

∂A
∂θl

∂AH

∂θk
Πy

∂A
∂θl

∂AH

∂θk
Πy

∂A
∂θl

 H̃



which gives after straightforward algebraic manipulations

[(
C

AMV(Π̃)
Θ

)−1
]
k,l

=
2

σ2
n

<

Tr

∂AH

∂θk
Πy

∂A

∂θl
[RxA

H ,R′xA
T ]R−1

ỹ

 ARx

A∗R′∗x



 ,
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which proves (3.13) thanks to the expression of the noncircular Gaussian CRB [9].

Projector vec(Πỹ,T ):

To prove Theorem 3 for this statistic, we first must simplify the expression of C
AMV(Π̃)
Θ . Because L

def
= I+K(J⊗

J) of (3.6) satisfies L2 = 2L, the Hermitian matrix CΠ̃ becomes: CΠ̃ = 1
2LCL with C

def
= (Π∗ỹ ⊗ Ũ) + (Ũ∗ ⊗Πỹ)

and a simpler expression of the AMV bound can be obtained from the following minimization problem:

C
AMV(Π̃)
Θ = min

DS=IK
DCΠ̃DH =

1

2
min

DS=IK
DLCLDH .

Checking that LS = (I + K(J⊗ J))
dvec(Πỹ)

dΘ = S + Kvec
(
J
dΠỹ

dΘ J
)

= S + Kvec
(
dΠỹ

dΘ

T
)

= 2S thanks to identity

(C.1) for the second equality and the property JΠỹJ = ΠT
ỹ [4] for the third equality; the constraints DS = I and

DLS = 2I are equivalent. Consequently the previous minimization is tantamount to

C
AMV(Π̃)
Θ = 2 min

DL
2 S=IK

(
DL

2

)
C

(
DL

2

)H
.

Because C is structured similarly as CΠ (see (3.4)), Span(S) ⊂ Span(C). Consequently, the proof of Theorem 1

given in [11] applies and C
AMV(Π̃)
Θ = 2

(
SHC#S

)−1
.

Noting that C = (Π∗ỹ ⊗ Ũ) + (Ũ∗ ⊗ Πỹ) is structured similarly to CΠ, all the steps of the proof given

for the statistic vec(Πy,T ) extend up to equality (C.4) by replacing A, Πy and H = RxA
HR−1

y ARx, by Ã,

Πỹ =

 Πy O

O Π∗y

 (from [4]) and H̃
def
= Rx̃Ã

HR−1
ỹ ÃRx̃ respectively, and consequently

[(
C

AMV(Π̃)
Θ

)−1
]
k,l

=
1

2

2

σ2
n

<

[
Tr

(
∂ÃH

∂θk
Πỹ

∂Ã

∂θl
H̃

)]
.

Because all the matrices involved in H̃ are structured in the form

 (�) (×)

(×)∗ (�)∗

, H̃ is structured in the same

form as well, i.e., H̃ =

 H1 H2

H∗2 H∗1

 with H1 = [RxA
H ,R′xA

T ]R−1
ỹ

 ARx

A∗R
′∗
x

. Then

∂ÃH

∂θk
Πỹ

∂Ã

∂θl
H̃ =

 ∂AH

∂θk
Πy

∂A
∂θl

H1 (×)

(×)∗ ∂AT

∂θk
Π∗y

∂A∗

∂θl
H∗1


and [(

C
AMV(Π̃)
Θ

)−1
]
k,l

=
2

σ2
n

<
[
daHk
dθk

Πy
dal
dθl

(H1)l,k

]
,

which proves (3.14) thanks to the expression of the noncircular Gaussian CRB [9].

15



D Appendix: The case of multiple parameters per source

It is straightforward to extend Theorem 3 to the case of multiple parameters per source. One the one hand, the

circular and noncircular Gaussian CRB are derived from slight modifications of the end of the proofs given in [2]

and of the proof given [9, Appendix C] respectively. They are given by:

CRBCG
Θ =

σ2
n

2

{
<
[
DHΠyD�

((
RxA

HR−1
y ARx

)T ⊗ 1
)]}−1

CRBNCG
Θ =

σ2
n

2

<
DHΠyD�


[RxA

H ,R′xA
T ]R−1

ỹ

 ARx

A∗R′∗x



T

⊗ 1




−1

where 1 is a L × L matrix of 1 if there are L parameters per source. The parame-

ter Θ and the matrix of derivative D are organized as (θ1, ..., φ1, ..., θK , ..., φK)T and D
def
=[

da1(θ1,...,φ1)
dθ1

, ..., da1(θ1,...,φ1)
dφ1

, ..., daK(θK ,...,φK)
dθK

, ..., daK(θK ,...,φK)
dφK

]
. On the other hand, the derivation of the AMV

bound follows the same lines as for a single parameter per source except the last step when the matrix A is

decomposed in the different steering vectors ak.
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