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Abstract
Spider mites are severe pests of several annual and perennial crops worldwide, often 
causing important economic damages. As rapid evolution of pesticide resistance in 
this group hampers the efficiency of chemical control, alternative control strategies, 
such as the use of entomopathogenic fungi, are being developed. However, while 
several studies have focused on the evaluation of the control potential of different 
fungal species and/or isolates as well as their compatibility with other control meth-
ods (e.g., predators or chemical pesticides), knowledge on the extent of inter- and in-
traspecific variation in spider mite susceptibility to fungal infection is as yet incipient. 
Here, we measured the mortality induced by two generalist fungi, Beauveria bassi-
ana and Metarhizium brunneum, in 12 spider mite populations belonging to different 
Tetranychus species: T. evansi, T. ludeni, and T. urticae (green and red form), within a full 
factorial experiment. We found that spider mite species differed in their susceptibil-
ity to infection by both fungal species. Moreover, we also found important intraspe-
cific variation for this trait. These results draw caution on the development of single 
strains as biocontrol agents. Indeed, the high level of intraspecific variation suggests 
that (a) the one-size-fits-all strategy may fail to control spider mite populations and 
(b) hosts resistance to infection may evolve at a rapid pace. Finally, we propose future 
directions to better understand this system and improve the long-term success of 
spider mite control strategies based on entomopathogenic fungi.
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entomopathogenic fungi, host evolution, parasite-induced mortality, resistance, 
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1  | INTRODUC TION

Pesticides are still the main weapon used to control crop pests and 
disease vectors, despite the major threats they represent for food 

safety and for the environment (Bourguet & Guillemaud, 2016). 
Moreover, the pervasive evolution and rapid spread of resistance 
to pesticides severely affect their efficiency in many taxa (Casida & 
Quistad, 1998). Therefore, alternative control strategies are being 
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sought to control disease epidemics and outbreaks of agricultural 
crop pests (Hajek, McManus, & Delalibera, 2007; Lacey, Frutos, 
Kaya, & Vail, 2001; Parolin et al., 2012; Zindel, Gottlieb, & Aebi, 
2011), including spider mites (Attia et al., 2013).

Spider mite of the genus Tetranychus (Acari: Tetranychidae) are 
ubiquitous major crop pests of c.a. 1,100 plant species belonging to 
more than 140 different plant families (Migeon & Dorkeld, 2006–
2017–2017), destroying annual and perennial crops. A few stud-
ies have evaluated the economic costs of spider mites, which vary 
among crops, seasons, and plant age (Alatawi, Margolies, & Nechols, 
2007; Flamini, 2006; Opit, Chen, Williams, Nechols, & Margolies, 
2005; Park & Lee, 2002, 2005, 2007; Weihrauch, 2005), and the-
oretical studies suggest that detrimental effects of spider mites in 
agriculture will dramatically increase with increased global warm-
ing (Migeon et al., 2009). Moreover, due to their short generation 
time and high fecundity, spider mites rapidly develop resistance to 
pesticides (Van Leeuwen, Vontas, Tsagkarakou, Dermauw, & Tirry, 
2010). Important efforts are thus being developed to evaluate the 
efficiency of different biological control methods, such as the use 
of essential oils or natural enemies (e.g., predators, entomopatho-
genic bacteria, and fungi; Attia et al., 2013). In particular, a pleth-
ora of studies have evaluated the virulence of many fungal species 
(e.g., Neozygites spp., Metarhizium spp., Beauveria bassiana, and 
Lecanicillium lecanii) and/or strains to identify the best candidates for 
efficient spider mite control (e.g., Bugeme, Maniania, Knapp, & Boga, 
2008; Chandler, Davidson, & Jacobson, 2005; Maniania, Bugeme, 
Wekesa, Delalibera, & Knapp, 2008; Shi, Zhang, & Feng, 2008; Shin, 
Bae, Kim, Yun, & Woo, 2017), as well as their compatibility with other 
control methods, such as predatory mites (e.g., Dogan, Hazir, Yildiz, 
Butt, & Cakmak, 2017; Seiedy, 2014; Seiedy, Saboori, & Allahyari, 
2012; Seiedy, Saboori, & Zahedi-Golpayegani, 2013; Ullah & Lim, 
2017; Vergel, Bustos, Rodriguez, & Cantor, 2011; Wu, Xie, Li, Xu, & 
Lei, 2016) or pesticides (e.g., Irigaray, Marco-Mancebon, & Perez-
Moreno, 2003; Klingen & Westrum, 2007; Shi, Jiang, & Feng, 2005). 
However, these studies were conducted using a single host popula-
tion and potential intraspecific variations in spider mites susceptibil-
ity have, to our knowledge, never been investigated within a single 
experiment (but see, for instance: Afifi, Mabrouk, & Asran, 2010, 
Fiedler & Sosnowska, 2007, Ribeiro, Gondim, Calderan, & Delalibera, 
2009 for a comparison among spider mites and/or among other ar-
thropod species; or Milner, 1982, 1985, Perinotto et al., 2012, Uma 
Devi, Padmavathi, Uma Maheswara Rao, Khan, & Mohan, 2008 for 
intraspecific variation within other arthropod species).

Both intra- and interspecific variability in host susceptibility to 
infection may modify epidemiological patterns of parasite in natural 
host populations (Dwyer, Elkinton, & Buonaccorsi, 1997; Hawley & 
Altizer, 2011; Read, 1995), thereby altering the efficiency and en-
vironmental persistence of biocontrol agents. Moreover, the use of 
such agents generates a strong selection pressure on the target pests 
(e.g., Fenner & Fantini, 1999, see also Tabashnik, 1994, Moscardi, 
1999) and, in general, variability in host susceptibility to infection 
may have important consequences for the evolution of host resis-
tance as well as parasite virulence and transmission (Elena, 2017; 

Sorci, Moller, & Boulinier, 1997; Stevens & Rizzo, 2008). Hence, as-
sessing both intra- and interspecific variability in spider mite sus-
ceptibility to infection by different potential biocontrol agents is a 
prerequisite for the development of efficient and long-lasting con-
trol strategies.

To this aim, we assessed the susceptibility to fungi infection of 
12 different spider mite populations belonging to different species 
that are ubiquitous in Europe and often co-occur in the field (Migeon 
& Dorkeld, 2006–2017–2017, Zélé, Santos, Godinho, & Magalhães, 
2018b): three populations of the green form of T. urticae, three pop-
ulations of the red form of T. urticae (also referred to as T. cinna-
barinus by some authors; e.g., Shi & Feng, 2004, Shi et al., 2005, 
Li, Chen, & Hong, 2009), three populations of T. ludeni, and three 
populations of T. evansi. We used two generalist entomopathogenic 
fungi species, B. bassiana and Metarhizium brunneum, as Beauveria 
and Metarhizium spp. are among the most used fungi in commercial 
production (Vega et al., 2009), and have wide geographical and host 
ranges (Greif & Currah, 2007; Gurlek, Sevim, Sezgin, & Sevim, 2018; 
Meyling & Eilenberg, 2007; Rehner, 2005; Roberts & Leger, 2004). 
We then discuss the possible ecological and evolutionary causes and 
underlying mechanisms leading to the observed results, as well as 
their potential consequences for the evolution of both hosts suscep-
tibility to infection and fungi virulence. Finally, we propose future 
directions to improve long-term success of spider mite control strat-
egies using entomopathogenic fungi.

2  | MATERIAL S AND METHODS

2.1 | Spider mite populations and rearing

Twelve populations of Tetranychid mites were used in this study: 
three of T. evansi (called BR, GH, and QL), three of T. ludeni (called 
OBI, Alval, and Assaf), three of the red form of T. urticae (called 
AlRo, AMP.tet, and FR.tet), and three of the green form of T. urticae 
(called TOM.rif, LS.tet, and B6JS). Most of these populations were 
collected in Portugal from 2013 to 2016; FR.tet was collected in 
France and AlRo in Spain in 2013. The population BR of T. evansi was 
collected in a greenhouse in Brazil in 2002 (Godinho, Janssen, Dias, 
Cruz, & Magalhães, 2016; Sarmento et al., 2011), and the popula-
tion LS.tet of the green form of T. urticae derived from the London 
strain, which was used to sequence the species genome (Grbic et 
al., 2011). These populations originated from various plant species 
in the field, and none of them carried bacterial endosymbionts (i.e., 
Wolbachia, Cardinium, Rickettsia, Arsenophonus, Spiroplasma), either 
because they were initially uninfected when collected in the field 
(Zélé, Santos, Olivieri, et al., 2018a), or following antibiotic treat-
ment (three generations with tetracycline hydrochloride, or one 
generation with rifampicin; all populations with “.tet” or “.rif” suffix, 
respectively; Breeuwer, 1997; Gotoh et al., 2005; Li, Floate, Fields, 
& Pang, 2014). All the information concerning these populations 
is summarized in (Table 1). They were subsequently reared in the 
laboratory under standard conditions (25 ± 2°C, 60% RH, 16/8-hr 
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L/D) at high numbers (c.a. 500–1,000 females per cage) in insect-
proof cages containing either bean cv. Contender seedlings (ob-
tained from Germisem, Oliveira do Hospital, Portugal) for T. urticae 
and T. ludeni, or tomato cv. Money Maker seedlings (obtained from 
Mr. Fothergill's Seeds, Kentford, UK) for T. evansi.

2.2 | Entomopathogenic fungi strains and 
preparation of inoculum

We used the strains V275 (=Met52, F52, BIPESCO 5) of M. brunneum 
and UPH-1103 of B. bassiana , obtained from Swansea University 
(UK) and from Siedlce University (Poland), respectively, as they were 
previously shown to have the potential to suppress T. urticae popula-
tions (Dogan et al., 2017). The procedures used for fungal growth, 
inoculum preparation, and spider mite infection are similar to that 
described in Dogan et al. (2017). Briefly, the two fungi were grown 
on Sabouraud Dextrose Agar (SDA) medium at 25°C for 2 weeks. 
Conidia were harvested from sporulating cultures with the aid of a 
spatula, washed with sterile distilled water, and filtered through four 
layers of gauze to remove any hyphae.

2.3 | Spider mite infection and survival

The experiment was conducted in a growth chamber under standard 
conditions (25 ± 2°C, 80% RH, 16/8-hr L/D). Roughly 2 weeks prior 
to the experiment, age cohorts were created for each spider mite 
population by collecting ca. 100 females from each mass culture, 
allowing them to lay eggs during 4 days on detached bean leaves 
placed on water-soaked cotton. The offspring from these cohorts 
was used in the experiment.

One day prior to the onset of this experiment, 20 adult mated 
females with similar age were randomly collected from each cohort 
and placed on a 9-cm2 bean leaf disk on top of wet cotton (to ensure 
the leaf remained hydrated) with the abaxial (underside) surface fac-
ing upwards. On the first day of the experiment, the surface of the 
leaf disks was sprayed using a hand sprayer with 2.5 ml of a spore 
suspension of M. brunneum or B. bassiana in 0.03% (v/v) aqueous 
Tween-20 at 1 × 107 conidia/ml, or, as control, with 0.03% aqueous 
Tween-20 only. Subsequently, female survival was monitored every 
24 hr during 10 days by counting both dead and alive individuals. 
A total of twelve replicates per infection treatment (sprayed with 
B. bassiana , with M. brunneum, or with Tween-20 only) per popula-
tion of each species were performed within seven temporal blocks 
(roughly three replicates of each treatment per block).

2.4 | Statistical analysis

The analyses were carried out using the R statistical package (version 
3.5.3). Survival data were analyzed using Cox proportional hazards 
mixed-effect models (coxme, kinship package). Spider mite species, 

or populations within each species, and infection treatment (sprayed 
with B. bassiana , with M. brunneum, or with Tween-20 only as control) 
were fit in as fixed explanatory variables, whereas disks nested within 
population, population (in the case of interspecific variation only), and 
block were fit as random explanatory variables. Hazard ratios (HR) 
were obtained from these models as an estimate of the difference 
between the rates of dying (i.e., the instantaneous rate of change in 
the log number of survivors per unit of time; Crawley, 2007) between 
the controls of each species/population (by changing the intercept of 
the model) and the B. bassiana or M. brunneum treatments.

Maximal models, including all higher-order interactions, were sim-
plified to establish a minimal model by sequentially eliminating non-
significant terms and interactions (Crawley, 2007). The significance 
of the explanatory variables was established using chi-squared tests 
(Bolker, 2008). The significant chi-squared values given in the text are 
for the minimal model, whereas nonsignificant values correspond to 
those obtained before deletion of the variable from the model.

To further explore significant interactions between species/pop-
ulation and treatment effects on female survival, the two factors 
were concatenated to fit a single fixed factor containing all species/
population by treatments levels in the models (i.e., 12 levels for spe-
cies by treatment effects, or 9 levels for population by treatment 
effects within each species). Multiple comparisons between levels 
were then performed from these models using general linear hypoth-
eses (glht, package multicomp) with Holm corrections, which uses 
classical chi-square (Wald test) for testing the global hypothesis H0.

3  | RESULTS

3.1 | Interspecific variation of spider mite 
susceptibility to infection by Beauveria bassiana and 
Metarhizium brunneum

The statistical analyses revealed a significant interaction between 
treatments (females sprayed with either Tween-20 only as control, 
B. bassiana , or M. brunneum) and species (T. evansi, T. ludeni, red and 
green form of T. urticae) on the survival of spider mites (X2

6 = 80.61, 
p < .001; Figure 1). Indeed, multiple comparisons of hazard ratios 
(HRs) revealed that all spider mite species were not equally af-
fected by infection (Figure 1e; Table 2 for the statistical results of 
all multiple comparisons): Both fungi induced a stronger mortality 
in T. evansi (HR = 5.04 for B. bassiana , and HR = 5.15 for M. brun-
neum) and in the green form of T. urticae (HR = 5.30 for B. bassiana 
, and HR = 6.27 for M. brunneum), than in T. ludeni (HR = 3.25 for 
B. bassiana , and HR = 3.73 for M. brunneum) and in the red form of 
T. urticae (HR = 3.84 for B. bassiana , and HR = 3.21 for M. brunneum). 
Moreover, while the two fungi induced similar mortality in T. evansi 
and in T. ludeni, infection with B. bassiana led to higher mortality 
than M. brunneum in the red form of T. urticae, while the reverse was 
found in the green form of T. urticae. Note, however, that survival in 
the T. evansi control was higher than in that of the three other spe-
cies (Figure 1d and Table 2).
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3.2 | Intraspecific variation of spider mite 
susceptibility to infection by Beauveria bassiana and 
Metarhizium brunneum

We also found a statistically significant interaction between infec-
tion treatment and population on spider mite survival within each 
of the species studied (in the green form of T. urticae: X2

4 = 79.60, 
p < .0001; Figure 2; in the red form T. urticae: X2

4 = 12.12, p < .02; 
Figure 3; in T. ludeni: X2

4 = 17.41, p < .002; Figure 4; in T. evansi: 
X2

4 = 106.72, p < .0001; Figure 5). Indeed, although the two fungi 
induced a similar mortality in most populations within each species 
(e.g., the populations LS.tet, FR.tet, AlRo, OBI, Assaf, and all popula-
tions of T. evansi; see Table 3 for the statistical results of all com-
parisons), B. bassiana induced a higher mortality than M. brunneum 
in the populations TOM.rif and AMP.tet (green and red form of T. ur-
ticae, respectively); and the reverse was found in the populations 
B6JS and Alval (green form of T. urticae and T. ludeni, respectively). 
Moreover, although the susceptibility to infection was relatively 
similar between populations of the red form of T. urticae (Figure 3e) 
and in T. ludeni (Figure 4e), we found important variation between 
populations of the green form of T. urticae (Figure 2e) and in T. ev-
ansi (Figure 5e). In the green form of T. urticae, B. bassiana induced a 
higher mortality in the populations TOM.rif and B6JS (HR = 6.01 and 
HR = 4.41, respectively) than in the population LS.tet (HR = 2.85; 
Figure 2e; Table 3a). Similarly, M. brunneum induced higher mortal-
ity in B6JS (HR = 8.67) than in TOM.rif (HR = 4.60), and the lowest 
mortality was found in LS.tet (HR = 3.04; Figure 2e; Table 3a). In 

T. evansi, both fungi species induced a higher mortality in the popula-
tions GH and BR than in the population QL (HR = 12.13, HR = 10.25, 
and HR = 2.77 in average, respectively; Figure 5e; Table 3d). Note, 
however, that QL control had a much lower survival than that of the 
two other populations (Figure 5d; Table 3d).

4  | DISCUSSION

In this study, we found both intra- and interspecific variability in the 
susceptibility of Tetranychus spider mite to infection by B. bassiana 
and M. brunneum. Overall, we observed a higher mortality upon in-
fection in T. evansi and in the green form of T. urticae, than in T. ludeni 
and in the red form of T. urticae. These results, however, may not 
reflect accurately the virulence of both fungi in each of these spider 
mite species. Indeed, we further found important variation among 
populations within each species. Most variation was found among 
populations of T. evansi and of the green form of T. urticae, with, for 
instance, the mortality upon infection of two populations of T. ev-
ansi (BR and GH) being 5 times higher than that of another (QL). 
We also found variation among populations of T. ludeni and of the 
red form of T. urticae, although the amplitude of these effects was 
relatively smaller and depended on the fungal species.

Overall, our results suggest that spider mite susceptibility to 
infection is not a phylogenetically conserved trait, and further cor-
roborate the generalist status of both fungal species (Meyling & 
Eilenberg, 2007; Rehner, 2005; Roberts & Leger, 2004). For instance, 

F I G U R E  1   Survival curves of spider mite females (proportion surviving ± SE) from (a) Tetranychus evansi, (b) Tetranychus ludeni, (c) red 
form of Tetranychus urticae, and (d) green form of T. urticae, sprayed with Beauveria bassiana (dashed lines), Metarhizium brunneum (dotted 
lines), or with Tween-20 only (control; solid lines). (e) Estimated mortality of the controls (sprayed with Tween-20 only) of each spider mite 
species relative to the control of T. evansi (log hazard ratio ± SE). (f) Estimated mortality of each spider mite species upon infection by each 
fungus relative to their respective control (log hazard ratio ± SE); identical letter superscripts indicate nonsignificant differences between 
treatments at the 5% level (multiple comparisons with Holm correction)

(a)

(b)

(c)

(d)

(e)

(f)
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F I G U R E  2   Survival curves of spider mite females (proportion surviving ± SE) from different populations of the green form of Tetranychus 
urticae: (a) B6JS, (b) LS.tet, and (c) TOM.rif, sprayed with Beauveria bassiana (dashed lines), Metarhizium brunneum (dotted lines), or with 
Tween-20 only (control; solid lines). (d) Estimated mortality of the controls (sprayed with Tween-20 only) of each spider mite population 
relative to the control of the population B6JS (log hazard ratio ± SE). (e) Estimated mortality of each spider mite population upon infection 
by each fungus relative to their respective control (log hazard ratio ± SE); identical letter superscripts indicate nonsignificant differences 
between treatments at the 5% level (multiple comparisons with Holm correction)

(a)

(d)

(b) (c)

(e)

Type of comparison
Species_treatments 
compared Estimate SE z value p-value

Between controls Te_C versus TuG_C −0.710 0.204 −3.472 .008**

TuG_C versus Tl_C −0.288 0.202 −1.427 .768

Tl_C versus TuR_C −0.303 0.196 −1.541 .740

TuG_C versus TuR_C −0.590 0.201 −2.934 .040*

Between species 
sprayed with 
B. bassiana 

TuG_BB versus Te_BB 0.051 0.097 0.523 1.000

TuR_BB versus Te_BB −2.272 0.095 −2.866 .046*

TuR_BB versus Tl_BB 0.166 0.086 1.927 .432

Between species 
sprayed with 
M. brunneum

TuG_MB versus Te_MB 0.196 0.097 2.011 .399

Tl_MB versus Te_MB −0.323 0.097 −3.337 .013*

TuR_MB versus Tl_MB −0.149 0.088 −1.695 .630

Between fungi within 
or among species

Te_BB versus Te_MB −0.022 0.056 −0.391 1.000

Tl_BB versus Tl_MB −0.137 0.055 −2.481 .131

TuR_BB versus 
TuR_MB

0.179 0.057 3.128 .025*

TuG_BB versus 
TuG_MB

−0.167 0.056 −2.961 .040*

TuG_BB versus Te_MB 0.029 0.097 0.296 1.000

Tl_BB versus TuR_MB 0.013 0.087 0.148 1.000

Note: Hazard ratios of infection by each fungus were estimated relative to the control within each 
species.
*p-value < .05, **p-value < .01, ***p-value < .001.

TA B L E  2   Results of multiple 
comparisons (with Holm correction) 
between hazard ratios obtained for 
different spider mite species (Te: 
Tetranychus evansi; Tl: Tetranychus ludeni; 
TuR: red form of Tetranychus urticae; TuG: 
green form of Tetranychus urticae) among 
the different treatments (BB: Beauveria 
bassiana; MB: Metarhizium brunneum; C: 
Control)
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B. bassiana occurs naturally in more than 700 host species (Inglis, 
Goettel, Butt, & Strasser, 2001), and this range is likely underesti-
mated as prevalence estimates are usually done in arthropod species 

that are crop pests or predators and parasitoids used as biocontrol 
agents (Meyling & Eilenberg, 2007). Moreover, differences in viru-
lence between the two fungi shown here suggest population-specific 

F I G U R E  3   Survival curves of spider mite females (proportion surviving ± SE) from different populations of the red form of Tetranychus 
urticae: (a) FR.tet, (b) AlRo, and (c) AMP.tet, sprayed with Beauveria bassiana (dashed lines), Metarhizium brunneum (dotted lines), or with 
Tween-20 only (control; solid lines). (d) Estimated mortality of the controls (sprayed with Tween-20 only) of each spider mite population 
relative to the control of the population FR.tet (log hazard ratio ± SE). (e) Estimated mortality of each spider mite population upon infection 
by each fungus relative to their respective control (log hazard ratio ± SE); identical letter superscripts indicate nonsignificant differences 
between treatments at the 5% level (multiple comparisons with Holm correction)

(a)

(d)

(b)

(e)

(c)

F I G U R E  4   Survival curves of spider mite females (proportion surviving ± SE) from different Tetranychus ludeni populations: (a) OBI, (b) 
Assaf, and (c) Alval, sprayed with Beauveria bassiana (dashed lines), Metarhizium brunneum (dotted lines), or with Tween-20 only (control; 
solid lines). (d) Estimated mortality of the controls (sprayed with Tween-20 only) of each spider mite population relative to the control of the 
population OBI (log hazard ratio ± SE). (e) Estimated mortality of each spider mite population upon infection by each fungus relative to their 
respective control (log hazard ratio ± SE); identical letter superscripts indicate nonsignificant differences between treatments at the 5% level 
(multiple comparisons with Holm correction)

(a) (b)

(d) (e)

(c)
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responses to each fungus, instead of a more general response against 
infection. For instance, M. brunneum is more virulent than B. bassi-
ana in the population B6JS of green T. urticae and in the population 
Alval of T. ludeni, while the reverse occurred in the population AMP.
tet of the red form of T. urticae. Such differences in susceptibility to 
infection between populations independently of their phylogenetic 
relationship may thus reflect differences in exposure by each fungus 
species (i.e., different selection pressure for resistance mechanisms 
to evolve) throughout their evolutionary history.

Variations in the prevalence of each fungus leading to different 
exposure may, for instance, occur between different geographical 
areas due to several environmental factors, such as temperature, 
humidity, and solar (UV) irradiation (Meyling & Eilenberg, 2007). 
However, these fungi are known to have a cosmopolitan distribu-
tion, and our results show no clear association between the sus-
ceptibility of a particular spider mite population and its country 
of origin. For instance, the T. evansi populations BR and GH come 
from Brazil and Portugal, respectively, but do not differ in suscep-
tibility to infection by both fungi; similarly, the effect of B. bassi-
ana does not differ between populations of red T. urticae collected 
in France (FR.tet), Spain (AlRo), and Portugal (AMP.tet). Instead, 
we found different susceptibility to infection between popula-
tions at small geographical scales, such as in the T. evansi popula-
tions GH and QL and in the green T. urticae populations B6JS and 
TOM.rif upon infection by both fungi or in the T. ludeni popula-
tions Assaf and Alval upon infection by M. brunneum, while all of 
these populations were collected in the same region in Portugal. 
These results might thus be explained by microhabitats-specific 

distribution of the fungi, as previously found for different isolates 
of B. bassiana (e.g., Ormond, Thomas, Pugh, Pell, & Roy, 2010; 
Wang, Shah, Patel, Li, & Butt, 2003). Moreover, several studies 
suggest that both B. bassiana and Metarhizium spp. have the po-
tential to interact directly with the host plants of arthropods (re-
viewed in Meyling & Eilenberg, 2007), which may potentially lead 
to plant-specific distribution of the fungi. Indeed, Metarhizium 
spp. occur in the rhizosphere, which possibly provides a “refuge” 
where the fungus can survive outside insect hosts, and the pres-
ence of B. bassiana in internal plant tissue has been discussed 
as an adaptive protection against herbivorous insects (reviewed 
in Meyling & Eilenberg, 2007). However, the host plant range 
of these fungi is, to our knowledge, as yet unknown. Moreover, 
no field survey of these fungi has been conducted to date in 
Tetranychus spp. (but see, for instance, Dick & Buschman, 1995, 
Van Der Geest, Moraes, Navia, & Tanzini, 2002, for other fungi 
and/or spider mite species, Debnath & Sreerama Kumar, 2017). 
Future evaluation of the prevalence of infection by M. brunneum 
and B. bassiana in natural populations of spider mites collected on 
different host plants would thus be necessary to further under-
stand possible factors that could explain the patterns observed in 
our experiment (Boots, Best, Miller, & White, 2009).

Decreased host susceptibility to infection may be the result of 
two different (albeit nonexclusive) mechanisms (Boots et al., 2009; 
Read, Graham, & Raberg, 2008): resistance (i.e., reduction in parasite 
load) and/or tolerance (i.e., reduction of the damage incurred by a 
parasite). Differential host resistance to fungal infection might be 
due, for instance, to variability in different cuticular barriers. Such 

F I G U R E  5   Survival curves of spider mite females (proportion surviving ± SE) from different Tetranychus evansi populations: (a) BR, (b) GH, 
and (c) QL, sprayed with Beauveria bassiana (dashed lines), Metarhizium brunneum (dotted lines), or with Tween-20 only (control; solid lines). 
(d) Estimated mortality of the controls (sprayed with Tween-20 only) of each spider mite population relative to the control of the population 
BR (log hazard ratio ± SE). (e) Estimated mortality of each spider mite population upon infection by each fungus relative to their respective 
control (log hazard ratio ± SE); identical letter superscripts indicate nonsignificant differences between treatments at the 5% level (multiple 
comparisons with Holm correction)

(a) (b)

(d) (e)

(c)
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TA B L E  3   Results of the multiple comparisons (with Holm correction) between hazard ratios obtained for different populations of (a) the 
green form of Tetranychus urticae, (b) the red form of Tetranychus urticae, (c) Tetranychus ludeni, and (d) Tetranychus evansi among the different 
treatments (BB: Beauveria bassiana; MB: Metarhizium brunneum; C: control)

Type of comparison Populations_treatments compared Estimate SE z value p-value

(a) Multiple comparisons between populations of the green form of T. urticae

Between controls TOM.rif_C versus LS.tet_C −0.002 0.127 −0.018 1.000

LS.tet_C versus B6JS_C 0.307 0.165 1.863 .312

B6JS_C versus TOM.rif_C −0.305 0.169 −1.809 .312

Between populations sprayed with 
B. bassiana 

B6JS_BB versus TOM.rif_BB −0.302 0.156 −1.981 .285

B6JS_BB versus LS.tet_BB 0.436 0.155 2.813 0.044*

Between populations sprayed with 
M. brunneum

B6JS_MB versus TOM.rif_MB 0.634 0.154 4.118 <.0005***

TOM.rif_MB versus LS.tet_MB 0.414 0.147 2.816 .044*

Between fungi within or among 
populations

TOM.rif_BB versus TOM.rif_MB 0.268 0.093 2.868 .041*

LS.tet_BB versus LS.tet_MB −0.065 0.096 −0.671 1.000

B6JS_BB versus B6JS_MB −0.676 0.099 −6.857 8.42e−11***

B6JS_BB versus TOM.rif_MB −0.042 0.156 −0.271 1.000

TOM.rif_BB versus B6JS_MB −0.366 0.153 −3.387 .119

(b) Multiple comparisons between populations of the red form of T. urticae

Between controls AlRo_C versus AMP.tet_C −0.244 0.151 −1.621 .841

AMP.tet_C versus FR.tet_C 0.309 0.162 1.903 .513

FR.tet_C versus AlRo_C −0.065 0.161 −0.404 1.000

Between populations sprayed with 
B. bassiana 

AlRo_BB versus FR.tet_BB −0.011 0.149 −0.072 1.000

AlRo_BB versus AMP.tet_BB 0.037 0.147 0.248 1.000

FR.tet_BB versus AMP.tet_BB 0.047 0.146 0.324 1.000

Between populations sprayed with 
M. brunneum

AlRo_MB versus FR.tet_MB −0.062 0.148 −0.416 1.000

AlRo_MB versus AMP.tet_MB 0.375 0.154 2.431 .151

FR.tet_MB versus AMP.tet_MB 0.437 0.154 2.843 .049*

Between fungi within populations AlRo_BB versus AlRo_MB 0.068 0.098 0.690 1.000

AMP.tet_BB versus AMP.tet_MB 0.407 0.102 3.979 .0008***

FR.tet_BB versus FR.tet_MB 0.017 0.094 0.182 1.000

(c) Multiple comparisons between populations of T. ludeni

Between controls Assaf_C versus Assaf_C −0.639 0.156 −4.088 .0005***

Alval_C versus Alval_C −0.141 0.144 −0.980 1.000

OBI_C versus OBI_C 0.780 0.158 4.945 9.91e−06***

Between populations sprayed with 
B. bassiana 

Assaf_BB versus Assaf_BB 0.237 0.150 1.581 .867

Alval_BB versus Alval_BB 0.171 0.155 1.101 1.000

OBI_BB versus OBI_BB 0.066 0.147 0.447 1.000

Between populations sprayed with 
M. brunneum

Assaf_MB versus Assaf_MB 0.113 0.153 0.738 1.000

Alval_MB versus Alval_MB −0.315 0.159 −1.983 .426

OBI_MB versus OBI_MB 0.428 0.150 2.858 .043*

Between fungi within or among 
populations

OBI_MB versus OBI_MB 0.062 0.096 0.645 1.000

Assaf_MB versus Assaf_MB −0.062 0.094 −0.654 1.000

Alval_MB versus Alval_MB −0.424 0.095 −4.469 9.42e−05***

Alval_MB versus Alval_MB −0.253 0.157 −1.606 .867

(d) Multiple comparisons between populations of T. evansi

(Continues)
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barriers include the absence of factors necessary for parasite recog-
nition, or the presence of inhibitory compounds (phenols, quinones, 
and lipids) on the cuticle surface, but also the cuticle thickness, its de-
gree of hardening by sclerotization, its resistance to enzymatic deg-
radation, and its permeability (reviewed in Hajek & St. Leger, 1994). 
Subsequently, when a fungus bypass cuticular barriers, variability in 
systemic immunity may also lead to differential host resistance re-
sponses. This may include differential activation of the Toll and JAK/
STAT pathways, which converge into the transcriptional activation 
of genes involved in phagocytosis, encapsulation, and humoral re-
sponses (e.g., Dong, Morton, Ramirez, Souza-Neto, & Dimopoulos, 
2012). Interestingly, several, but not all, important genes described 
in these pathways in Drosophila melanosgaster were absent in the ge-
nome of the green form of T. urticae (Grbic et al., 2011), and spider 
mites have high mortality upon bacterial infection (Santos-Matos et 
al., 2017). Whether the presence of such immune genes varies be-
tween or within spider mite species and whether their expression 
depends on different fungal species have not been explored to date. 
In particular, the absence of many important immune genes in T. ur-
ticae suggests that tolerance mechanisms (e.g., via a decrease of the 
immune response to avoid autophagy) rather than resistance have 
been favored throughout their evolutionary history. However, such 
hypothesis remains to be tested and further studies are necessary 
to better understand the mechanisms of spider mite resistance and 
tolerance against fungal infection.

Independently of the underlying mechanisms at play, whether 
spider mite populations differ in resistance or tolerance to fun-
gal infection may have different epidemiological and evolutionary 
consequences, and, hence, different implications for the long-term 
success of spider mite control. On the one hand, resistance to in-
fection might be rapidly selected following application of fungi to 
crops and subsequently invade spider mite populations, thereby 
decreasing fungi prevalence and hampering the success of such 
control strategy. On the other hand, host tolerance should have 
neutral or even positive effect on parasite prevalence (Boots et 
al., 2009; Miller, White, & Boots, 2006; Read et al., 2008), but as, 

by definition, tolerance minimizes the harm caused by pathogens, 
it may hamper the efficiency of fungi in controlling spider mites. 
Moreover, host resistance and tolerance may lead to different 
evolutionary outcomes for parasite virulence (Boots et al., 2009). 
Indeed, whereas host resistance is predicted to select for increased 
parasite virulence (e.g., Gandon & Michalakis, 2000), host tolerance 
does not reduce parasite fitness and, therefore, will not lead to an-
tagonistic counter-adaptation by pathogens (Raberg, Sim, & Read, 
2007; Rausher, 2001). Still, depending on the nature of the toler-
ance mechanism, it may lead to the evolution of more virulent and 
transmissible parasites (Miller et al., 2006), with potentially serious 
implications for nontolerant populations (Boots et al., 2009), includ-
ing nontarget species such as crop auxiliaries or spider mite preda-
tors. Finally, although increased mortality due to infection should 
lead to a reduction in oviposition duration, spider mites may evolve 
the ability to compensate infection-driven fitness costs by changing 
the timing of their reproductive efforts (i.e., "fecundity compensa-
tion"; Parker, Barribeau, Laughton, Roode, & Gerardo, 2011; Vezilier, 
Nicot, Gandon, & Rivero, 2015), thereby limiting the efficiency of 
fungi applications for population control. Hence, assessing which of 
these evolutionary outcomes is more likely is timely. In particular, 
it is likely that the level of intraspecific variation in susceptibility to 
infection found in our study is recapitulated within populations and 
is, at least partly, genetically determined. If this is the case, then this 
trait may evolve at a rapid pace.

In conclusion, our results show both intra- and interspecific 
variability in spider mite susceptibility to fungi-induced mortal-
ity using two generalist fungi, B. bassiana and M. brunneum. To 
our knowledge, this is the first study investigating the effect of 
entomopathogenic fungi on the survival of multiple spider mite 
populations belonging to different species within a single full fac-
torial experiment. In line with laboratory virulence tests that are 
not necessarily well correlated with field effectiveness (Roberts 
& Leger, 2004), our results highlight the importance of studying 
several host populations/genomes when assessing the efficiency 
of a given biocontrol agent. These results also draw caution on 

Type of comparison Populations_treatments compared Estimate SE z value p-value

Between controls BR_C versus GH_C −0.263 0.218 −1.205 .914

GH_C versus QL_C −1.370 0.189 −7.236 3.70e−12***

QL_C versus BR_C 1.633 0.201 8.145 4.44e−15***

Between populations sprayed with 
B. bassiana 

BR_BB versus GH_BB 0.207 0.207 −0.254 .914

BR_BB versus QL_BB 1.435 0.188 7.631 2.10e−13***

Between populations sprayed with 
M. brunneum

BR_MB versus GH_MB −0.289 0.210 −1.375 .846

BR_MB versus QL_MB 1.176 0.192 6.117 6.68e−9***

Between fungi within or among 
populations

BR_BB versus BR_MB 0.161 0.104 1.556 .718

GH_BB versus GH_MB −0.075 0.097 −0.775 .914

QL_BB versus QL_MB −0.098 0.094 −1.039 .914

Note: Hazard ratios of infection by each fungus were estimated relative to the control within each population.
* p-value < .05, ** p-value < .01, *** p-value < .001.

TA B L E  3   (Continued)
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the development of single strains as biocontrol agents, as hosts 
resistance to infection may evolve at a rapid pace.
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