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Abstract In this paper, a decentralized controller for a quadrotor swarm is pre-
sented following the leader-follower principle. The quadrotors embedding the
decentralized controller follow a remotely controlled leader. The controller, gov-
erning the behavior of a set of followers is learned using an Iterative Imitation
supervised learning approach. The novelty of this approach is to build complex
policies supporting the flocking behavior for a set of quadrotors while requiring
only COTS (Commercial Off The Shelf) wireless sensors. In the first iteration,
a set of trajectories is generated using the well-known Reynolds flocking model
(adapted by Schilling et al, 2018, to add a migration term); the logs are exploited
to enable the follower quadrotor controller to achieve the migration function. In
the further iterations, the learned controller is exploited in combination with the
Reynolds model; the logs generated are then exploited to learn a follower quadro-
tor controller achieving both the migration and the flocking functions, as robust as
the Reynolds model. The validation of the approach using a Software In The Loop
(SITL) environment relying on the Gazebo simulator, confirms that the learned
controller enables the followers to accurately follow the leader while collectively
satisfying the swarm properties.

Simulation videos

Available at https://tinyurl.com/7b2f7mcz

1 Introduction

It is well known that animals, e.g., insects, birds or mammals [1], can be organized in
various ways, having either one leader [2], a hierarchy of leaders [3], or no leader at
all [4]. The objective of this organization is to create emergent behaviors. By monitor-
ing these behaviors, an observer can deduce that these animals are trying to achieve
a synchronous movement also known as collective motion in order to force back the
danger from a predator [5] or to migrate from one zone to another [6]. The collective
motion itself is a result of a collective behavior [7], in which this complex behavior is
composed of simple interactions between the agents. While collective behavior aims to
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fulfil a common goal, this goal depends on the context. For example, a school of fishes
can change their direction immediately if they face an instant danger; a group of bees
can attack directly the predators in order to save the nest and the group. Flocking and
swarming behaviors are not limited to mammals and birds. It is well observed at the
micro-biological level, as it is the case for cells [8] and bacteria [9]. Overall, a swarm
can be defined as a group of similar agents interacting with each other in order to create
emergent behavior.

Related works. The above observation is at the root of analytical models, enabling us
to understand and mimic the behaviors of animals and insects. Several flocking models
have been developed in the last decades such as the Reynolds model [10], the Vicsek
model [11] or the Olfati-Saber model [12]. When tuned correctly, these models can
achieve the flocking behavior perfectly. The issue with these models arises when de-
ploying them directly on a multi-agent system such as quadrotors. These models rely
on precise localization which is rarely possible in real-life scenarios. Therefore, several
adaptations are required. Viragh et al [13] adapt the Viscek model by adding several
parameters such as the inner noise of sensors, inertia, time delay, and communication
constrained in order to enhance the behavioral law. They test this model on a set of
quadrotors while using GNSS as a localization system [14]. To improve their outdoor
swarms, they use an evolutionary algorithm to find the best flocking parameters for an
outdoor swarm of 30 quadrotors [15].

Another approach relies on the use of vision onboard sensors instead of GNSS
systems. Vision-based swarms can follow a true decentralized controller for a set of
quadrotors, that is not based on external localization systems. Schilling et al [16] em-
bed six cameras on each quadrotor in order to provide 360 degrees vision of the envi-
ronment. They adapt the Reynolds flocking model by adding a migration term. Their
method, deployed on real quadrotors in indoor [17] and outdoor [18] environments,
relies on the prediction of the velocity command using supervised learning.

However, it is challenging to deploy these methods on small and nano quadrotors
[19] because 1) they require the use of heavy sensors, such as a complete set of cameras,
or expensive GNSS; 2) the addition of these sensors will require a considerable amount
of onboard computation which is rarely available on nano quadrotors; 3) the outdoor
performance is related to the weather condition, since GNSS improves performance
on sunny days, and similarly, vision sensors perceive better their neighbors with good
lighting conditions.

Contributions. In this paper, we present I2SL (Iterative Imitation Supervised Learn-
ing), a supervised iterative imitation learning method that is inspired from [20,16,21].
The contributions of this method can be described in two perspectives. From the control
perspective: this method addresses the challenge of the design of a decentralized swarm
controller for small quadrotors using imitation learning. The use of imitation learning
is favored in this case since the existence of an oracle demonstrator (flocking model),
eliminating the need for reinforcement learning since it requires the design of a specific
reward function that can used for all agents. In addition, several researchers [22,23]
have demonstrated that imitation learning can be combined successfully in the case of
multi-agent system in order to learn a specific policy. From the perception perspective:
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our aim is to learn a decentralized controller using only one wireless sensor on each
quadrotor, with very limited computation on-board. The approach has been validated
on MagicFlock 1, a home-made SITL framework based on RotorS [24] and extended to
model a swarm (as RotorS supports only one quadrotor). The choice of developing this
framework is related to the limited access to real quadrotors hardware.

The presented work extends the IL4MRC method [21], which likewise aims to
achieve a decentralized controller with cheap embedded wireless sensors. The contri-
bution is based on the combination of IL4MRC with Dagger, along with an iterative
approach, gradually refining the controller learned in the former iteration, thereby ex-
ploring only the necessary information rather than exploring the entire environment.
In the first iteration, the leader is assigned a random model to simulate a human pi-
lot, while the followers are using a flocking model, and each quadrotor generates logs
describing its state as a vector of sensor values. The controller learned from these logs
immediately enforces the following of the leader, i.e. it supports the migration function.
but does not enforce the Cohesion and Separation rules in order to avoid one another.
In the second iteration, the former controller is used in alternation with the flocking
policy following the Dagger approach. The obtained trajectories thus alternate between
avoiding any possible collision and following the leader. After several iterations, while
each quadrotor is controlled from its embedded controller, they collectively ‘swarm‘
around the (remotely controlled) leader, i.e. they satisfy the main swarm properties: i)
following the leader, ii) avoiding collision and preventing separation of the neighbor
followers.

Formally, the presented approach makes the following contributions:

– The learning procedure combines agile iterative imitation learning with a multi-
agent system in order to create a decentralized swarm controller for quadrotors;

– It learns a decentralized controller, that requires only one cheap wireless sensor and
very limited computational on-board resources.

This paper is organized as follows. Section 2 introduces the formal definition of the
flocking model and presents an overview of I2SL. Section 3 gives a proof of concept
for the accuracy of the proposed method. Sections 4 and 5 respectively present the
experimental setting and the experimental validation of I2SL. Section 6 concludes the
paper with some perspectives for further research.

2 Methodology

This section introduces the flocking model used in the paper for the sake of self-
contentedness and presents the I2SL approach.

2.1 Flocking algorithm

This subsection presents the adaptation of the Reynolds flocking model, as described
in [16], except for its ability to handle the leader-follower mechanism. Specifically,

1 https://github.com/shrit/MagicFlock
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the considered swarm comprises a piloted leader and a set of followers that follow the
leader. The leader is remotely controlled and is not aware of the followers. The fol-
lowers’ objective is to migrate toward this leader. Similar to [16], we omit the velocity
matching term since the quadrotors do not communicate with one another, and do not
have additional sensors to estimate neighbors’ velocity reactively. Most generally the
flocking model involves three terms, known as cohesion, separation, and migration. Let
Ni denote the set of neighbor follower quadrotors of the quadrotor i, with

Ni = (follower j : j 6= i ∧ ‖rij‖ < rmax) (1)

where ‖.‖ is the euclidean norm. rij ∈ R3, rij = pj −pi denotes to the relative po-
sition of quadrotor j with respect to follower i. Only one set of quadrotors is considered
at a time; they can not divide themselves into several sets as they all need to stay close
to the leader. Formally, the swarm is said to be valid as long as dij < 30 meters. The
three terms cohesion, separation, and migration work together to produce the flocking
behavior; the separation term pushes away agents that are close to each other to avoid
a collision; inversely the cohesion term moves far away quadrotors toward their nearest
neighbors. Both terms work together in order to provide a consistent swarm behavior.

vi
sep = −k

sep

Ni

∑
j∈Ni

rij

‖rij‖2
(2)

vi
coh =

kcoh

Ni

∑
j∈Ni

rij (3)

Where ksep is the separation gain, kcoh is the cohesion gain. The sum of two veloc-
ities (Cohesion and Separation) produce the Reynolds velocity vi

rey = vi
sep + vi

coh.
In addition to the above terms, the migration terms allows the followers quadrotors to
move toward the leader quadrotor permanently. The migration point is not fixed: it is
the position of the leader itself. The migration term is given by:

vi
mig = kmig

rij
‖rij‖

(4)

Where kmig is the migration gain and rij ∈ R3 is the relative position of the mi-
gration point w.r.t. the i-the quadrotor, with rmigi = pleader − pfolloweri . In order to
achieve the flocking behavior, the controller embedded on each follower uses the sum
of the tree velocity commands vi = vi

sep + vi
coh + vi

mig . The leader is normally
operated by a human pilot, with a limited velocity (racing tasks are not considered in
the following). In simulation, the maximum speed of the flocking model is bounded to
a maximum final velocity command, set to vmax = 2m/s, and the velocity of each
follower vi is accordingly bounded as:

vi = min(‖vi‖ , vmax) (5)
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2.2 Iterative imitation supervised learning

The proposed approach takes inspiration from [21]. The extension aims to relieve the
simplifying assumptions of discrete action space and a good initial condition of the
swarm. We show that using the flocking policy to generate the logs that will serve to the
imitation-based controller learning relieves the need for such simplifying assumptions.
Formally, the proposed iterative imitation approach uses a 3-step process inspired from
the Dagger algorithm [20].
At the iteration i:

– The trajectory executed by each quadrotor is logged, defined as a sequence of states
st and actions at. This trajectory is generated after controller πi using the Dagger
mechanism:

πi = βiπ
∗ + (1− βi)π̂i−1 (6)

Where π∗ is the flocking policy, and π̂i−1 is the policy learned in the last iteration.
β is decayed exponentially from 1 to 0 over time as β = e−λi where λ = 0.69314
is a constant.

– The trajectories generated in the above are logged to form a training dataset Ei:

Ei = {(st, at), t = 1, . . . T} (7)

and the datasets are stacked:
E ← Ei + Ei−1 (8)

– The model Fi is trained from E to learn the best action to execute based on the
sequence of the last states:

A = Fi(S) (9)

The state of each quadrotor is defined as a vector of the signal strength the azimuth
and the elevation angles perceived from neighbors i = 1, ..., n. Therefore, at each time
step t the state of the quadrotor j is given as sjt = (rss1, φ1, θ1, rss2, φ2, θ2, ..., rssn, φn, θn).
While the action ajt is the velocity vector v.

3 A proof of principle of I2SL: Application to quadrotors control

This section presents a proof of principle of I2SL,2 applied to the control of a set of
quadrotors. After describing the position of the problem, the algorithmic pipeline (data
acquisition phase, training of the model, exploitation of the model) is detailed.

3.1 Position of the problem

Considering a set of quadrotors with one leader and several followers, the goal is to
gradually build an independent controller for each follower, knowing that each follower
has very minimal sensing capabilities, such as measuring the distance to its neighbors,
and receive the azimuth and elevation angles of its neighbors. The objective of this

2 https://github.com/shrit/MagicFlock
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controller is to achieve the flocking behavior known as swarming for the followers’
quadrotors, where the leader quadrotor is manually controlled by a human pilot.

Following [21], the main goal of the proposed approach is to achieve some trade-off
between efficiency and computational and other resources. On the one hand, the cost
of sophisticated sensors is an issue. On the other hand, quadrotors consume a consid-
erable amount of energy when carrying heavy sensors, not to mention the algorithmic
complexity to analyze the perceived data from the environment.

In the simulation, Gazebo provides a generic wireless sensor that can be added to
each quadrotor, we have integrated 3 antennas on each robot. The wireless sensor con-
siders obstacles in the nearby of each robot which affect the value of the Received Sig-
nal Strength (RSS) according to the number and density of the obstacles. The proposed
method does not require sharing information, which means there are no communica-
tions between the agents. Therefore, the wireless channel is not used only RSS values
are perceived from neighbors. In addition, for the only sake of simulation, we add a ray
sensor on each quadrotor to provide angle estimation (azimuth and elevation) to neigh-
bors. During simulation as provided by the link in the abstract to experiment videos,
we have turned off ray visualization to remove heavy computations from GPU. How-
ever, in a real-life scenario, one can use COTS quadrotors that have an embedded WiFi
card such as Intel 5300 with 3 antennas allowing to estimate Angle of Arrival (AoA) of
signals and the RSS values from neighbors, more details are discussed in section 6.

Each robot is capable of mapping distances and angles to its neighbors. In this
case, one might argue that robots can create a polar coordinate system thus construct-
ing gradually a relative localization system. Indeed, this system can be used directly by
the flocking model and remove the need for imitation learning. Arguably this is true.
However, there are two disadvantages to this method. First, this will require more com-
putation from each robot, since it needs to calculate the relative position of neighbors
in each time step and then apply the calculations related flocking model. Second, the
sensor noise needs to be estimated before the flight, and proper modifications have to
be applied to the flocking model accordingly. However, imitation learning alleviates
the need for such a calibration as the noise is embedded inside the data. The learned
controller has a better estimation of its neighbors allowing it to perform as well as the
oracle flocking model as demonstrated in section 5.

Quadrotor settings: Formally we have defined one setting of quadrotors to train
and test the models on the quadrotors. We have a set of 7 quadrotors, in which there
are one leader and 6 followers. The goal is to embed the same trained controller on
all the followers to follow the leader without having any collision with the neighbor
quadrotors.

3.2 Data acquisition

During the data acquisition, the state of each follower is recorded along with a set
of episodes. Each follower registers two data sets simultaneously. The first data set
registers the states of the leaders along with the migration velocity as given by the
flocking model. The second data set registers the state of the other followers’ neighbors
along with the Reynolds velocity as given by the flocking model.
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First iteration Each episode starts with quadrotors taking off. Once the taking off has
finished, the leader chooses a direction randomly and moves in this direction for 80
seconds. The follower quadrotors use the flocking model and start following the leader.
The max velocity of the leader is equal to 0.7 meters per second which are slightly
lower than the followers equal to 1.0 meters per second. This small variation allows the
followers to catch up with the leader. The episode ends once the followers are close to
the leader and there is no longer any change in their distances. To ensure the diversity
of the collected data set, all the quadrotors are reset into a new position at the end of
each episode, allowing each quadrotor to have a different set of neighbors.

Second iteration Similar to the first episode, the episode starts by taking off, and then
the leader moves before the other quadrotors. The main difference is that the value of β
is reduced from 1 to 0.5 in this iteration allowing alteration between the flocking model
and model trained in the first iteration.

Third and further iterations The following iterations follow the same principle in the
second iteration while continuing to reduce β as described in 2.

3.3 Forward model

The data set is exploited to learn a forward model. The forward model uses the last
states in order to predict the action to execute at this time step. Formally, the data set is
decomposed as a set of the last five states, that are trained to predict the action at.

(X = (st−4, st−3, st−2, st−1, st);Z = at) (10)

We use a mainstream supervised learning algorithm to train a function F such that
F(X) = Z from 80% of the data.

During the training, the quality of the model F is estimated by applying the model
on the validation set which comprises 20% of the data set.

3.4 I2SL controller

At production time, model F is used as the decentralized controller that is embedded
on each quadrotor. The model is composed of two submodels, the first model is trained
on the data set that is based on sensor value received from the leader while the second
model is trained on data set received from the neighbors followers.

a
(1)
t = F1(st−4, st−3, st−2, st−1, st) (11)

a
(2)
t = F2(st−4, st−3, st−2, st−1, st) (12)

a∗t = a
(1)
t + a

(2)
t (13)

The quadrotors are operated at production time very similarly as in the data acquisition
phase. In each episode, the quadrotors take off, the leader is randomly operated. The
leader starts moving 5 seconds before the followers, in order to allow for the followers
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to accumulate a decent amount of states from the sensor in order to predict the good
action. The episode runs as long as the flocking behavior is maintained and neither
collision nor separation is noticed. As said, we consider that the flocking is maintained
as long as the distance between two quadrotors dij < 30 meters.

4 Experimental setting

This section describes the goal of experiments and the experimental setting used to
validate the I2SL approach.

4.1 Goals of experiments

As said, an episode starts with the swarm taking off. Once the taking off has finished
the leader starts moving 5 seconds before the followers. We create a ZigZag experiment
that allows testing if the learned models are capable of imitating the flocking behavior,
and how the followers are behaving when the leader changes its direction from time to
time.

Such experiments aim to simulate a human pilot flying the leader quadrotor through
a specific trajectory while the followers keep appropriate distances among all of them.

The straightforward performance indicator is to measure the minimum and the max-
imum distance between the follower quadrotors during the flight; these indicators reflect
the consistency of the learned flocking behavior. The distance metric is given by:

dmin = min
i,j∈N

‖rij‖ (14)

dmax = max
i,j∈N

‖rij‖ (15)

WhereN if the set of follower quadrotors and dmin, dmax is respectively the mini-
mum and the maximum distance observed in the follower quadrotors swarm. In addition
to the indicators, we show the trajectory executed by the leader and the followers for
each iteration and each experiment.

4.2 Baseline

To assess the performance of I2SL we used the flocking model that uses the absolute
positioning system. The flocking model (oracle) delivers the perfect flocking behavior
when knowing the exact position of all the neighbor followers. The gain of the flocking
model have been chosen as described in [16], since they modulate the strength of the
cohesion and the separation of the swarm.

The behavior in each iteration is compared with the behavior obtained in the former
iteration, and with the flocking model.
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4.3 Simulation platform

In the experiments, the system includes seven robots of the same type, the IRIS quadro-
tor designed by 3DR3, with height 0.11m, width 0.47m, and weight 1.5 kg. The quadro-
tors are simulated using the software in the loop simulation (SITL) [24] integrating the
Gazebo simulator 4. Each quadrotor uses PX4 5 as an autopilot software.

The maximum velocity that a quadrotor can reach is 1m/s, The take-off altitude is
45 m.

4.4 Learning of the flocking model

The total training data set for all the iterations records at least 24h of flying time. The
flocking model is implemented as a neural net, using mlpack [25], while the linear
algebra library is Armadillo [26]. The neural architecture is a 2-hidden layers, with
256 neurons on each layer and Sigmoid as activation function. The training uses Glorot
initialization [27], with .5 Dropout and batch size 32; the hyper-parameters are adjusted
using Adam [28] with β1 = 0.9, β2 = 0.999, ε = 10−8, and initial learning rate
α = 0.001.

5 Empirical validation

5.1 Zigzag experiment

The zigzag experiment aims to assess whether the followers are capable to imitate the
flocking behavior. The experiment runs as follows: all the quadrotors take off, the leader
follows a random trajectory for 5 seconds and then follows the zigzag trajectory that
is already embedded on the leader. The followers do not know about their leader’s
trajectory, their objective is to follow the leader and avoid collision and dispersion. The
same experiment is executed on each iteration, allowing us to validate the learned model
in each iteration.

We compare the first and the second iteration in figures 1 2. In both iterations, the
trained controller uses the data perceived by the wireless sensor. The first iteration uses
the classic imitation learning algorithm, while the second iteration applies the Dagger
approach. The result 1 (left) shows the trajectory executed by each quadrotor, while the
inter-quadrotor distances is shown in figure 2 (left). In the first iteration, we observe that
the quadrotors learn how to follow the leader. However, they do not learn how to respect
distances among them, resulting in several minor collisions between the quadrotors and
distortion in the executed trajectory; this is confirmed in figure 2 for this experiment. In
the second iteration (right) quadrotors start to learn how to avoid each other, but their
behavior is very aggressive, and not refined yet to be similar to the flocking model. In
addition, in both iterations, no collision was observed between the followers.

We continue to train the controller iteratively, resulting in a third iteration with a
performance similar to the flocking model in figure 3. The controller uses the wireless

3 https://3dr.com/
4 http://gazebosim.org/
5 https://px4.io/
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sensor data, while the flocking model using the absolute position acting as ground truth
for swarming behavior. We observe that the followers’ quadrotors respect distances
among each other in a similar manner compared to the flocking model in figure 4.

(a) Iteration 1 (sensor based): trajectories exe-
cuted by all quadrotors

(b) Iteration 2 (sensor based): trajectories exe-
cuted by all quadrotors

Figure 1. This figure compares the trajectories executed during the zigzag experiment by the
quadrotors in both the first and the second iteration. All the quadrotors take off from the (0,0)
coordination, and they land at (11, -55) in the first iteration, and at (5, -44) in the second iteration.
The leader quadrotors labeled in blue have an integrated embedded trajectory to simulate a human
pilot, while all the followers use the learned controller based on a cheap wireless sensor. This
figure shows an improved trajectory in the second iteration. This is due to the usage of the iterative
learning technique over the basic imitation supervised learning represented in the first iteration.

6 Discussion and future work

In this paper, we presented I2SL, an Iterative Imitation Supervised Learning method
used in order to resolve the challenge of decentralized controller design for a set of
quadrotors with no computational power and endowed with a single wireless sensor.
The objective of this method is to resolve the optimization issue offline rather than
during the flight and to learn the flocking behavior for follower quadrotors while fol-
lowing the remotely controlled leader. This approach demonstrated the feasibility of a
leader-followers swarm using MagicFlock, a Software In the Loop (SITL) simulation
framework that is based on RotorS.

Wireless antennas are often intended to be used as a communication tool using the
radio channel. One might consider this usage in order to share state information and
leader commands between quadrotors. This method might work when the number of
quadrotors is small. However, when the number of the agent increases, the communi-
cation channel tends to saturate, with a high loss of the packets sent between the trans-
mitter and receiver. A possible solution would be is a re-transmission, but this might
increase the communication delay. In both cases, the power consumption increases due
to the frequent treatment of the sent or the received packets. Therefore, it is easier to
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(a) Iteration 1 (sensors based): max and min
inter-quadrotor distances

(b) Iteration 2 (sensor based): max and min
inter-quadrotor distances

Figure 2. This figure shows the inter-quadrotors distances among the followers for both trajec-
tories executed in iteration 1 (left) and iteration 2 (right). The blue line shows the maximum
inter-quadrotor distances while the orange one shows the minimum distance. We observe a con-
siderable improvement in the second iteration comparing it the first one, as the decentralized
controller has learned the cohesion and separation policy in the second iteration. The quadrotors
remain collision-free in the second iteration and do not disperse. Knowing that in the first iteration
we observe minor collisions but non of these collisions were not critical allowing us to complete
the experiment.

(a) Iteration 3 (sensor based): trajectories exe-
cuted by all quadrotors

(b) Flocking model (position-based): trajecto-
ries executed by all quadrotors

Figure 3. This figure shows the trajectory executed by the quadrotor in the third iteration (left)
compared to the adapted Reynolds flocking model (right). The quadrotors start their trajectory at
coordination (0,0) and end at (5, -44). The leader is labeled in blue in both cases. By comparing
the two trajectories, we can observe a similar performance between the flocking model (position-
based) and the third iteration of the learned controller (wireless sensors-based).
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(a) Iteration 3 (sensor based): max and min
inter-quadrotor distances

(b) Flocking model (position based): max and
min inter-quadrotor distances

Figure 4. Results of inter-agent distances when executing the zigzag trajectory by the quadrotors.
The controller from the third iteration shows a similar performance compared to the flocking
model. The quadrotors do not disperse nor collide with one another. These results show that the
controller can be improved iteratively in order to achieve a performance compared to the flocking
model.

have only one pilot that communicates with only the leader quadrotor, while the fol-
lowers use the trained embedded controller and the wireless sensor to swarm around
the leader.

When reading this work, one might question the type of wireless sensor that can
be used with these robots. To this end, any available wireless communication tools that
allow the estimation of Angle of Arrival (AoA) and signal strength can be used, such
as Bluetooth, Zigbee, Ultra-Wideband (UWB). Among these wireless tools, we have
considered using WiFi for several reasons, First, most commercial quadrotors are al-
ready embedded WiFi antennas, removing the cost for additional sensors that need to
be embedded on each robot. Second, most integrated WiFi cards have several anten-
nas installed on these robots allowing to estimate AoA of the received radio signal and
therefore the direction of the emitter [29,30]. Most generally, the method for AoA esti-
mation on COTS WiFi cards is well detailed. First, we need to extract the Channel State
Information (CSI) [31] since it contains the phase information and the signal strength
for all OFDM subcarriers. Second, we need to analyze the signal phase since it suffers a
shift and attenuation when the signal propagates in the environment. Finally, by analyz-
ing this shift over all of these subcarriers using for instance the MUSIC algorithm [32],
one can easily deduce the AoA of the signal. This method can be used with a commod-
ity WiFi card such as Intel 5300 since it has several antennas that can be arranged to a
uniform antennas array.

To demonstrate the capacity of precise AoA estimation. Several researchers went
even further by analyzing and smoothing the CSI values to create a decimeter local-
ization systems [33,34] or even a system that has a similar performance to the ground
truth [35]. However, the goal of future work is not to create a localization system for
quadrotors nor to use fixed Access Points (AP) that act as beacons but instead is to use
AoA estimation techniques and integrate them directly on real quadrotor platforms that
are equipped with such antennas.
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Finally, our further research will focus on transfer learning, from simulation to real
quadrotors. Besides, we will adapt the designed method and find a suitable AoA esti-
mation technique for real pico-quadrotors. In the medium term, our goal is to achieve
outdoor swarms entirely based on wireless antennas acting as bearing and heading sen-
sors.
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