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ABSTRACT
The growing demand for a reliable localization function in safety-relevant autonomous applications has prompted the navigation
community to take a close interest in Fault Detection algorithms. Particularly powerful, these methods have as common
limitation, the need to define a priori probabilities of fault(s) presence or absence in order to set a detection threshold. In
the case of systems insensitive to external phenomena, these probabilities can be obtained although with difficulty. However,
in a multi-sensor localization system using, among other, Global Navigation Satellites System (GNSS), this task can prove to
be delicate. Indeed, these global navigation systems suffer from perturbations induced by the local environment (buildings in
urban canyons, foliage in forests, intentional or nonintentional interferences...) causing local feared events such as multipath,
Non-Line-Of-Sight (NLOS) or GNSS outage. The a priori probabilities to face this type of event, and therefore to observe one
or more inconsistent measures, are very unpredictable. This makes the task of setting a threshold difficult. In this study, we
investigate the combined use of 1) GNSS expertise: allowing to identify the different parameters, making it possible to monitor
the state of health of the measurements, and therefore of the global system, and 2) the implementation of a deep learning scheme,
as a decision-making support, considering these inputs, and providing the adequate a priori probability of fault presence.

I. INTRODUCTION
In order to be certified by the competent authorities, all the elements constituting a localization function integrating a safety-
critical application, must demonstrate that their behavior is predictable and that it obeys a predetermined bounded logic [1].
This involves, for example, establishing measures against the divergence of a sequential filter (like the Kalman Filter) or even
demonstrating the merits of a measurements weighting strategy [2]. But the safety requirement is not the only objective to be
achieved. To be massively adopted, the developed function must also, among others, be precise, available, continuous, robust
to navigation context changes and finally low cost. Regarding accuracy, a multi-sensor strategy (e.g. GNSS/INS/odometry) can
achieve the set objective [3], [4]. But the greater the number of input measurements, the greater the probability of encountering
an inconsistent measurement. A diagnostic layer is therefore necessary [5]. The most conservative diagnostic policy, which



would consist in making the localization function unavailable at the slightest suspicion of a fault, does not constitute a problem
in terms of certification. However, it negatively impacts availability and continuity.
To overcome this problem, mitigation techniques also known as fault management or fault tolerance make it possible to reduce
unavailability by isolating the suspicious measurement(s). But it is essential to prove that the taken measure(s), for instance a
measurement exclusion, or a reweighting procedure, is(are) the right one(s) [6]. To cite an example, it is necessary to prove
that an excluded measure should indeed be excluded and that it is the only one that should be excluded. In other words, the
assessment of the number of false alarms and missed detections is necessary [7]. However, the proof is complicated to establish
when dealing with on field acquired data (in opposition to simulated data provided by a GNSS simulator). Indeed, labeling
faults such as multipath or NLOS in the pseudorange level is extremely complex and requires accurate 3d map and a powerful
raytracing engine [8], [9]. For this reason, a validation at the position level is generally carried out. At this level, the behavior
predictability is ensured by the provision of a protection level capable of limiting the unknown position error [10]. One has to
avoid the case where the protection level does not limit the position error but exceeds the alarm limit defined by the application.
This is called the integrity risk. An infinitesimal failure rate, which is called THR for Tolerable Hazardous Rate, is generally
accepted as integrity risk and is of the order of 10−7 to 10−9 per hour of use [11].
In summary in order to achieve all the objectives, it is necessary to implement actions at different levels of the localization
function. To achieve precision and availability, a multi-sensor fusion is strongly recommended [12], [13], [14]. However, the
multitude of inputs increases the probability of facing measurement faults. Therefore, it is required to implement a diagnostic
layer which can itself impact the availability of the system. It is then necessary to develop a fault management layer for
which decisions must be validated. In addition, a complexity of interest to the community over the last decade: the change of
environment. Indeed, GNSS has the particularity of being very dependent on the environment surrounding the receiver [15].
Since the principle of position determination is based on the reception of signals emitted by satellites over 20 000km, obstacles
encountered, for land navigation applications, can reflect or obstruct signals in urban canyons or forests. However, although the
probability of facing a fault varies according to the crossed environment, most fault detection techniques are based on the setting
of a single heuristic threshold, and focus only on one criterion (i.e. either the probability of false alarm Pfa or the probability
of missed detection Pmd) [16].
In this study we propose a complete framework allowing a localization function to target all the requirements. For this, we
propose to merge the data from a GNSS (raw data), and IMU with a dual filter to the Kalman filter, the nonlinear information
filter. A discussion on the interest of the informational form is proposed in section II. Then we integrate a diagnostic layer
based on informational divergence, the α-Rényi divergence. Next, we present an optimization function for thresholding taking
in account both Pfa and Pmd, this part is presented in section III.1. We develop a deep learning-based approach to assess the
crossed environment and to estimate as closely as possible the probability of facing a fault detailed in section IV. Finally, the
proposed framework is tested on a set of experimental data acquired in different environments in section V. Discussions on the
performance obtained are conducted and possible perspectives are highlighted in section VI.

Figure 1. Global framework for an adaptive fault tolerant multi-sensor fusion



II. GNSS/IMU AND ODOMETRY TIGH INTEGRATION THROUGH UIF FILTER
1. Multi-sensor data fusion
To reach an accurate and continuous position, This section presents a tightly coupling of multi-sensor GNSS/INS/odometer
based on UIF (Unscented Information Filter) algorithm. Considering an NED (North East Down) navigation frame, the state
vector for the integration consists of 17 states and can be written as:

Xk = [px py pz VxVy Vz ax ay az bxacc byacc bzacc bxgyro bygyro bzgyro cδt ˙cδt]T

Where, p = [px, py, pz]
T is the position given at instant k, V = [Vx, Vy, Vz]

T is the velocity, a = [φ, θ, ϕ]T is the attitude (roll,
pitch, yaw), bacc is acceleration bias, bgyro is gyroscope bias, c is the speed of light, and δt and δ̇t denote the receiver clock bias
and the corresponding clock drift respectively.
The stochastic merge filter is formed by discrete-time linear system model and measurement model described by:

Xk|k−1 = FkXk−1|k−1 + νk (1)

zk = Hkxk + εk (2)

Where:
Fk is the transition matrix, νk ∼ N (0, Qk) is the process noise with Qk the covariance matrix of the evolution model. The
observations vector is zk (the pseudo-range of GNSS),Hk is the observation matrix and εk ∼ N (0, Rk) is the observation noise
with its covariance matrix Rk.

For the prediction step of the filtering algorithm, the discrete dynamic model of INS (Inertial Navigation system) is used.
The position, velocity and attitude are derived from IMU measurements through the simplified mechanization equations pre-
sented as following:

pk+1 = pn,k + Vk × Ts
Vk+1 = Vk + [Rb2n,k × fb,k + gn]× Ts
ak+1 = ak + Eb2n,k × ωb,k × Ts

bacc,k+1 = bacc,k + νk

bgyro,k+1 = bgyro,k + νk

(3)

Where Ts is system propagation time interval, fb is measurement vector of specific force, gn represents gravity indicated in the
navigation frame, which is assumed to be constant. ωb represents the angular rate vector, Rb2n is the rotation matrix from body
frame to NED navigation frame, and Eb2n is the rotation rate transformation matrix between the body and navigation frame as
shown in the following equations:

Rb2n =

 c(ϕ)c(θ) c(ϕ)s(θ)s(φ)− s(ϕ)c(φ) c(ϕ)s(θ)c(φ) + s(ϕ)s(φ)

s(ϕ)c(θ) s(ϕ)s(θ)s(φ) + c(ϕ)c(φ) s(ϕ)s(θ)c(φ)− c(ϕ)s(φ)

−s(θ) c(θ)s(φ) c(θ)c(φ)

 ,

(4)

Eb2n =

1 s(φ)t(θ) s(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)

 (5)

where c(x), s(x) and t(x) represent the mathematical operations of cos(x), sin(x) and tan(x) respectively.
According to [17], [12] and based on equation (3) the transition matrix Fk is expressed as:

Fk =



I3×3 I3×3Ts O3×3 O3×3 O3×3 O3×2

O3×3 I3×3 Ts[fn×] TsRb2n O3×3 O3×2

O3×3 O3×3 I3×3 O3×3 −TsRb2n O3×2

O3×3 O3×3 O3×3 I3×3 O3×3 O3×2

O3×3 O3×3 O3×3 O3×3 I3×3 O3×2

O2×3 O2×3 O2×3 O2×3 O2×3
1 Ts

0 1


(6)

where [fn×] is the skew-symmetric matrix of fn=Rb2n fb.
And the observation matrix H is composed of two sub matrices h1 and h2. Where h1 including GNSS pseudo-range and h2



position update from additional sensor odometer. Since, the observations of the GNSS and the odometer can be considered
independent (there is no spatial-temporal correlation between their covariance matrix). Hence, h1 can be written as:

h1 =



∇Hxs
1

xpr ∇Hys1
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...
...

...
...

...
...

∇Hxs
i

xpr ∇Hysi
ypr ∇Hzsi
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...

...
...

...
...

∇Hxs
m

xpr ∇Hysm
ypr ∇Hzsm

zpr O3x3 O3x3 O3x3 O3x3 1 0


(7)

Where

∇Hxs
i

xpr =
∂ρx

s
i

∂x
=
xsi − x̂pr
ρsi

∇Hysi
ypr =

∂ρy
s
i

∂x
=
ysi − ŷpr
ρsi

∇Hzsi
zpr =

∂ρz
s
i

∂x
=
zsi − x̂pr
ρsi

ρ is the GNSS peudo-range.
In addition to GNSS pseudorange observations, measurements from odometer sensor are used considering their performance to
enhance the position and mitigate IMU error. However, the expression of observation matrix h2 of odometer can be written as:

h2 =
[
∆k−1 × cos(θk−1 + ωk−1

2 ) ∆k−1 × sin(θk−1 + ωk−1

2 ) 0 O1×3 O1×3 O1×3 O1×3 O1×3 0 0
]

(8)

Where ∆k−1 and ωk−1 are the elementary translation and rotation of the vehicle respectively, and θk−1 is the vehicle’s heading,

2. UIF pose estimation
Recently, a growing number of researchers in vehicle localization field are interested in the use of the information form of Kalman
Filter in multi-sensor fusion approach since it has some distinctive characteristics. It can significantly reduce the computational
load, the initialization and update step are simple and can be easily decentralized [18], [19]. Given these arguments, Unscented
Information Filter (UIF) is proposed for the GNSS/INS/odometer integration. Themethod is based onUnscented Transformation
(UT) using the sigma points in order to estimate weighted means and variances of the system state.
The set of the sigma points χ generated are seen in equations (9) and (10):

χ0 = X ,

χi = X +
(√

(L+ λ)P
)
i
, i = 1, ..., L

χi = X −
(√

(L+ λ)P
)
i
, i = L+ 1, ..., 2L

(9)
W

(m)
0 = λ/(L+ λ) ,

W
(c)
0 = λ/(L+ λ) + (1− γ2 + ϑ) ,

W
(m)
i = W

(c)
i = 1/(2(L+ λ)) , i = 1, ..., 2L

(10)

Where P is the augmented state covariance matrix, λ = γ2(L + k) − L, is a scaling factor to define the distance between
the points and the mean, with γ and k tuning parameters. The parameter γ, 0 6 γ 6 1 control the size of the sigma-point
distribution, L is defined as the augmented state dimension, and ϑ is the third parameter for incorporating extra higher order
effects [19].

• Prediction step
Based on the unscented transformation [20], the predicted information vector and matrix equations are defined as:

Yk|k−1 = [Pk|k−1]−1 , (11)



yk|k−1 = Yk|k−1

2n∑
i=0

W
(m)
i χi,k . (12)

Where the predicted state variances co-variances matrix Pk|k−1 is defined as:

Pk|k−1 =

2n∑
i=0

W
(c)
i

[
χi,k −Xk|k−1

] [
χi,k −Xk|k−1

]T
. (13)

• Update step
The updated information matrix Yk|k and vector yk|k are respectively represented as:

Yk|k = Yk|k−1 +

N∑
i=1

gIi(k) , (14)

yk|k = yk|k−1 +

N∑
i=1

pIi(k) . (15)

where the informational contributions gIi(k) and pIi(k) are defined as:

gIi(k) = HT
i,kR

−1
i (k)Hi,k , (16)

pIi(k) = HT
i,kR

−1
i (k)[(Zi,k − Ẑi,k) +Hi,kXk|k−1] . (17)

N is the number of observations at instant k.

III. DIAGNOSIS LAYER BASED ON α-RD RESIDUAL GENERATION
1. Residual generation
In order to generate sensitive residuals able to detect most of faults, several methods exist in the literature. Among these methods,
we found the information divergence. However, the choice of the divergence can have a significant impact on the performance
of the diagnostic layer mainly in the type of fault to be detected. In this work, Rényi Divergence the generalization of special
cases of well-known divergences including Kullback Leibler Divergence, Bhattacharyya distance is used. According to [21]
and [22] the α-RD between two probability distributions P and Q is defined as:

RDα(P ||Q) =
1

α− 1
ln

∫
Pα(x)Q1−α(x)d(x) (18)

Where α ∈ R− {1}.
For a fixed value of α (α=0.8), the α-RD residual is defined through two multivariate Gaussian densities, g(k|k − 1) for the
prediction step and g(k|k) for the correction step and can be defined as:

RDα(g(k|k)||g(k|k − 1)) =
α

2
(Xk|k −Xk|k−1)T (

∑
α

)−1(Xk|k −Xk|k−1)

− 1

2(α− 1)
log

|
∑
α |

|
∑
k|k |1−α|

∑
k|k−1 |α

(19)

Where
∑
α = α

∑
k|k−1 +(1− α)

∑
k|k,

∑
k|k−1 = 1

Yk|k−1
and

∑
k|k = 1

Yk|k



2. Residual statistical characterization and threshold setting
After performing several vehicle trajectories for the sensor database collection in different types of environments and conditions.
After using the database in the generation of residuals, a threshold able to make the right decision for faulty and non-faulty cases
is needed. Thus, two probability density functions (pdfs) of α-RD residual represent the faulty and the non faulty cases are
created. For this goal, the classification of pdfs is proposed through an unsupervised learning algorithm called the Expectation
Maximization (EM) as a solution [23]. This method switches between two main steps, the first step called the E-step consists of
approximating a probability distribution over the missing data according to the current model, and the second step the M-step is
based on the re-estimation of the model parameters. The result of the clustering algorithm is illustrated in figure 2 which shows
the two classes of non-faulty (green) and faulty (purple) distributions. Regarding the faulty pdf , the most challenging faults to
detect and analyze are those who belong to pdf sharing an overlap with the fault-free case, and especially when it comes to
setting a threshold which represents the following step. In order to evaluate the residual, an appropriate threshold is defined in
the aim to decide efficiently about fault(s) in case of their existence(s).
Assuming that we dispose of two hypotheses, in the case of no fault in the sensor(s) measurement(s) thus null hypothesis H0,
otherwise the alternative hypothesis H1, where the probabilities of making the decision u associated to these assumptions are
defined as following:

• the probability of detection: the probability of deciding u1 when H1 is true: PD = p(u1/H1)

• the probability of non detection: the probability of deciding u0 when H0 is true: PND = p(u0/H0)

• the probability of false alarm: the probability of deciding u1 when H0 is true: Pfa = p(u1/H0)

• the probability of missed detection: the probability of deciding u0 when H1 is true:
Pmd = p(u0/H1)

Figure 2. EM (Expectation Maximization) algorithm solution for pdfs (Probability density functions) separation of faulty (purple)
and non faulty measurements (green)

The policy for the threshold optimization function is to ensure an optimal compromise between the operational requirements
mentioned earlier in the introduction, which may be antagonistic and related to different parameters, improving one of these
requirements may have a negative impact on others. Generally, the calculation of threshold is based on two the probabilities of



false alarm Pfa and missed detection Pmd [24]. By minimizing the probability Pfa, the availability of the system is improved
but this can affect the operational safety since the probability of missed detection Pmd is not taken into account. Therefore,
an optimal thresholding strategy is expected to take into account the two probabilities to ensure the best trade-off between
operational requirements. To reach this aim, a risk function that minimizes the last two probabilities is defined. Since the
cost attributed to the decisions which is contrary to the hypothesis is higher than the cost attributed to the decision in agree-
mentwith the hypothesis. To facilitate the optimization step, a log scale is applied using the divergence used to design the residual:

Rcα = [RDα(p(Hi/uj)||p(Hi)) +RDα(p(Hj/ui)||p(Hj))] (20)

With i 6= j
Which leads to :

Rcα =
1

α− 1

[
log

(
p(u1/H0)

p(u1)

)α
p(H0) + log

(
p(u0/H1)

p(u0)

)α
p(H1)

]
(21)

Thus, the α-Rényi criterion is written as:

Rcα = 1
α−1 log [P0(1− P0)]

+ 1
α−1 log [P0γ1γ0 + (1− P0)γ1β0]

α
+ 1

α−1 log [P0γ1β0 + (1− P0)β1β0]
α

− α
α−1 log [P0γ0 + (1− P0)β0]− α

α−1 log [P0γ1 + (1− P0)β1]

(22)

where: γ0 = 1− Pfa, β0 = Pmd = 1− PD, γ1 = Pfa, β1 = PD and P0 = p(H0).

It was also proved through the derivation made in the study [5] that the maximum of the risk function corresponds to the optimal
threshold. However, one of the key elements for the determination of the threshold is the probability of not facing fault(s)
P0 as mentioned in the introduction, generally this value is calculated based on MLE algorithm [16]. It is important to note
that to make a decision this method relies on a time window of the last decisions made. This represents one of the limitations
that makes it unsuitable for dealing with all types of errors, especially the most threatening ones such as sudden GNSS errors.
Therefore, in the next section, we introduce a deep learning based approach for the computation of P0 that can address this type
of error(s).

IV. ADAPTIVE DECISION AND FAULT MANAGEMENT BASED ON DCNN
Over the last years, Deep learning techniques have shown remarkable performance in various fields such as computer vision,
natural language processing, speech recognition and localization [25]. In localization field, Deep Convolution Neural Network
is one of the most employed models for environment classification [26], GNSS jamming detection [27], traffic prediction [28],
etc. What makes this network more attractive than other types of networks such as DNNs, is its potential to exploit spatial
or temporal correlation by extracting useful information from input data (2D images, voice signal, sensors measurements...)
and learn distinctive features in order to match as precisely as possible the inputs with the outputs. For these reasons, figure
3 propose the integration of DCNN in thresholding step for regression task. The goal of the DCNN is the estimation of the
probability of not facing to fault(s) called P0 at each instant to mitigate sudden GNSS errors in crossed environment. In a first
step, an offline procedure is launched which consists in training the input data corresponding to the data derived from GNSS
signals and fusion process with several CNN models. Then, a validation step comes to evaluate the training model and at last a
testing step is proposed for the evaluation of the final selected model. After choosing the suitable model that best matches the
inputs with the output corresponding to labeled P0, the online process in detection step can start, the final result of the estimation
of the probability P0 is integrated in the last phase of the detection step in the thresholding Risk function in the purpose to
adapt the decision to the navigation context. Thereafter, the decision in case of presence of fault(s) or not is performed and fault
isolation step is directly activated. However, in order to establish an effective data representation and to establish a link between
the inputs and output of a neural network, the choice of inputs and the way in which the output is labeled is as important as the
topology of the network. For this reason, in the following sections the identification of the input data, the manner of labeling
the output and the topology of the network are discussed.



Figure 3. Overall scheme of the integration of deep learning process used in the FDI approach

1. Inputs identification
The emergence of deep learning in the field of GNSS has changed the way of interpreting and solving problems for localization
and navigation. One of themain challenges of using deep learning is the selection of relevant features. Neural networks algorithm
requires a variety of inputs hard to conceive when it concerns the analysis of a GNSS signal and the effect of environmental
changing on it. In this context, various researches have been investigated to improve the performance of GNSS systems based
on this tool for different problems as NLOS/multipath signal detection, detection of GNSS ionospheric, spoofing attacks and
jammer classification. Most of the solutions for features extraction are based on one or even two of GNSS signal observations
such as elevation angle [29], SNR (Signal to Noise Ratio) [30] or a combination of both [31], CN/0 (Carrier-to-Noise Ratio) [32],
DOP (Dilution Of Precision) [33], as they can be considered as indicators of the performance of a measurement. Nevertheless,
if the combination of these different features allows to provide reliable measurements and a prior knowledge of the current
situation, the logic of combining more than three features becomes complex and difficult to apprehend.
In this study, relevant features are defined from the characteristic information of the abnormal GNSS signals that allow to have a
set of a priori knowledge on the signal state and on the localization context. These features mainly contain satellite information
such as satellite elevations , signal propagation information (CN/0) which showed high efficiency for classification of LOS and
NLOS signals from in dense urban environment. In addition, other features that contain valuable information about the quality
of GNSS observations such as CMC (code-minus-carrier), DOP. Therefore, the input layer exhibits the seven following features:
number of satellites as they affect the accuracy of the position, the geometry configuration analysis of visible satellites with
HDOP (Horizontal DOP), CMC, satellite elevation angle, CN/0, and historical information of the merging filter contained in
variance-covariance matrices of the prediction step PPred, and correction step PCorr.

2. P0 labeling
In this section, the output labeling representing the main commonality between supervised deep learning algorithms is discussed.
During training, to ensure proper optimization of deep learning models, a certain amount of labeled data is required. However,
as mentioned earlier, generating large sensor dataset with annotations of a probability of not facing a fault P0 each instant
considering cross environment conditions is a complex task. To effectively define this probability, expertise and experience in
GNSS signaling is required. The main challenge is to guarantee at each instant the presence or absence of fault(s) in order to fix
this probability with a high precision. Generally, fault(s) labelisation is done through a static experiment in each environment
(buildings, trees, open sky) where a GNSS receiver is deployed to collect raw data for a minimum 24 hours. This method can be
efficient but it has certain limitations as time consumption and implicit signal transmission which requires a 3d map [34]. In this



study, to define the value of the probability to not facing fault P0, FDI coupled with PPP (precise point positioning) algorithms
are used after they proved their efficiency giving high detectability and low probability of false alarm. Thus, the labeling of the
output is performed according to the rate of detection of faults in the following manner. At the beginning the value of P0 is
maximized at 0.8, after each detection of a faulty measurement it begins to lower the value of P0 by 0.2 until it reaches 0.2.

3. Deep Convolution Neural Networks topology
The proposed architecture is one dimension DCNN for the estimation of the probability of not facing a fault P0 is illustrated
in figure 4. It includes 9 layers including input layer, 2 convolutional layers, one max pooling layer, one flattening layer, 3
fully connected dense layers and an output layer for the estimation of P0. The input layer is composed of 114 × 4112 input
size representing information on the status of the GNSS signal at each instant with various variables such as the elevation of
satellites, DOP, CMC, etc. The following layers represent the main block of construction of a convolutional neural network
(CNN) the "2 convolutional layers". Inspired biologically by the processing of the visual cortex of mammals, each CNN layer
is composed of 128 kernels or filters with a window size of 6. Particularly different from classical neural networks which are
fully connected layers to each other, the CNN architecture is based on the so-called convolution operation, each neuron of the
feature map receives connections only from a subset of neurons from the previous layer which will allow first to extract a local
correlation of the input data and then to extract the inherent features of the previous CNN layer. During this process, a new
feature map is generated at each time by the convolution between the input feature maps and the kernels then a function is
applied to these convolutional operations. Thus, the output feature map of each layer is calculated as [35]:

yij = f(
∑
l∈Mj

yj
i−1 ∗ kij + bij) (23)

Where yij represents the feature map output by the jth convolutional kernel at the ith layer;Mj represents all the feature maps
at the i-1 layer; kij represents a convolutional kernel at the ith layer; bij represents the bias corresponding to the yij features at
the ith layer; f() represents the operation function; and ∗ represents the convolution operation. Then to reduce the features
dimension a max pooling layer is implemented to extract to highest values (252 most active features) from the last convolutional
layer [36], the extracted features learned from are merged into one single vector consisting of 252 × 128 numbers, followed
by 3 fully-connected hidden layers consisting of with 128 nodes each one. The last layer is connected to the output layer
which contain 4112 nodes with ReLU (Rectified Linear) as an activation function as the topology developed is for regression
approach [37]. For the optimization of the neural networks a backpropagation algorithm is used, by computing the Stochastic
Gradient Descent (SGD) which updates the neurons weights using a feedback connections to deliver error.

To summarize, the process of learning is performed in 4 steps. Step1: collecting data from the sensors, inputs selection and
output labelisation. Step2: splitting the data into two groups of data "train set" composed of approximately 70% of the data set,
among them there are 10 % for the "validation set" and 30 % of the data for the "test set". Step3: Start the training process which
consists of two groups of data "training set" and "validation set". The role of the first group is to establish a relationship (or a
complex function) between the input parameters of the sensors and the output, which is the probability not facing a fault P0 , in
order to synthesize a functional relationship between them to develop models for estimating P0. The second group represents
the part of the training data called the "validation set" which evaluate the performance of the trained models and validate the
most appropriate one. Finally, the selected trained model will be evaluated in the last step "the estimation step" by the testing
set which consists of data that the trained model has never seen before.



Figure 4. A graphical illustration of deep convolution neural network topology

V. EXPERIMENTAL RESULTS
This section presents the experimental results to evaluate the effectiveness of the proposed method and to validate the whole
concept. It consists of two parts. the first part is dedicated to the validation of the choice of the DCNN by comparing it with the
MLE method and the second part contains an impact analysis of this tool on the fault detection and isolation method and on the
GNSS-based position solution.

1. Data collection
Six real trajectories are used for the experimental concept validation. Figure 5 show the real 2D view, using Google Earth
software, and table 1 details the information for all the used trajectories. The data are collected using a robotized Renault ZOE,
the experimental vehicle of CRIStAL laboratory. The vehicle is equipped with Novatel PwrPak7D merging GNSS, INS and
RTCM messages in order to create ground truth references. Tests have been carried out using real GNSS raw measurements
with Ublox M8P coupled with Inertial Labs OS3D-FG IMU raw data and vehicle internal valuable information such as steering
angles and odometer data via the CAN bus. All these data were acquired via a ROS platform ensuring a software based GPS
synchronization.The collected data are split into two sets: train and test data sets. Where C1, C2, C4, C5 and C6 are used for the
learning phase equal to 16,196 km. While C3 is used for testing phase phase equal to 9,844km in order to evaluate the training
model performance.



(a) 2D C1 trajectory (b) 2D C2 trajectory

(c) 2D C3 trajectory (d) 2D C4 trajectory

(e) 2D C5 trajectory (f) 2D C6 trajectory

Figure 5. Trajectories references

Table 1: Data acquisition information for trajectories

Trajectory name Trajectory length
C1 1134.2 meters
C2 3444.6 meters
C3 9844.71 meters
C4 348.85 meters
C5 467.45 meters
C6 10803 meters

2. Results for FDI validation approach
Having defined the Fault Detection and Isolation process previously. The first step is to analyse the global residual behavior
before the implementation of FDI process. Figure 6 shows the behavior of α-Rényi residual before the implementation of the
FDI for the testing trajectory C3, given the peaks and the high variation of this curve it confirms the existence of faults but it
gives no indication on the type of fault(s) and which of the fault(s) should be isolated and which not.
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Figure 6. Rényi without FDI

To explore more deeply, there is a need to analyze the variation of the parameters related to the GNSS signal state such as
the residual of each available satellite at the time of the experimental tests. Figure 7 presents the individual residual for each
satellite. The residual of the satellite 7, 8, 21 and 26 most of the time show a larger variation than the others which can be
considered as a fault.
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Figure 7. Rényi satellites gain

The abrupt variation of the residuals of the satellites involved can be caused by the decrease of the elevation of these satellites.
From the figure 8, we can see that most of these satellites have an elevation below 30° which explains in a way the behavior of
their residual.
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Figure 8. Satellites elevation

After applying the FDI method, it is clear that the residual has decreased in magnitude and has a regular behavior. Figure 9
show the effect of the integration of FDI method on the α-Rényi residual.
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Figure 9. Renyi without and with FDI

3. P0 estimation
In order to validate the performance of DCNN model, it needs to be compared to a standard regression deep learning method in
term of Loss function ( error calculation). For the comparison, classic feed-forward neural network called Multilayer Perceptron
(MLP) is used. It’s composed of 3 dense fully connected layers with 128 nodes each layer with back propagation algorithm. To
compare the Losses of these topologies fairly, the same batches size 250 and iterations 500 are used for the learning process of
the two networks. In order to reduce the error between the estimated value and the labeled one, two main metrics are applied in
regression problems Mean Square Error (MSE) and Mean Absolute Error (MAE) the results of their estimation are presented
in table, the lowest value of the loss is attributed to DCNN with MAE loss function. Figure 10 show the results of loss function
of the two typologies DCNN and MLP. We notice easily that the two losses of train and test follow each other, which means
there is roughly no overfitting or underfitting. However, the Loss of the DCNN topology has a rather smooth pace and tends to
converge quickly than the MLP until 0.01 of error.



Table 2: DNN Models performances Results

Topology Metric Loss result
MLP MSE 0.0524
DCNN MAE 0.0183

Figure 10. Loss for training and testing data set

After the validation of of the selected model, the evaluation of the P0 estimation proposed by the two approaches DCNN and
MLE is launched. Since the MLE method is based on a history of previous decisions, several sizes of time window were
performed, in the following comparative results we have selected the size 20. Figure 11a present the comparison between the
labeled P0 (desired P0)estimation and the estimated one with different time window size. We note that the variation of P0 using
MLE method is very low compared to that of the labeled P0 and the more we increase the size of the window the more the curve
tends to have a filtering aspect. In figure 11 the result of comparison between labeled P0 and the estimation of P0 using and
DCNN and MLP algorithm is shown. It is clear that the estimation of P0 based on DCNN network coincides with labeled P0

and outperformed the MLP estimation.
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Figure 11. Testing trajectories P0 estimation performance



In figure 12, the impact of P0 estimation on threshold calculation is presented. In figure 12a, it can be seen that the low variation
of P0 estimated by MLE has well affected the threshold variation. On the other hand on the figure 12b the threshold based on
the estimation of P0 with DCNN shows more dynamics with a much larger variation which is mainly due to different decision
making during the experimental tests.

(a) Rényi divergence without and with FDI with threshold based on MLE
algorithm

(b) Rényi divergence without and with FDI with adaptive threshold based
on DNN

Figure 12. Impact of P0 estimation on threshold selection

In order to justify the behavior of the threshold using the two methods. A deep decision analysis is established through the
isolated satellites using the two methods. Figure 13 show the isolated satellites in different colors for each instant based on MLE
in figure 13a and DCNN in figure 13b. For a first time seen there are some satellites that have been isolated by one method and
not in the other. However, to highlight the difference more effectively figure 14 show only the difference between the isolated
satellites in the two approaches. Both methods represent several isolated satellites in commune but in some range differ, a first
area of difference is highlighted in pink from 598 to 660 seconds where the decision based DCNN approach represented by
the black dot isolate the satellite 21 while the threshold based on MLE method has decided to isolate the 26 during this time
frame. In addition, a second outlined zone in blue represents another kind of difference from 1398 to 1423 seconds during all
this period no satellites were isolated by the MLE method while the DCNN method decision was totally different by isolating 4
satellites.
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(a) Excluded satellites using threshold based on MLE
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(b) Excluded satellites using threshold based on DCNN
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Figure 13. Impact of estimated P0 on decision making



Figure 14. Difference in decision making using P0 estimated with MLE and DNN

Having defined the sources of fault detection and isolation. We now focus on providing a measure of the system performance
to the users that allows to validate the proposed approach, a Relative Performance Indicator (RPI) is performed. In order to
compare the improvement in term of position of the two approaches, the difference between position errors of each method
according to the reference is calculated based on the following equation:

RPI = RMSE(XMLE , XGroundTruth)−RMSE(XDCNN , XGroundTruth) (24)

Based on the previous equation 24 and figure 15, when the value is equal, and thus the relative performance indicator is equal
to zero, both approaches make the same decision(s) and provide the same position error. However, the positive side of the curve
(blue color) represent the good decisions taken by DCNN method, where in the opposite direction the red curve represent the
appropriate decisions taken by MLE algorithm to improve the the position solution. We can notice clearly that the proposed
approach achieves better performance in positioning than MLE algorithm by removing larger errors on the majority of the
trajectory.

Figure 15. RPI

For numerical evaluation of the performance of the two methods, we calculate the mean and the max error detected by each
approach. The results are presented in Table 3.

Table 3: Evaluation methods performances using errors metrics

Error metric [m] Removed only by DCNN Removed only by MLE
Mean error 5.581 2.315
Max error 100 48



VI. CONCLUSION
In this paper, an adaptive fault tolerant fusion framework based on DCNN decision making was developed. We aimed to deal
with sudden GNSS errors caused by changing environment. For fusion process, the complementarity of the sensors has been
exploited to increase the availability of the system. However, for the diagnostic part, a divergence called α-RD that generalized
known informational divergences has been applied for the generation of the residual. For threshold calculation, we investigated
the integration of Deep Convolution Neural Networks (DCNN) to calculate the probability of non faulty cases called P0. The
proposed approach was compared with an existing method based on time window the Maximum Likelihood estimation (MLE).
However, for the selection of the appropriate neural network, we developed and compared different learningmodels and topology
with different metrics of evaluation (MAE, MSE). The proposed method solved the problem of time windowing of the MLE
algorithm. the results of DCNN have shown their feasibility on the position estimation with high accuracy (until 100m of max
removed error). Future work includes investigating the efficiency of deep learning in the selection of α parameter of α-RD and
the application of the proposed method on multi-vehicles in real time.
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