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Spatial distribution of the human population is distinctly heterogeneous, e.g.
showing significant difference in the population density between urban and
rural areas. In the historical perspective, i.e. on the timescale of centuries, the
emergence of densely populated areas at their present locations is widely
believed to be linked to more favourable environmental and climatic con-
ditions. In this paper, we challenge this point of view. We first identify a
few areas at different parts of the world where the environmental conditions
(quantified by the temperature, precipitation and elevation) show a rela-
tively small variation in space on the scale of thousands of kilometres. We
then examine the population distribution across those areas to show that,
in spite of the approximate homogeneity of the environment, it exhibits a
significant variation revealing a nearly periodic spatial pattern. Based on
this apparent disagreement, we hypothesize that there may exist an inherent
mechanism that may lead to pattern formation even in a uniform environ-
ment. We consider a mathematical model of the coupled demographic-
economic dynamics and show that its spatially uniform, locally stable
steady state can give rise to a periodic spatial pattern due to the Turing
instability, the spatial scale of the emerging pattern being consistent with
observations. Using numerical simulations, we show that, interestingly, the
emergence of the Turing patterns may eventually lead to the system collapse.
1. Introduction
Fast growth of the global human population has long been regarded as a major
challenge that faces mankind [1–4]. Presently, this challenge is becoming even
more serious than before, in particular because many natural resources are esti-
mated to deplete before the end of this century. The increasing population
pressure on agriculture and ecosystems and the environment more generally is
predicted to result in worldwide food and water shortages, pollution, lack of
housing, poverty and social tension. The situation is exacerbated by global climate
change as considerable areas of land are predicted to be flooded and hence taken
out of human’s use. It is widely believed that, unless alternative scenarios of sus-
tainable population growth and social development are identified and
implemented, mankind is likely to experience stagnation or even decline [5].

Population growth in time is complementedwith the population dynamics in
space. Population distribution over space is hugely heterogeneous for a variety of
reasons, for example, climate, history and the economy, etc. The spatial heterogen-
eity may result in significant migration flows that in turn can have a significant
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feedback on the local demography and the population growth.
On a smaller scale of individual countries and states, under-
standing the factors affecting the population distribution
in space is needed to ensure adequate development of infra-
structure, transport and energy network. Poorly informed
decisions are likely to result in overcrowding and social pro-
blems in urban areas and/or lower quality of life in rural
neighbourhoods.

Identification of scenarios of sustainable population
growth and social development on various spatial and tem-
poral scales requires good understanding of the relevant
processes and mechanisms that affect both population
growth and population distribution. Arguably, such under-
standing is unlikely to be achieved without a well-developed
theory and the correspondingmathematical/modelling frame-
work. Indeed, mathematical models of human population
dynamics (e.g. [6,7]) have a long history dating back to the
seventeenth century [8]. Over the last few decades, the need
for an adequate and efficient mathematical theory of human
population dynamics has been reflected by a steady growth
in the number of studies where problems of demography
along with related issues of economy were considered using
mathematical models, tools and techniques, e.g. [9–12].

In this paper, we usemathematicalmodelling to address the
phenomenon of heterogeneous spatial population distribution.
Heterogeneity of geographical features (mountains, forests,
rivers, etc.) and natural resources (e.g. coal, iron and copper
ore) are commonly accepted as factors leading to the demo-
graphic and economic heterogeneity. Here we ask a question:
is this natural heterogeneity the only underlying cause, or can
there be another and perhaps more general principle respon-
sible for emergence of heterogeneous population distribution?

In order to answer this question, we first revisit available
data on population density over a few areas in different parts
of the world to show that, in all cases considered, population
distribution exhibits a clear nearly periodic spatial pattern in
spite of the fact that the environmental conditions are relatively
uniform. Being inspired by this finding, we then consider a
novel model of coupled economic–demographic dynamics in
space and time and endeavour to use it to simulate the spatial
population distribution. The model consists of two coupled
partial–differential equations of reaction–diffusion type.
Following a similar modelling approach that was successfully
used in ecology and biology [13–16], we then show that the
emergence of spatial patterns in our model appears to be poss-
ible as a result of Turing instability. Although it is not our goal
in this paper to provide any direct comparison between the
real-world demographic patterns and the model properties,
we regard the qualitative agreement between the model predic-
tions and the data on the human population density as an
indication that the heterogeneous population distribution
observed across different countries in different continents
may, at least in some cases, have been caused by endogenous
rather than exogenous factors, i.e. may have appeared due to
intrinsic Turing instability of the corresponding economic–
demographic dynamical system.
2. Real-world examples
In many countries, the population distribution over space is
distinctly heterogeneous, e.g. urbanized areas with a high
population density alternate with rural areas with a low
population density. Apparently, spatial variation in geo-
graphical and climatic factors can play a significant role in
shaping the population distribution. Since our main hypoth-
esis in this paper is the existence of a dynamical mechanism
that may lead to the formation of heterogeneous population
distribution regardless of the geographical heterogeneity, in
our search for real-world examples we focus on the cases
where the environment may be regarded, up to a certain
spatial scale, as relatively uniform. The environmental prop-
erties that we consider here as proxies for environmental
heterogeneity are elevation, annual mean temperature and
annual mean precipitation. A brief overview of several
relevant cases is given below.
2.1. Canadian southern region
Canada is a scarcely populated country and the majority of
Canadian population live in the relatively narrow band along
the USA border, except for Alberta and Saskatchewan where
the densely populated areas expand somewhat further to the
north (figure 1a). The distribution of the environmental
properties across the country is highly heterogeneous, in par-
ticular in the south–north direction, ranging from temperate
climate in the south to the rather extreme polar climate in the
north. However, the magnitude of climatic variation in the
east–west direction is significantly smaller (figure 1c), at least
over the span between the Atlantic coast and the Rocky
Mountains where the annual mean temperature normally
varies within 6–8°C (contrary to more than 20°C in the south-
north direction). The other environmental variables exhibit a
significant change though (see figure 1b,d, respectively): the
annual mean precipitation varies approximately between 250
and 1000mm and the elevation varies between 50 and 150m
in the Canadian plains and 2000–3000m in the Rockies.

We focus our analysis on the Canadian provinces that
align along the USA–Canada border (creating a ‘corridor’
that is schematically shown by the black line in figure 1a)
where the environmental conditions are relatively uniform
compared to the north–south gradient (apart from the
Rockies) but the population distribution is not. Figure 2a
demonstrates how the population density varies in space
along the border in the east-to-west direction. As the data
on population density on a sub-provincial scale are not avail-
able in public domains, to represent the population
density, we use data on the provincial scale. The circles in
figure 2a show the average population density for the eight
Canadian provinces located along the border, i.e. respecti-
vely, for Nova Scotia, New Brunswick, Quebec, Ontario,
Manitoba, Saskatchewan, Alberta and British Columbia. It
is readily seen that the distribution exhibits three maxima
with approximately equal spacing of 700 miles. We therefore
regard it as a (nearly) periodic spatial distribution. Note that
this pattern is persistent over time: a nearly periodic structure
with the same properties is observed for different years (not
shown here for the sake of brevity) starting from as early as
late nineteenth century.

In order to reveal how strong the effect of environmental
properties is on the population distribution, we perform the
pairwise correlation analysis between the population density
and each of the three environmental factors that we consider
here. The results are shown in figure 2b–d and the correspond-
ing values of the coefficient of determination R2 [21] are given
in table 1. We readily observe that the obtained values of
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Figure 1. (a) Population distribution in Canada. Adapted from [17]. A strongly heterogeneous, ‘patchy’ structure is readily seen. The black line is drawn along the
USA–Canada border where the environmental conditions are approximately homogeneous (except for the Rocky Mountains). (b) Geographical map of Canada show-
ing the elevation [18]. One can see that, except for the Rocky Mountains, the elevation along the Canada–USA border is approximately uniform. (c) Canada annual
mean temperature map, 1950–2000 [19]. It is readily observed that the temperature does not vary much along the southern border. (d ) Precipitation map of
Canada [20]. The amount of precipitation does not vary much along the border, except for the extreme west.
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R2 are quite small, hence only a small proportion of the var-
iance in the population density can be explained by the
environmental factors [21].
2.2. South-eastern Australia
As another relevant example of the heterogeneous population
distribution in an approximately uniform environment, we con-
sider south-eastern Australia. As well as Canada, Australia is a
scarcely populated country, with most of the Australian popu-
lation concentrated in three regions, i.e. southeast, east and
southwest (figure 3a). The most densely populated area is the
southeast. This area has the shape of a strip (approx. 400 km
wide) along the coast of the Tasmanian sea and Bass strait. It
appears that the climatic properties along this narrow strip
such as precipitation and temperature are approximately uni-
form (see figure 3b–d), e.g. the variation in the annual mean
temperature is just a few degrees (compared to more than
30°C over the continent as a whole). The stripe includes the
Great Dividing Range and the Australian Alps, which
therefore accounts for a significant variation in the elevation.

In spite of the relatively uniform environment (apart from
the elevation, its effect being discussed below), the population
distribution along the strip is strongly heterogeneous, with the
population density varying more than two orders of magni-
tude between the more dense areas and the less dense ones.
The origin of the data that we used is similar to the Canadian
case: since the data on a small scale of Local Government
Areas (Australian-specific small scale territorial unit roughly
equivalent to a county) are not publically available, we used
the data for larger regions (depicted by the lines in figure 4a,
see also [26]). The results are shown in figure 4a. Interestingly,
it exhibits a nearly periodic patternwhere the threemaxima are
approximately equally spaced by about 700–850 km.

An immediate intuitive explanation of the heterogeneous
population distribution can be sought in the heterogeneity of
the environmental properties. Correspondingly, we look into
the effect of the environmental factors more carefully by con-
sidering the correlation between each of the three factors
chosen above and the population density. Figure 4b,c shows
the scatterplots of the population density in Australia versus
the mean annual temperature and the mean annual precipi-
tation, respectively. In both cases, the straight line shows the
best-fitting of the data to maximize R2; the corresponding
values of R2 are shown in table 1. It is readily seen that in
both cases R2 is quite small. We therefore conclude that the cli-
matic variation is unlikely to be the factor that defines the
spatial distribution of the population.
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Figure 2. (a) Population density versus space along the USA–Canada border in 2010 in the east-to-west direction. The circles show the average population density
for the eight Canadian provinces that align along the border. (b) Population density versus the annual mean temperature in Canada. (c) Population density versus
the annual mean precipitation in Canada. (d ) Population density versus the elevation. In all cases shown in panels (b–d ), the best-fitting straight line is drawn by
maximizing R2; for details, see table 1.

Table 1. Values of the coefficient of determination R2 [21] for the best-
fitting linear function between the population density in the three
considered countries and the three environmental properties.

elevation,
m

annual mean
temperature, °C

annual mean
precipitation,
mm

Canada −0.14 −0.15 −0.09
Australia −0.14 −0.04 −0.06
Mongolia −0.08 −0.08 −0.04
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Now we recall that the study area includes the mountain
ranges and exhibits considerable variation in the elevation.
The question hence arises as to whether that can be a relevant
factor. However, we first notice that the vast majority of the
Australian population lives at the elevation below 250m
(figure 4d ). We then perform the correlation analysis by look-
ing for the best-fitting straight line in the scatterplot of the
population density versus the elevation. The corresponding
value of R2 (table 1) appears to be very small. We therefore
rule out the elevation as a factor affecting the heterogeneous
spatial population distribution along the southeast coast
of Australia.

2.3. Mongolian grassland
Mongolia, a Central-Asian country situated between China in
the south and Russia in the north, has an elongated territory
that extends from east to west for about 2400 km. It is the
most sparsely populated country in the world. South of Mon-
golia is occupied by the Gobi Desert, which is barely populated
at all due to the harsh climate and lack of resources. The
majority of three million population of Mongolia live in grass-
lands, which are located in the north of the country. In order to
reveal the features of the spatial population distribution as is
needed in the context of this study, we focus on the densely
populated ‘corridor’ located along the latitude at 47.7° north;
see the black line in figure 5a. Similarly to the two cases con-
sidered above, for the population density we used the data
on the provincial (aimag) scale, as smaller scale data are not
available. Correspondingly, the circles in figure 6a show the
average population density for the eight aimags located
along the line. Interestingly, we readily observe that, as well
as in the two previous cases, the population distribution in
the east–west direction exhibits a periodic-like pattern (figure
6a). The three distinct peaks are separated by 700 and 900 km
intervals.

Variation of the environmental properties (cf. figure 5b–d )
along the latitude is considerably less than in the north–south
direction. However, it appears to be larger than it is in the
cases of Canada and Australia, e.g. the annual mean tempera-
ture varies over about 10°C and the annual mean
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Figure 3. (a) Population distribution in Australia in 2011. It can be seen that the population is concentrated in the southeast; the thick black line indicates the
location of the stripe where the majority of the population lives. Adapted from [22]. (b) Geographical map of Australia showing the elevation. Adapted from [23].
(c) Annual mean temperature map based on 30 years observations, 1961–1990. Adapted from [24]. (d ) Annual precipitation map based on 30 years observations,
1961–1990. Adapted from [25].
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precipitation from 50 to 350 mmm−2 year−1). Also the
elevation varies over about 1500m, which is somewhat
less than in Australia but larger than in Canada (where our
analysis did not include the Rocky Mountains).

In order to reveal whether the variation of the environ-
mental properties has any significant effect on the distribution
of the population, we now perform the pairwise correlation
analysis. The scatterplots of the population density versus the
mean annual temperature,meanprecipitation and the elevation
are shown in figure 6b,c and d, respectively. The straight line is
the best-fitting linear function; the corresponding values of R2

are given in table 1. Apparently, the correlation between the
population distribution and the environmental factors is very
weak. We therefore conclude that the nearly periodic pattern
clearly seen in the population distribution is unlikely to be
caused by the environmental conditions.
2.4. Further statistical analysis
2.4.1. Multiple linear regression
In the above, we have shown that the spatial distribution
of the population is unlikely to be affected, not to any
considerable extent, by any single environmental property
such as the mean annual temperature, mean precipitation
or the elevation. However, generally speaking this does not
rule out the possibility that a certain combination of those
three factors may have a much stronger effect. In order to
check this possibility, we applied the multiple regression:

y ¼ a0 þ
X3
i¼1

aixi, (2:1)

where y is the population density, x1, x2 and x3 are, respectively,
the average annual temperature, the annual precipitation
and the elevation. Model (2.1) was applied separately to the
data for each of the three countries. The results are shown in
table 2. We readily observe that the combined effect of the
three environmental factors does not result in a stronger corre-
lation with the population density. Small values of R2 along
with large p-values indicate that variation of population den-
sity is only to a small amount explained by the geographical
and climatic properties.

Thus, we have examined three areas in three different
countries chosen from three different continents to reveal
that, in all three cases, the population distribution over an
area with relatively uniform environmental conditions
exhibits a clear spatial periodicity. Having considered
the correlation between the population density and the main
environmental properties, we have shown that the correlation
is very weak and hence the nearly periodic pattern is unlikely
caused by the effect of the environmental factors. Note that the
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Figure 5. (a) Spatial population distribution in Mongolia. The horizontal line shows the transect (along the 37.7° latitude) across the most densely populated areas.
Adapted from [27]. (b) Geographical map of Mongolia showing the elevation. Adapted from [28]. (c) Mean annual temperature. Adapted from [29]. (d ) Mean
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Figure 6. (a) Population density in Mongolia across the central areas of the country. (b) Population density versus the mean annual temperature in Mongolia. (c)
Population density versus the mean annual precipitation in Mongolia. (d ) Population density versus the elevation. In all cases shown in panels (b–d ), the best-
fitting straight line is drawn by maximizing R2; for details, see table 1.

Table 2. Parameters of the linear model (2.1) and the p-values
corresponding to the best fitting of the data obtained by maximizing R2.

country a0 a1 a2 a3 R2 p

Canada 14.725 0.547 −0.013 −0.001 0.125 0.90

Australia −74.207 7.656 0.003 −0.025 0.074 0.79

Mongolia 79.273 −5.273 −1.02 −0.025 0.070 0.71
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three considered countries are vastly different in terms of their
average climate, history and culture. This leads us to assume
that there can be a generic mechanism resulting in the emer-
gence of the observed spatial pattern. We further assume
that this is a dynamical mechanism originated in the non-
linear interaction between the human demography and the
distribution of resources or wealth. The corresponding
mathematical model is considered in the next section.

2.4.2. Nonlinear regression
We now notice that the distribution of data on the population
density against some of the selected environmental variables
are peaked rather than distributed uniformly, e.g. see the scat-
ter plot in figure 6b. This suggests that the linear regressionmay
not be entirely appropriate for describing the data and a non-
linear regression should be used instead. The results of data
fitting with a nonlinear function are shown in figure 7. For
the data on Canada (figure 7a) and Mongolia (figure 7c), we
use the Gaussian distributions (where the parameters of the
distribution are obtained by maximizing the accuracy of
the fit). The resulting negative values of R2 indicates that the
use of nonlinear regression is not justified as the mean of the
data provides a better fit to the outcomes than does the fitted
function values [30,31]. Thus, the apparently peaked corre-
lation of population and temperature is not confirmed.
Similar results are obtained for the correlation with the
elevation and precipitation; we do not show the details for
the sake of brevity.

For the data on Australia, the Gaussian fit appears to be
effectively invalid, because of very large confidence intervals
for the parameters. Therefore, the data are fitted with a third
degree polynomial (figure 7b). Similarly to the above, it
results in negative R2, this indicating that the nonlinear
regression in fact provides a worse description of the data
than the linear one.

We mention here that using a nonlinear regression instead
of the linear one brings an additional challenge as the choice of
the fitting function becomes arbitrary. Correspondingly, our
choice of the function(s) used to describe the data might not
be the ‘best one’. However, in the situation where the use of
the nonlinear function instead of the linear onemakes the qual-
ity of data fitting muchworse, as it happens in our case, clearly
indicates that the nonlinearity in the dependence of the popu-
lation density on the environmental variables is not an
important factor, at least in the considered range. Along with



4
4

6

8

10

12

14

16

5 6
temperature temperature

po
pu

la
tio

n 
de

ns
ity

po
pu

la
tio

n 
de

ns
ity

po
pu

la
tio

n 
de

ns
ity

7 8 14 16 18 20 22
temperature

–2.0 –1.5 –1.0 –0.5 0.50
0

50

150

200

100

250

300

0

20

40

60

80

100

120

(a) (b) (c)

Figure 7. Population density versus temperature analysed by using the nonlinear regression for (a) Canada, (b) Australia and (c) Mongolia. The corresponding values
of R2 are −8.78, −1.72 and −2.7. The negative values of R2 indicate that the nonlinearity in the dependence of the population density on the temperature is not
important. See details in the text.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

1

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 A

pr
il 

20
21

 

the results of the linear regression above, it indicates that
the environment (quantified by the three selected variables)
is not the factor that determines the spatial distribution of
the population.
 8:20210034
3. Mathematical model
In order to describe the dynamics of the human population,
we use the simple, ‘conceptual’ economic–demographic
model earlier developed in [32]. The model quantifies the
state of the human society at a given location in space x
at a given time t by two state variables, the population den-
sity p(x, t) and the concentration of wealth u(x, t). Note
that, while due to its meaning p≥ 0, variable u must not
necessarily be non-negative; negative values of wealth can
be regarded as debt. In the baseline one-dimensional case
(which is relevant in case of the population distribution in a
narrow stripe, cf. the examples in the previous section), the
model consists of two partial differential equations of
reaction–diffusion type:

@u
@t

¼ Du
@2u
@x2

þ F(u, p) (3:1)

and

@p
@t

¼ Dp
@2p
@x2

þ G(u, p), (3:2)

(where we neglect, for the sake of simplicity, possible effects
of cross-diffusion [32]). Here the first term in the right-hand
side of equation (3.2) accounts for the population movement
in space, that we assume can be considered, at least over cer-
tain spatial and temporal scales, as random [33–35] (for a
detailed discussion of the ‘bugbear of randomness’ see [34])
and can be described mathematically as standard Fickian dif-
fusion. The diffusion term in equation (3.1) describes local
wealth redistribution due to the economic activities such as
trade and investments, and/or taxes.

For the reaction term in equation (3.2), we consider the
logistic population growth:

G(u, p) ¼ ½K(u)� s(u)�p� ap2, (3:3)

where the per capita growth rate (the expression in square
brackets) is the difference between the birth rate K and the
mortality rate σ, both of them being wealth-dependent, and
α is a coefficient quantifying the competition (cf. [16,36]).

To parametrize K(u), it is reasonable to assume that in
the absence of any resources the birth rate is zero. Since the
availability of resources (understood here in a broad sense) in
our model is described by wealth, we therefore assume that
K(0) = 0. For u being positive but not large,K(u) is an increasing
function. However, when the resource (wealth) becomes plen-
tiful,K(u) seizes to bemonotonic. There is a certain difference—
a ‘cultural shift’—between the low-income and high-income
society groups with respect to their wealth-dependent behav-
iour, implying that wealthier people tend to have less
children [37]. Correspondingly, we consider the birth rate
K(u) to be an increasing function of wealth for small u but
decreasing function for large u, tending to a small value (ulti-
mately, to zero) as u tends to infinity. More specifically, we
consider it in the following form:

K(u) ¼ a2u
u2 þ c22

, (3:4)

where a2 and c2 are positive parameters. Note that in ourmodel
we do not require u≥ 0 as a necessary sensible conditions;
negative values of u are regarded as debt. For u < 0, the
growth rate becomes negative as well, which seems to be con-
sistent with the generic effect of very harsh conditions of the
corresponding environment.

In order to parametrize the mortality rate σ(u), we consider
it to be a monotonously decreasing function of wealth. It takes
into account the general observation that, on average, the mor-
tality rate is lower for rich people, e.g. due to access to better
health services and/or healthier lifestyle [38]. In particular,
there is evidence that in the USA wealthier people tend to
live longer [39]. More specifically, we consider the following
generic Monod-type parametrization:

s(u) ¼ s0 � s1u
c0 þ u

, (3:5)

where c0, σ0 and σ1 are positive parameters, σ0 > σ1.
Wemention here that, in the parametrization (3.5), the ratio

σ1/σ0 can be related to the degree of inequality in the society:
σ1/σ0≈ 1 means that the basic health service is poor and the
access to extra, potentially expensive services makes a big
difference, while σ1/σ0≪ 1 means that a good quality health
service is widely accessible with no extra costs. In many con-
temporary societies, the health service is accessible to
everyone and its quality is usually good [40–42]. With that
argument in mind, in the simulations below we will consider
σ1≪ σ0. Note that, in this case, σ(u)≈ σ0.

In order to specify the reaction term in equation (3.1), we
first write it as follows:

F(u, p) ¼ W(u, p)� S(u, p), (3:6)
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where W and S are the rates of the wealth production and
consumption, respectively. Production of wealth is often
described by the Cobb–Douglas production function which
in the simplest case can be written as [43,44]

W ¼ bHnQbMg, (3:7)

where H is the labour, Q is the capital and M is the available
natural resource, a positive coefficient b is a measure of
technology, ν, β and γ are positive constants [43,44].

We assume that the natural resource is not a limiting
factor, so thatM can be kept as constant. This may look some-
what disputable, especially if the model predictions are
projected to the future, as the natural resources are eventually
becoming exhausted and this has been identified as a pro-
blem that already affects some modern economies [45].
However, since the purpose of our study is to contribute to
the understanding of historical data, i.e. the spatial popu-
lation distribution up to date, and not to predict the future,
arguably the assumption of constant M remains relevant.

We further assume that capital Q is a function of wealth,
Q = f (u), and labour is a function of the population density,
H = g( p). Equation (3.7) then takes the following form:

W(u, p) ¼ f(u)g(p): (3:8)

Due to their meaning, it is reasonable to assume that f(u) and
g(p) are increasing functions with saturation. Correspondingly,
we choose them in the generic form as the Monod function:

f(u) ¼ a1u
uþ c1

, g(p) ¼ p
pþ c2

, (3:9)

where a1, c1 and c2 are positive parameters.
For the wealth consumption S, we assume it to be the result

of twoprocesses, i.e. due to thedepreciation (in particular in case
of buildings, machinery, etc.) and consumption of goods and
products by the people. For depreciation, we assume it to be a
linear process with a constant rate a. The rate of the individual
(per capita) consumption, say c, can be described by the Keynes
linear consumption function, c = r + sy, where y is the per capita
income and r and s are positive coefficients. Assuming addition-
ally that average income is proportional to thewealth, we arrive
at the following expression:

S(u, p) ¼ auþ (rþ su)p: (3:10)
From (3.3)–(3.10), we thus obtain the following
expressions for the reaction terms:

F(u, p) ¼ a1up
(uþ c1)(pþ c2)

� ½auþ (rþ su)p� (3:11)

and

G(u, p) ¼ a2u
u2 þ c22

� s0 � s1u
c0 þ u

� �� �
p� ap2: (3:12)
4. A glance at the non-spatial system
We begin with a brief look at the properties of the non-spatial
counterpart of the reaction–diffusion system (3.1) and (3.2),
which is given by the following equations:

du
dt

¼ F(u, p) and
dp
dt

¼ G(u, p), (4:1)

where functions G and F are given by equations (3.11) and
(3.12). System (4.1) was studied in some detail in [46]. Here
we only briefly revisit some of its properties, to the extent
that is needed for the goals of this paper.

The phase plane of system (4.1) is shown in figure 8. It is
readily seen that the origin is a steady state; a closer look
reveals that it is a stable node. Inside the first quarter of the
phase plane, i.e. for u > 0 and p > 0, the F-isocline is a
convex closed curve (loop) and the G-isocline is an upward-
convex, dome-shaped curve. Depending on the relative pos-
ition of the isoclines (and hence on the parameter values,
see [46] for details), the number of positive steady states
can be anywhere from 0 to 4. Therefore, in a general case
system (4.1) can exhibit a rich, multi-stable dynamics and a
complicated bifurcation structure where positive states can
emerge or disappear. A typical case corresponding to four
positive steady states is shown in figure 8a.

A case where the relative position of the isoclines allows
for only two positive steady states is shown in figure 8b.
For these parameters, A is a saddle point and B is a stable
focus. Interestingly, a closer look reveals that even in this
case the phase plane has a complicated structure; figure 9
shows a magnified part of the phase plane containing
steady states A and B only. There are two attractors: the
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stable node (0, 0) and the stable focus B, so that the system is
bistable. The attraction basin of stable focus B is bounded
by an unstable limit cycle (shown by brown colour). Trajec-
tories that start close to the limit cycle from inside will
approach the stable focus over time; an example is shown
by the red curve. We mention here that the eigenvalues of
the system linearized in the vicinity of stable focus B have a
very small real part (for the parameters of figure 9, λ1,2 =
−0.0000895 ± 0.460312i) so that the trajectory approaches the
steady state at a very low rate. Trajectories that start outside
of the limit cycle eventually approach the stable node (0, 0)
except for the separatrix (the blue curve), which is part of
the stable manifold of saddle point A; an example is shown
in figure 10.
5. Turing instability conditions
We now consider the properties of the spatially explicit system
(3.1)–(3.2) with the reaction terms given by (3.11)–(3.12):

@u
@t

¼ Du
@2u
@x2

þ a1up
(uþ c1)(pþ c2)

� ½auþ (rþ su)p� (5:1)

and

@p
@t

¼ Dp
@2p
@x2

þ a2u
u2 þ c22

� s0 � s1u
c0 þ u

� �� �
p� ap2: (5:2)

Equations (5.1) and (5.2) are complemented with the
Neumann ‘zero-flux’ boundary conditions:

@u
@x

(0, t) ¼ 0,
@u
@x

(L, t) ¼ 0,
@p
@x

(0, t) ¼ 0,

@p
@x

(L, t) ¼ 0,
(5:3)

and by initial conditions that we will discuss below.
Since our study is motivated by the existence of periodic

spatial patterns, see §2, we are particularly interested in the
possibility of Turing instability and the corresponding pattern
formation. Turing instability is the property of a nonlinear reac-
tion–diffusion system where a steady state that is stable in the
corresponding non-spatial system can, under certain par-
ameter constraints, become unstable in the spatial system
with respect to a heterogeneous perturbation containing a
certain wavelength [47].

Let (�u, �p) is a steady state of the non-spatial system and J
is the Jacobian matrix evaluated at this steady state:

J ¼ Fu Fp
Gu Gp

� �
, (5:4)

where the subscript denotes the corresponding partial deriva-
tive, for instance Fu = @F(u, p)/@u. We require that the steady
state is stable, so that the following conditions hold:

(a) tr(J) , 0, and (b) det (J) . 0, (5:5)

e.g. see [36]. In the spatial system, for stability of the corre-
sponding uniform steady state p(x, t) ; �p and u(x, t) ; �u
with respect to a periodic perturbation with the wavenumber
k, conditions (5.5) change to

(a) tr(Jk) , 0, and (b) det (Jk) . 0, (5:6)

where

Jk ¼ J � k2
Du 0
0 Dp

� �
: (5:7)

The Turing instability occurs if one of the conditions (5.6) is
broken. It is readily seen that condition (5.6a) holds for any
k. Therefore, the instability can only occur if there is a range
of values of k that satisfy the following inequality [36,48]:

min (R(k2)) , 0, (5:8)

where the characteristic function R(k2) ¼ det (Jk). Taking into
account (5.7), R(z) appears to be a quadratic polynomial, so
that inequality (5.8) is equivalent to [36,47]:

DFu þ Gp . 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ddet (J)

p
, (5:9)

where parameter D =Dp/Du is the ratio of the diffusion coef-
ficients. In its turn, it appears that a necessary condition for
(5.9) is that Fu and Gp must be of a different sign. Consider
Fu > 0 and Gp < 0; in this case, u is called the ‘activator’ and
p the ‘inhibitor’ [36]. Then another necessary condition for
(5.9) is D >Dcr > 1 where Dcr is a certain critical value that
depends on the parameters in the reaction terms [36,47].
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Now we consider how the generic relation (5.9) between
the system’s feedbacks works in the case of our model
(5.1)–(5.2). Given the complexity of the bifurcation structure
of non-spatial system (3.12)–(4.1), see §4 and [46] for more
details, a comprehensive study addressing the Turing instabil-
ity of all (stable) steady states over the entire parameter range
does not seem possible. We therefore concentrate on the
specific yet instructive case where there are two positive
steady states, a saddle and a stable focus (cf. figures 8b and
9), in particular to investigate whether the Turing instability
may occur for stable steady state B ¼ (�u, �p).

As realistic parameters are not presently available, we use
some hypothetical values instead. To partly compensate for
the lack of realistic values, below we will consider how the
pattern formation may be affected by a variation in (some
of) the parameters values. As a starting point, we consider
the following set: a1 = 170, c1 = 5, c0 = c2 = 1, a = 0.01, r = 7.5,
s = 7.5, a2 = 200, c3 = 0.5, σ1 = 0.05, σ0 = 190, α = 10; the corre-
sponding steady-state values are �u ¼ 0:69 and �p ¼ 0:00087.
For these parameters, the critical value of the diffusivity
ratio is readily obtained as Dcr = 59746. Figure 11 shows the
function R(z) for a subcritical case D <Dcr where the steady
state is stable (as R(z) > 0 for any z and condition (5.6b)
holds for any k) and a supercritical cases D >Dcr where the
steady state is unstable with respect to perturbation with
the wavelength from the interval where R(z) < 0 and hence
condition (5.6b) is broken.
For the above parameter set, the critical ratio of the diffu-
sion coefficients is very large, which may rise doubts whether
it is at all realistic in terms of the real-world dynamics. There-
fore, now we are going to consider how the critical relation
responds to changes in the parameter values and whether it
can be diminished. Indeed, it appears that Dcr is rather
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sensitive with respect to the variation of some of the model
parameters; examples are shown in figure 12. We have
found that by varying α, a1 and s, the critical ratio can be
made as small as Dcr = 98.5 (obtained for parameter values
c1 = 5, c0 = c2 = 1, a = 0.01, r = 7.5, s = 16, a2 = 192.6, c3 = 0.5,
σ1 = 0.05, σ0 = 190, α = 9.63, a1 = 168. The corresponding
steady state values are �u ¼ 0:59 and �p ¼ 0:01), and the
Jacobian is

J ¼ 0:0937 0:434
�0:508 �0:0939

� �
: (5:10)

Therefore, at this steady-state wealth acts as the activator
and population as the inhibitor: the relation similar to the
classical resource–consumer system. We mention here that a
further reduction of Dcr does not appear to be possible: for
instance, a further decrease in α (as in figure 12a) or a further
increase in s (as in figure 12b) make the steady-state unstable.
6. Spatio-temporal dynamics: numerical results
In this section, we consider the spatiotemporal dynamics of
system (5.1)–(5.2) that arises as a result of the Turing instabil-
ity. Note that the fact that the steady state becomes, in a
certain parameter range, unstable with regard to spatially
heterogeneous perturbations is established analytically (see
§5) and hence, as such, do not require any confirmation
(e.g. by simulations). However, the mathematical analysis of
the instability is based on linearization of the system in the
vicinity of the steady state and thus is limited to the time
interval when the deviation of the solution from the steady
state is small. That raises the question: what are the dynamics
at the later time, after the deviation from the steady state
becomes large enough to be affected by the nonlinearity of
the system? Turing instability is known to often lead to the
formation of a stationary spatially periodic pattern [14],
however more complicated dynamics can occur too [49,50].

In order to elucidate the above question, the reaction–dif-
fusion system (5.1)–(5.2) is solved numerically by finite-
differences using the following initial conditions:

u(x, 0) ¼ �u, p(x, 0) ¼ �p 1þ 0:01 sin
px
L

� �� �
, (6:1)

with the size of the spatial domain L = 120. The diffusion
coefficients are chosen asDu = 1 and Dp = 100. For the reaction
parameters, we use the values that are given at the end of the
previous section as they were shown to (almost) minimize
the diffusivity ratio. At the boundaries of the domain, the
zero-flux conditions (5.3) are used.

For these parameter values, Dp/Du >Dcr = 98.5 so that we
expect that a small initial perturbation of the steady state
leads to the emergence of a spatial pattern. This is indeed
seen in the numerical simulations (figure 14). At an early
stage of the dynamics, the initial conditions (6.1) fast evolve
(over t∼ 102, not shown here) to a nearly stationary periodic
spatial pattern, which then remains almost unchanged over a
considerable time (until t≈ 7000, see figure 14a). The spatial
distribution then starts evolving fast to develop a double-
frequency spatial mode, so that the spatial distribution
contains eight peaks instead of four (figure 14c–e). The
double-frequency mode appears to be transient; at a slightly
later time, it disappears and the spatial distribution returns to
four distinct peaks but now at different locations, so that the
peaks and the troughs exchange places (cf. figure 14a,g).

Further dynamics lead to a decrease in the amplitude of the
peaks and eventually to the decay in both system’s components
and eventually to the population extinction. Figure 13 shows
(for the same parameter values) the population and wealth
densities versus time obtained at two fixed locations in space,
i.e. at the boundary of the domain x = 0 and at x = (3/8)L, see
figure 13a,c, respectively. It is readily seen that the change of
the nearly stationary dynamics (until approx. t = 7000) to
much faster dynamics occurs when the local evolution of the
system’s variables takes them away from the vicinity of the
saddle point (figure 9).
7. Scales and units
It is readily seen from our numerical simulations that the
wavelength of the emerging pattern is approximately l = 30.
This is in dimensionless units; the choice Du = 1 that we
used in the simulations clearly indicates that, as the dimen-
sional diffusion coefficient is measured in length2 · time−1.
The question therefore arises here as to what is the corre-
sponding dimensional spatial scale of the pattern, i.e.
whether l = 30 corresponds to metres, kilometres, hundreds
of kilometres, etc.? Recall that in our simulations we used a
hypothetical parameter set. A rigorous, quantitative answer
to the above question requires the knowledge of realistic par-
ameter values, which are currently unknown (and there are
difficult to find). However, a preliminary, semi-qualitative
insight into this issue appears to be possible.
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Figure 13. Snapshots of the spatial distribution of population (red) and wealth (blue) shown at different moments of time: (a) t = 7000, (b) t = 7004, (c) t = 7030,
(d ) t = 7038, (e) t = 7040, ( f ) t = 7044, (g) t = 7046 and (h) t = 7048.
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The critical wavenumber, i.e. the wavenumber where
characteristic function R(z) reaches its minimum, cf. equation
(5.8), is given by the following expression:

k2cr ¼
Dua22 þDpa11

2DuDp
, (7:1)

e.g. see [48]. The corresponding wavelength can be written as

lcr ¼ 2p
2DuDp

Dua22 þDpa11

� �1=2

¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp=ja22j

q 2
(Dp=Du)(a11=ja22j)� 1

� �1=2

, (7:2)

(taking into account that a22 < 0). Note that the expression in
the brackets is dimensionless as it contains only the ratios of
the parameters; for the parameter values used in simulations
it gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=(100 � 1� 1)

p � 0:14.
Since the Jacobian elements have the dimension of inverse

time, the square root in the right-hand side of (7.2) has the
dimension of length and hence, once estimates of Dp and
a22 are available, is the factor that determines the spatial
scale. Estimates of the diffusivity of the human movement
are available in the literature; here we use the value Dp =
1000 km2 yr−1 [51].

In order to estimate the unit of time, we consider equation
(5.2) in a special case where u = 0 and p is small. In the non-
spatial case, neglecting the quadratic term, its solution is
given as p(t) ¼ const � exp (� s0t), so that over time t = 1/σ0
the population size decreases by the factor of e, i.e. approxi-
mately threefold. Recalling that the value of σ0 used in
simulations was 190, we obtain that the threefold decrease
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occurs by t≈ 0.005, in dimensionless units. In order to esti-
mate what can be this value in dimensional units, e.g. in
years, we note that the special case u = 0 corresponds to
some extreme conditions where there are no resources
whatsoever. Under such conditions, the population would
decrease very fast (e.g. dying from hunger), the timescale of
the decrease being defined by the physiological traits of the
human body. Considering the corresponding time is 0.1
year, we readily obtain that the dimensionless t = 1 corre-
sponds to approximately 20 years. Therefore, in
dimensional units,

ja22j � 0:1 � (time unit)�1 ¼ 0:1=(20 years)

¼ 0:005 yr�1: (7:3)

Correspondingly, we obtain that the scaling factor is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dpja22j

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000 � 200

p
(km) ¼ 450 (km), (7:4)

so that, from equation (7.2) we obtain:

lcr ¼ 2p � 0:14 � 450 (km) � 400 (km): (7:5)

We notice that, although this number is somewhat less than
that observed in the data, it is of the same order of magnitude.
8. Discussion and concluding remarks
In this paper, we have revisited factors and mechanisms
affecting the spatial distribution of the human population.
Such distributions often exhibit remarkable heterogeneity so
that the population density in some areas (e.g. urban) can
be much larger than in others (e.g. rural). In modern times,
there are many factors that contribute to this difference
[9,12,52]. However, how the heterogeneity in the population
distribution has developed over a longer, historical timescale
is not always clear. A textbook explanation relates the emer-
gence of densely populated areas to the heterogeneity of
the environment. Centuries ago, humankind was much
more exposed to the forces of nature than it is nowadays.
Areas with milder climatic conditions would have more
likely been selected to establish a settlement. Recall also
that agriculture was the main driver of the economy, its effi-
ciency to a large extent being dependant on the properties of
the natural environment.

Convincing as it may sound, in this paper we endeavoured
to challenge the above explanation. We first identified a few
areas (selected from different parts of the world) where the
environmental properties such as the average annual tempera-
ture, the average annual precipitation and the elevation do not
show much variability in space over stretches of thousands of
kilometres. We have revealed that, in spite of this approximate
spatial homogeneity of the environment, the population den-
sity distribution over those areas is clearly heterogeneous—in
fact, in all cases exhibiting a nearly periodic spatial pattern
(although the wavelength is somewhat different in different
countries). We mention here that, at least in the case of
Canada where the population density data are known starting
from early twentieth century, this pattern does not show any
considerable variation with time, with the location of peaks
and troughs being approximately the same.
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We then ask the following question: can there exist another
mechanism potentially leading to the formation of a hetero-
geneous spatial distribution, even in an approximately
homogeneous environment? We hypothesize that one such
mechanism can result from the nonlinear interplay between
the human population and the resources that support its
growth, in the manner of resource–consumer interaction
[16,53]. Indeed, it is well known that, in a system of two or
more interacting components, a locally stable steady state can
become unstable with respect to a spatially heterogeneous per-
turbation with a certain wavelength: the phenomenon called
the Turing instability [47]. As a result, a spatially periodic
pattern can arise [14,16].

Pattern formation due to the Turing instability is well
known for chemical and biological systems [14,16,36]. More
recently, the Turing instability has also been suggested as a
possible relevant mechanism in spatial economy [9], albeit
using a quite different modelling approach. For demographic
systems, however, to the best of our knowledge, the Turing
instability has never been considered. In this work, we have
investigated this phenomenon within the framework of the
demographic–economic model (5.1)–(5.2) proposed in our ear-
lier work [32,46]. Conditions of the Turing instability in terms
of the model parameters are found analytically (see §5). The
spatio-temporal dynamics of the system resulting from the
instability, including the development of the periodic spatial
pattern, was considered in numerical simulations (§6). As rea-
listic parameter values are not presently available, simulations
were performed for hypothetical parameter values.

Wemention here that, on one hand, the Turing instability is
a generic property of a certain class of reaction–diffusion sys-
tems, hence its discovery in the model (5.1)–(5.2) is perhaps
not surprising. On the other hand, since understanding of
spatial economic-demographic systems is at its infancy, the for-
mation of Turing patterns in a relevant mathematical model is
thought-provoking, especially when considered in conjunction
with the nearly periodic population distribution occurring in
some parts of the world (cf. §2). Although we do not claim
that the patterns emerging in the model are necessarily the
same patterns that are observed in the real-world population
distribution—indeed, without careful parameterization and
realistic parameter values, such a claim could hardly be justi-
fied—the qualitative agreement (see §7) between the data
and the simulations is encouraging.

Interestingly, a factor quantifying the spatial distribution
of wealth in the northern part of USA (along the USA–
Canada border) also exhibits a nearly periodic distribution
with a comparable wavelength of 800–1000 km [54]. This
observation may be regarded as indirect evidence in favour
of our hypothesis.

We mention here that the Turing instability and the corre-
sponding pattern formation in model (5.1)–(5.2) occur not just
for a particular parameter set but in a certain parameter range
(see figure 12) and hence are robust with respect to some vari-
ation in the parameters. This also follows from a more general
argument that the solution of a reaction–diffusion system
depends continuously on the variation of the form of the
reaction term for an appropriately chosen norm of the func-
tions, e.g. see [55], so that a small change (that does not
change the existence or stability of the system steady states)
in the form of the functions can only lead to a small change
in the solution. Thus, the parameter set chosen for our
numerical simulations (§6) is representative and by no
means unique. We also checked the robustness of the results
to the choice of the initial conditions by repeating the simu-
lations for a few other types including random. The results
(not shown here for the sake of brevity) are essentially the
same, showing only a minor difference from those presented
in figures 13 and 14.

Our simulations reveal that the emerging periodic pattern
is not the large-time asymptotics of the system, as it usually
happens in the case of Turing patterns, but the long-term
transient dynamics (cf. [56]). After the pattern emerges (at
t∼ 102), it remains almost unchanged over a long period of
time (for parameters of figure 14, until t≈ 7000). Eventually,
this quasi-stationary regime turns into a fast spatiotemporal
dynamics where the emergence of a higher-frequency spatial
mode is followed by the system collapse.

Recall, however, that our simulations were performed
for hypothetical parameter values. Correspondingly, in the
context of real-world demographic–economic systems, the
system collapse as a result of pattern formation is hypothetical
too; by no means it can be regarded as a forecast. Moreover,
given our simulation parameters and the corresponding time
units, it is not going to happen until a very remote future.
However, we believe that, by adding this ‘worst case’ to the
range of possible scenarios, it contributes to the understanding
of ways in which the society may develop. Besides, it remains
to be checked whether the collapse may happen at an earlier
time for other parameter values.

Note that, although the corresponding non-spatial system
exhibits multistability, without an external perturbation
(which is not a part of the model (4.1)), the system forever
remains in the vicinity (basin of attraction) of the positive
stable steady state. Also, for the parameter values outside
of the Turing instability range, the spatial system can persist
at its positive steady state indefinitely. The Turing instability
and the subsequent pattern formation are therefore the fac-
tors that push the system out of the basin of attraction of
the positive steady state (so that the system goes to extinc-
tion). Interestingly, although the Turing pattern formation
in bistable and multistable reaction–diffusion systems has
been a focus of interest since 1990s [57–59], it has been only
recently that this phenomenon—i.e. the formation of quasi-
stable patterns eventually converging to a spatially uniform
steady state—was observed and studied [60,61].

Our study leaves a few open questions. Firstly, we men-
tion that, although our theoretical findings, such as the
formation of Turing’s patterns on a relevant spatial scale
are in a qualitative agreement with the real-world data (see
§7), a direct comparison between theory and data is hardly
possible at this stage of research. Such a comparison would
required a sufficiently accurate estimate of the value of all
model’s parameters. This is a challenging and tedious task
and will become the focus of a separate study.

Secondly, our model is quite schematic. One question that
arises here is what can be the effect of different history and/
or ethnicity on the population dynamics, although the latter
is difficult to quantify [62]. Different ethnicity can mean a
different culture [63] and that can affect the ways in which
the resources are consumed and the wealth is generated
and distributed. Although we do not expect that it will
change the system’s properties completely—the existence of
the nearly periodic spatial pattern in countries as different
as Canada, Australia and Mongolia points out at the univers-
ality and robustness of this phenomenon—yet this issue
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should be addressed more carefully, for instance by using
more complicated models.

Another factor that was completely disregarded in our
present study is the way in which the given country’s popu-
lation has originally emerged. For instance, Canada’s
population mostly emerged as a result of migration from
Europe, eventually propagating across Canada from east to
west. In Australia, Europeans first settled in and around
bays and then diffused over the continent. By contrast, Mon-
golia has a significantly different history [64] and, albeit not
ethnically uniform, its present population mainly consists of
the same nations that have lived there at least since Middle
Ages. In mathematical terms, the different ways in which
different countries came to be populated may correspond to
different initial conditions, which, in its turn, may affect the
selection of the emerging spatial mode.

We also mention here that a more advanced model should
include more pathways for the effect of wealth on spatio-
temporal human population dynamics, e.g. by accounting for
cross-diffusion (cf. [32]). Indeed, in our current study, low or
negativewealth (i.e. debt) onlyaffects the populationby increas-
ing the mortality rate. However, intuitively, it can also increase
the emigration rate. It is well known that cross-diffusion can
lead to Turing instability and pattern formation in population
systems of ecological origin (e.g. [65]); whether it can occur in
a demographic–economic system is yet to be seen.
Finally, the effect of the system’s spatial dimensions
remains an open question. Recall that our spatially explicit
model only include one spatial dimension. Arguably, it was
appropriate for considering the population dynamics along
a narrow stripe, as was the case identified in our real-world
examples. Yet a mode general study on pattern formation
in the demographic–economic system should consider it in
the more realistic case of two spatial dimensions. That may
reveal more complicated patterns and more complicated
dynamics. That should be a focus of future research.
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