
HAL Id: hal-03398884
https://hal.science/hal-03398884

Submitted on 23 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally Documenting Tenderbake
Sylvain Conchon, Alexandrina Korneva, Çagdas Bozman, Mohamed

Iguernlala, Alain Mebsout

To cite this version:
Sylvain Conchon, Alexandrina Korneva, Çagdas Bozman, Mohamed Iguernlala, Alain Mebsout.
Formally Documenting Tenderbake. Open Access Series in Informatics, inPress, �10.4230/OA-
SIcs.FMBC.2021.5�. �hal-03398884�

https://hal.science/hal-03398884
https://hal.archives-ouvertes.fr


Formally Documenting Tenderbake1

Sylvain Conchon2

Nomadic Labs, Paris, France3

Alexandrina Korneva4

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France5

Çagdas Bozman6

Functori, Paris, France7

Mohamed Iguernlala8

Functori, Paris, France9

Alain Mebsout10

Functori, Paris, France11

Abstract12

In this paper, we propose a formal documentation of Tenderbake, the new Tezos consensus algorithm,13

slated to replace the current Emmy family algorithms. The algorithm is broken down to its essentials14

and represented as an automaton. The automaton models the various aspects of the algorithm: (i)15

the individual participant, referred to as a baker, (ii) how bakers communicate over the network16

(the mempool) and (iii) the overall network the bakers operate in. We also present a TLA+17

implementation, which has proven to be useful for reasoning about this automaton and refining18

our documentation. The main goal of this work is to serve as a formal foundation for extracting19

intricate test scenarios and verifying invariants that Tenderbake’s implementation should satisfy.20

2012 ACM Subject Classification Software and its engineering → Software organization and21

properties22

Keywords and phrases Consensus algorithm, Tezos blockchain, TLA+23

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.524

Category Short Paper25

1 Introduction26

Tenderbake is a new consensus algorithm designed by Nomadic Labs for the Tezos block-27

chain [5]. Tenderbake participates in the blockchain protocol to ensure that all peers reach28

agreement on the state of the distributed ledger. Essentially, the algorithm ensures that all29

participants record the same blocks, in the same order, in their local copy of the blockchain.30

Like Tezos’s current Emmy family protocols, Tenderbake is a Byzantine Fault-Tolerant31

(BFT) algorithm that can tolerate (a limited number of) malicious machine failures on an32

aynchronous network. The main advantage of Tenderbake is related to block finality, i.e.,33

the point at which the parties involved can consider the consensus on adding a block to34

be complete. More precisely, this is the moment when it becomes impossible to go back or35

modify a block that has been added to the blockchain. Unlike the probabilistic finality of36

Emmy algorithms, where the probability that a block will eventually belong to the blockchain37

increases with the number of blocks added in front of it, Tenderbake allows for an almost38

immediate finality: a block is considered to belong to the chain when only two blocks are39

added after it. This new consensus algorithm technology is inspired by PBFT (practical40

Byzantine Fault-Tolerant) protocols [4] like Tendermint [1, 3] in the Cosmos project [6].41

To achieve such a finality result, Tenderbake implements a three-phase PBFT protocol:42

a proposal phase where a single participant (called baker) proposes a new block, and two43

© Sylvain Conchon and Alexandrina Korneva and Çagdas Bozman and Mohamed Iguernlala and Alain
Mebsout;
licensed under Creative Commons License CC-BY 4.0

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 5; pp. 5:1–5:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.FMBC.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Formally Documenting Tenderbake

successive voting phases (called preendorsement and endorsement) at the end of which a44

quorum of votes must be reached on the proposed block. If a consensus is reached, each45

participant adds the proposed block locally to their blockchain and a new instance of the46

algorithm can then start for the next block (referred to as the next level in Tezos). However,47

this idyllic scenario can fail for many reasons. For example, Byzantine participants can inject48

fake blocks or fake votes. The consensus can also fail even in the absence of participant49

failure because blocks and votes, which are sent as messages, can be arbitrarily delayed or50

lost by the network. In this case, a new round of proposals/votes is launched, possibly with51

a new block issued by another participant.52

Tenderbake implements several mechanisms to avoid Byzantine attacks or asynchrony-53

related problems to guarantee the correctness of the consensus. For instance, a synchronization54

mechanism is required for each participant to decide that a round of proposals/votes is55

over. For this purpose, Tenderbake implements a partially synchronous system, where56

participants synchronize without exchanging messages, by exploiting their internal clocks57

and the information stored in the blockchain. As another example, cryptographic certificates58

about the (pre)endorsing majority are injected into blocks to prevent Byzantine attacks.59

Designing and implementing a consensus algorithm like Tenderbake is notoriously chal-60

lenging. While a very precise proof-and-paper description of this algorithm has been given61

in [2], we propose in this paper a TLA+ modeling of Tenderbake. To do this, we break62

down the algorithm to its essentials and represent bakers’ roles as an automaton. We also63

abstract the notion of time, but retain a synchronization mechanism that allows the drift64

of participants’ clocks to be simulated. We do not sacrifice any of the more subtle features65

of Tenderbake’s implementation, like how the protocol is handled by both the mempool (a66

more sophisticated gossip layer) and the bakers themselves.67

The main goal of our work is to provide a formal executable documentation of Tenderbake68

that will serve as a basis for extracting complex test scenarios and invariants that the69

Tenderbake implementation must satisfy. So far, our TLA+ automaton has proven useful for70

reasoning and exchanging with the developers of the actual implementation. The TLA+ model71

is available at https://www.lri.fr/~conchon/tenderbake/.72

2 Tezos Architecture73

Tezos forms a Peer-to-peer network in which peers, called nodes, are interconnected and74

communicate by message passing. Nodes implement the core algorithms and data structures75

of the blockchain. They are composed of a Peer-to-peer layer (P2P), validators (which use76

the rules of the economic protocol to check blocks and operations), a distributed database77

(DDB), and a specific data structure for pending operations, called the Mempool.78

Nodes continuously run a gossip protocol to communicate and exchange blockchains79

(complete or just head blocks) with each other. Each node maintains in the Mempool the80

best version of the blockchain that it has received. Nodes do not communicate plain messages81

directly, but only a hash value of them. When a node receives a hash, it checks if this82

value is already stored in its DDB before saving it. The role of the DDB is to maintain a83

correspondance between hash keys and the plain values associated with them. For that, as a84

parallel task, the DDB fetches data (of which only the hash is known) from the node’s peers,85

and, conversely, responds to similar peers’ requests by providing them with the requested86

data. When the DDB gets a response, it transmits to the Mempool the plaintext values that87

correspond to blocks, transactions, or votes.88

In this architecture, shown in Figure 1, bakers are not directly visible on the network.89

https://www.lri.fr/~conchon/tenderbake/


Conchon et al. 5:3

Tezos architecture – simplified view
NODE

P2
P

Mempool

BAKER

WORKER
Blockchains

Votes

• The baker gets the first two blocks
from the Mempool 

• The baker implements the 
consensus rounds to decide 
whether to vote on the current 
head or not

• The worker gets the votes from the 
Mempool and checks potential 
quorums

NETWORK

• Communicates and exchanges
blockchains (complete and heads) with 
other nodes

• Maintains the best version of the 
blockchain that it has received (fitness)  

• Passes on votes 

6

Va
lid

at
or

DDB

Figure 1 Tezos general architecture

For security reasons, they only communicate with each other through the nodes they are90

connected to (which we refer as the node of the baker). The role of a baker is to produce91

proposal blocks and to vote for the head blocks of the blockchain stored in its node’s Mempool.92

For that, a baker gets the first two blocks of the blockchain from the Mempool (via a Remote93

Procedure Call mechanism – RPC) and it implements the consensus rounds of Tenderbake94

to decide whether to vote on the current head or not. A baker is also composed of a worker95

running in parallel, whose role consists of getting the votes from the Mempool (via RPC)96

and checking for potential quorums.97

This modular, secure and highly parallel architecture raises several issues when imple-98

menting a PBFT algorithm like Tenderbake. First, while a Baker is voting on a specific99

blockchain head, the Mempool can receive a new proposal and decide to change its head.100

This means that everything needs to be resynchronized for the baker and the worker to vote101

or get a quorum on the current head. Secondly, Tezos has been designed to be agnostic to the102

consensus algorithm used to produce blocks. As a consequence, the rules of the Tenderbake103

algorithm are abstract, so it is important to make sure that the Mempool has access to all104

necessary information needed to choose the best blockchain. Last, bakers combine timestamp105

information stored in the blocks and their current clock to know how long before a round106

timeout is triggered. Since each baker has their own clock, this can lead to clock drift, to107

which the protocol must be resistant.108

Finally, the communication mechanism between components involves RPC (Worker/Mem-109

pool and Baker/Mempool) and streams of events (Worker/Baker). To simplify our modeling,110

we approximate these communications through a shared memory mechanism and leave the111

modeling of a communication layer closer to the implementation to future work.112

3 Tenderbake Automaton113

In this section, we describe the Tenderbake consensus formally, for a set of participants114

BAKERS. Contrary to the implementation in Tezos, where participants change at each level,115

we assume that this set is fixed. Each individual participant (baker) runs the same automaton.116

We explain how this automaton is implemented in TLA+ in Section 4.117

The automaton is given in Figure 2. It represents the evolution of a baker’s state and the118

actions performed by this baker in the three possible consensus phases. In the rest of this119

section, we give a description of the local state maintained by an arbitrary baker i and we120

detail the transitions of this automaton using a rudimentary guarded command language.121

Notations. By convention, the internal variables of the baker i are denoted by capital122

letters associated with an index i. Thus, Xi represents the internal variable X of i. We123

use lowercase letters for parameters. Certain variables are option variables, meaning that124

FMBC 2021



5:4 Formally Documenting Tenderbake

they can have a value or not. Not having a value is denoted by the symbol -. When125

comparing variables, X? means that X is an option variable and can therefore be empty.126

By convention, empty variables are (strictly) less than non-empty variables. We stick to127

conventional message passing notation where m(x1, . . . , xk)? stands for the reception of a128

message m with parameters x1, . . . , xk, and m(v1, . . . , vk)! is the asynchronous broadcast of129

m with v1, . . . , vk as arguments. Note that when a baker broadcasts a message, he does not130

send it to himself.131

Baker’s state. As shown in Figure 2, our automaton has three distinct states, which132

correspond to the possible phases of the consensus algorithm: NP for Non Proposer, CP for133

Collecting Preendorsements, and CE for Collecting Endorsements. In addition to this control134

flow information, a baker i maintains a copy of the blockchain in a variable CHi. Since only135

the two head blocks of the blockchain are needed for the consensus algorithm, CHi contains136

a pair of blocks (B, P), where B is the head block of the blockchain and P its predecessor. A137

block is represented by a record { `; r; t; p; eqc; pqc }, where each component is accessible138

via the standard record access notation (e.g. B.r). The role of each of these components is139

summarized in figure 6.140

In addition to the two head blocks stored in CHi, a baker maintains his current consensus141

round in RNDi. For safety reasons, a baker must also keep track of the block he voted142

for, in variable LOCKEDi and for which a preendorsement voting quorum was observed.143

To guarantee progression, a record ELECTi of the form { b; q; } is used to store the first144

observed endorsement quorum (in q) for the head block (in b). Finally, in order to speed up145

the convergence of the algorithm, a record PQCi of the form { p; r; q; } is used to keep track146

of the preendorsement quorum q with the highest round r, associated to the block payload p.147

The initial state for a baker is given in figure 7. Bakers are locked on and have elected the148

genesis block G in order to force the progression to go through proposals at level 1.149

Time and clocks. Tenderbake runs on the notion of rounds and time. As mentioned in150

section 1, the ideal consensus scenario is not always attainable. This is where the concept of151

rounds comes in. Bakers have a predefined number of seconds to decide on a block. Once152

that time is up, and if an agreement has not been reached, a timeout event is triggered, and153

the bakers have to drop what they were doing and start a new round. In Tenderbake, this154

is achieved with clocks and real-time. By combining timestamp information stored in the155

blocks and their current clock, bakers can calculate both their current round in the consensus156

and the time remaining before a timeout is triggered. The protocol is also resistant (to some157

extent) to a possible clock drift between bakers.158

Our model accounts for this clock/real-time mechanism in an abstract way. To do this,159

we first simplify the problem by considering that all rounds have the same duration. Then,160

we get rid of local clocks by replacing them with local counters that contain the number of161

timeouts a baker has received. Finally, we use a global mechanism (the oracle, depicted in162

Figure 4) to notify a baker when a round ends. Although it may seem too simplistic, our163

mechanism allows us to account for the problems related to time in Tenderbake, in particular164

the one related to clock drift.165

To implement our abstract synchronization mechanism, we assign two local variables to166

each baker: a boolean TOi, for timeout, used by the oracle to communicate the end of a167

round to the baker, and an integer TICKi to count the number of rounds elapsed since the168

blockchain was started. We also use a constant ∆ to set the maximum offset on the number169

of ticks (i.e. rounds) between bakers.170

To start a new round for a baker i, our oracle executes non-deterministically the guard/ac-171



Conchon et al. 5:5

NP

CP CE

Preendorsement 
QuorumProposal

Proposal

Endorsement 
Quorum

Endorsement 
Quorum

TimeoutTimeout

Timeout

Figure 2 Tenderbake automaton

ProposalCHi = (B, _)
NodeCHi = (H, PRE)

¬TOi ∧ B 6= H −→
let{`; r; p; pqc; eqc} = H in

B.` < ` −→
RNDi := TICKi − (PRE.t + 1)
LOCKEDi := −; PQCi := −; ELECTi := −
CHi := (H, PRE)
PQCi := pqc
RNDi = r −→ PEi := PreEndorse(i, `, r, b)

` = B.` ∧ r < RNDi ∧ B.r < r −→
CHi := (H, PRE)
PQCi.r? < pqc.r? −→ PQCi := pqc

` = B.` ∧ r = RNDi ∧ (r 6= B.r ∨ p = B.p) −→
CHi := (H, PRE)
PQCi.r? < pqc.r? −→ PQCi := pqc
LOCKEDi = − ∨ LOCKEDi.p = p ∨
(pqc 6= − ∧ LOCKEDi.r ≤ pqc.r) −→

PEi := PreEndorse(i, `, r, p)

Figure 3 Receiving a proposal

Trigger Timeout¬TOi ∧
(∀j, k.j 6= k =⇒ |TICKj − TICKk| ≤ ∆) ∧
(∀j.j 6= i =⇒ |TICKi + 1− TICKj | ≤ ∆) −→

TOi := true;
TICKi := TICKi + 1;

Figure 4 Trigger timeout oracle

Not ProposerCHi = (B, _)

TOi ∧ ¬ isP roposerNextRound(i) ∧
¬ isP roposerNextLevel(i) −→

TOi := false
RNDi := RNDi + 1

Proposer Next RoundCHi = (B, P)

TOi ∧ isP roposerNextRound(i) ∧
¬ isP roposerNextLevel(i) −→

TOi := false
RNDi := RNDi + 1
let p, pqc, P =

if (PQCi = −) then (ε,−, P)
else (PQCi.p, PQCi, PQCi.pred) in

let b = {B with t = TICKi; r = RNDi; p; pqc} in
Pi := Propose(i, (b, P ))

Proposer Next LevelCHi = (B, _)

TOi ∧ isP roposerNextLevel(i) −→
TOi := false
let b = {` = B.` + 1; t = TICKi; p = ε;

r = RNDi − ELECTi.b.r;
eqc = ELECTi.q; pqc = −} in

RNDi := RNDi + 1
Pi := Propose(i, (b, ELECTi.b))

Figure 5 A baker’s possible actions once timeout has
been reset

` level of the block in the blockchain;
r consensus round during which the block was proposed;
t timestamp of when the block was proposed;
p block’s payload - i.e. contents without consensus operations;

pqc preendorsing majority certificate with the round when
it was observed;

eqc endorsing majority certificate for the previous block.

Figure 6 Block structure

Initial state for Baker i Init. state for Mempool

CHi = (G, G) NodeCHi = (G, G)
RNDi = 0 Mi = ∅
TICKi = 1 Pi = −

LOCKEDi = Genesis Ei = −
PQCi = {p = []; q = ∅; r = 0} PEi = −

ELECTi = {b = G; q = ∅}
TOi = true

where G = {` = 0; r = 0; t = 0; p = []; pqc = −; eqc = ∅}

Figure 7 Initial states

Preendorsement QuorumCHi = (B, _)

let q = {m ∈ Mi | m = PreEndorse(_, `, r, p) ∧
` = B.` ∧ p = B.p ∧
r = RNDi = B.r} in

¬TOi ∧ quorum(q) ∧ LOCKEDi 6= B −→
PQCi := {p = B.p; r = B.r; q = q}
LOCKEDi := B
Ei := Endorse(i, B.`, B.r, B.p)

Endorsement QuorumCHi = (B, _)

let q = {m ∈ Mi | m = Endorse(_, `, r, p) ∧
` = B.` ∧ p = B.p ∧
r = RNDi = B.r} in

¬TOi ∧ quorum(q) ∧ ELECTi = − −→
ELECTi := {b = B; q = q}

Figure 8 Preendorsement and endorsement quorums

MempoolNodeCHi = (H, PRE)

PreEndorse(j, `, r, p)? ∨ PEi = PreEndorse(j, `, r, p) −→
Mi := Mi ∪ {PreEndorse(j, `, r, p)}
PEi 6= − −→

PreEndorse(i, `, r, p)!
PEi := −

Endorse(j, `, r, p)? ∨ Ei = Endorse(j, `, r, p) −→
Mi := Mi ∪ {Endorse(j, `, r, p)}
Ei 6= − −→

Endorse(i, `, r, p)!
Ei := −

Propose(j, (h, pre))? ∨ Pi = Propose(j, (h, pre)) −→
let {`; r; pqc; eqc} = h in
isP roposer(j, `, r) ∧
(H.`, H.pqc.r,−PRE.r, H.r) < (`, pqc.r,−pre.r, r) ∧
valid_eqc(eqc, pre) ∧
(pqc = − ∨ valid_pqc(h)) −→

NodeCHi := (h, pre)
Pi 6= − −→

Propose(i, (h, pre))!
Pi := −

Figure 9 Mempool transitions

quorum(x) ∆= |x| >
2×|BAKERS|

3

valid_eqc(eqc, pre) ∆= quorum(eqc) ∧
∀Endorse(i, `, r, p) ∈ eqc, (`, r, p) = pre.(`, r, p)

valid_pqc(b) ∆= quorum(b.pqc.q) ∧
∀PreEndorse(i, `, r, p) ∈ b.pqc.q, (`, p) = b.(`, p) ∧ r < b.r

isP roposer(i, `, r) ∆= ((` + r) mod |BAKERS|) + 1 = i

isP roposerNextRound(i) ∆= let (B, P) = CHi in
isP roposer(i, B.`, RNDi + P.r − PQCi.pred.r + 1)

isP roposerNextLevel(i) ∆= ELECTi 6= − ∧
isP roposer(i, B.` + 1, RNDi − ELECTi.b.r)

FMBC 2021



5:6 Formally Documenting Tenderbake

tion command in figure 4 as soon as (1) the baker i has no timeout to handle (2) the172

differences between any two bakers’ counted rounds does not exceed ∆, before and after173

execution of the transition.174

The command’s action sets the timeout variable of the baker i to true and increments its175

tick counter. This transition guarantees that no two bakers can drift for more than ∆ rounds176

but allows each one to proceed independently. After this transition, the baker must handle177

its timeout and move according to one of the three cases described in the next paragraph.178

In Tenderbake, we use ∆ = 1, which means that internal clocks of the machines on which179

bakers run are only allowed to drift by an amount that would result in a difference of at180

most one round.181

Timeout transitions. As shown in Figure 2, a baker is forced to move to state NP when the182

oracle resets his TOi variable. This is when the baker can start a new round if no consensus183

was reached during the current round, or a new level, if the baker has collected a quorum184

of endorsements for his current head block. The actions bakers are allowed to perform on185

timeouts depend on their right to propose a new block for the next round (in the same186

level), or for the earliest possible round of the next level in which the baker can propose. We187

abstract this authorization with a predicate IsProposer(i, `, r) which is true when baker i is188

the proposer at level ` and round r.189

Figure 5 contains the possible behaviors (or transitions) of a baker after a timeout. In190

Not the Proposer, the baker first checks that he is not the proposer for the next round191

RNDi + 1 of the current level B.` (see Def. of isProposerNextRound). Then, either there192

is no block stored in ELECTi (denoted by ELECTi = -), meaning the baker did not obtain193

a quorum for his head block, or the baker is not the proposer for the next level (see Def.194

of isProposerNextLevel). In the latter case, instead of IsProposer(i, B.` + 1, 0), the baker195

checks for the round RNDi − ELECTi.b.r of the next level B.` + 1. This expression takes196

into account the difference between the baker’s current round RNDi and the round during197

which the baker obtained a quorum for his head block (stored in the ELECTi variable). Thus,198

for instance, if a baker obtains a quorum at round RNDi = r, and if he is the proposer199

for the next level at the end of that round r, then the baker checks indeed the first round200

RNDi − r = 0 of the next level. The actions associated to this transition consist only of201

resetting the TOi variable and incrementing the counters TICKi and RNDi. In Proposer202

of next round, the baker communicates a proposal Propose(i, (b, P )) for the next round203

to the Mempool through the variable Pi. The block b is built using the content of the head204

block B with new timestamp and round information. The payload of this new proposal is205

either a fresh value (denoted by ε) or the payload of the block stored in the baker’s PQCi206

variable, if it exists. The preendorsement quorum certificate of this new block is either empty207

or the one stored in PQCi. In Proposer of next level, the baker must have a block208

stored in ELECTi and he must also be the proposer of the round RNDi − ELECTi.b.r in the209

next level B.` + 1. The new proposal contains a fresh payload, an endorsement quorum for210

its block predecessor taken from ELECTi.q and a timestamp equal to TICKi.211

The Mempool. While a Mempool typically serves as a gossip layer, simply passing on212

messages between bakers, Tenderbake’s Mempool is more sophisticated. For instance, the213

Mempool keeps a local variable NodeCHi, its own copy of the blockchain, the most up-to-date214

version that it has “seen” come through. Since the consensus in Tenderbake depends on the215

last two blocks, NodeCHi contains only the head of the blockchain and its predecessor in our216

model. In addition to these blocks, the Mempool also maintains a set Mi of all of the votes217

(PreEndorse or Endorse messages) that it receives from all bakers.218



Conchon et al. 5:7

Furthermore, when the Mempool receives a proposal, either through a message or a shared219

variable, it first verifies that the proposed block is actually better than its current head. If220

it is indeed better, the Mempool simply updates its version of the blockchain. Otherwise,221

it is ignored. The notion of a better chain is an important part of a consensus algorithm,222

corresponding to a total ordering between blocks. In Tezos, this ordering is based on a notion223

of fitness, which amounts to comparing, in a lexicographic order, the following quadruples224

(H.`, H.pqc.r,−PRE.r, H.r) < (l, pqc.r,−pre.r, r), where H and PRE are the first two head225

blocks of NodeCHi, while h and pre are the blocks received in a Propose(j, (h, pre)) message.226

Moreover, in addition to fitness, the Mempool ensures the information contained in the eqc227

and pqc fields is valid. Last, if this better proposal has been received through a shared228

variable, the Mempool broadcasts it to the other participants. Figure 9 shows transitions229

of the Mempool that handle PreEndorse and Endorse votes (received either by messages or230

through the shared variables PEi and Ei). These messages are simply stored in Mi
1.231

Proposal transition. As seen in Figure 2, a baker can handle a new proposal in any state.232

We give in Figure 3 the Proposal transition that a baker can execute as soon as he is running233

a new round and when the head block B in CHi is different from the one in the Mempool.234

In that case, a baker determines if he can vote (preendorse) for the new head stored in the235

Mempool. There are only two possibilities for a baker to preendorse a proposal:236

1. The chain stored in the Mempool is strictly longer than the one stored in the baker.237

2. Both chains have the same length and the proposal’s round is equal to the current baker’s238

round RNDi. The baker also checks that he is not about to vote twice in the same round,239

except for the same payload. Moreover, the baker only preendorses in this case if:240

a. he has never endorsed (locked) a previous proposal in the same level, or241

b. he is locked to some block payload p0 at some round r0, but the current proposal’s242

payload is equal to p0, or the current proposal got a PQC at some round r1 > r0.243

In (1), a baker synchronizes the value of its current round RNDi in the new level. It also244

checks, before preendorsing, that the block H, while at a higher level, does not correspond to245

an old proposal.246

Quorums. The last two transitions are described in Figure 8. As mentioned above, the247

Mempool keeps a set Mi of all the messages it has received. If the number of preendorse248

messages for the head block B stored in CHi is enough for a quorum, then a baker can249

execute the Preendorsement Quorum transition to update PQCi with his current head and the250

calculated quorum, change LOCKEDi to B, since this is the block he is about to endorse, and251

communicate an Endorse(i, B.`, B.r, B.p) message to the Mempool. An endorsement quorum252

transition is possible in states CE and CP. The baker observes endorsement quorums only253

when his ELECTi variable is not set. In that case, if enough endorsement messages exist in254

the Mempool for his head block, the baker records that block and its quorum in ELECTi.255

4 TLA+
256

In this section we discuss how we go from the previous automaton to its TLA+ implementation.257

The automaton makes it fairly straightforward to convert to TLA+ by simply representing258

the baker, the Mempool, the possible actions, and the synchronization mechanism.259

The Baker and the Mempool. We define a constant set BAKERS of all bakers in the260

network. A variable BakerState maps each baker to their state (i.e. the internal variables261

1 Although we could wipe the contents of Mi at each new round startup, we decided not to do it explicitly
to be able to explore different mempool cleaning strategies in practice.

FMBC 2021



5:8 Formally Documenting Tenderbake

from section 3), represented as a record structure. We stray from the types in section 3 by262

using n-tuples instead of records to represent LOCKEDi, ELECTi, and PQCi. BakerState[ i ]263

represents the state of baker i. To model the phases of the algorithm, we add an internal264

variable STATEi for each baker. Initially, each baker starts off in the following state, where265

sequences are delimited by 〈 〉, and Genesis is the genesis block:266

InitialState
∆= [state 7→ "np", pqc 7→ 〈〉, ch 7→ 〈Genesis, Genesis〉, rnd 7→ 0,

locked 7→ 〈〉, elect 7→ 〈Genesis, {}〉, timeout 7→ true, tick 7→ 0]267

268
The Mempool is a record with the fields - nodeCH, for its local blockchain (the first two269

blocks), msgs, the set of Endorse and PreEndorse messages it has received, and the fields270

propose, endorse, preendorse for the variables Pi, Ei, PEi. It starts off with an empty set of271

msgs and two Genesis blocks.272

Synchronization. As mentioned in section 3, we introduce an oracle transition which273

allows bakers to progress individually with timeouts (TOi) while maintaining synchronization,274

i.e. by being at most ∆ rounds apart. We do the same thing in our TLA+ implementation:275

TOi is the first enabling condition of each timeout step definition.276

Actions. Bakers and the Mempool are impacted by the various actions on the network.277

Each of these are defined individually in TLA+. For example, the Endorsement Quorum step278

in Figure. 2, enabled in CP or CE, is defined as follows:279

EndQuorum(i) ∆= ∧ BakerState[i].timeout = false
∧ BakerState[i].elect = 〈〉
∧ BakerState[i].state = "cp" ∨ BakerState[i].state = "ce"
∧ CollectEnd(i)
∧ BakerState′ = [BakerState except

![i].elect = 〈BakerState[i].chain[1].round,

BakerState[i].chain[1].contents,

BakerState[i].chain[1].time〉,
![i].state = BakerState[i].state]

∧ unchanged Mempool

280

281
Baker i can execute this step iff (i) he is synchronized, (ii) he is in state cp or ce, and (iii)282

CollectEnd(i) is true. CollectEnd (for “collecting endorsements”) counts all of the Endorse283

messages for i’s current head in Mempool.msgs and checks whether it is enough for a quorum.284

If these three conditions are satisfied, baker i modifies ELECTi and transitions to phase NP285

of the algorithm. Every other transition in Figure 2 is defined in a similar way.286

Test scenarios. While the automaton made writing our TLA+ specification easier, the287

spec itself has, in return, proven extremely useful in debugging the automaton. Sometimes a288

deadlock would be reached when it should not have been, leading us to review Tenderbake’s289

code, and fixing things we overlooked in our model. The main advantage is, however, being290

able to run various test scenarios. We can easily modify our spec to account for various clock291

drifts or Byzantine bakers.292

5 Conclusion293

In this paper we proposed a TLA+ model of Tenderbake, along with an automaton detailing294

the key parts of Tenderbake. This method simplifies the problem by abstracting the notion295

of time, while retaining Tenderbake’s more nuanced features, such as its more elaborate296

Mempool. Our method gives us a formalized and executable Tenderbake documentation.297

This serves as the foundation for running specific test scenarios and verifying properties298

Tenderbake needs to satisfy. An immediate line of future work is to define those properties299

and check them with the TLC model checker.300



Conchon et al. 5:9

References301

1 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci302

Piergiovanni. Correctness of tendermint-core blockchains. In 22nd International Conference on303

Principles of Distributed Systems, OPODIS 2018, December 17-19, 2018, Hong Kong, China,304

volume 125 of LIPIcs, pages 16:1–16:16, 2018.305

2 Lăcrămioara Astefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara306

Tucci Piergiovanni, and Eugen Zalinescu. Tenderbake - a solution to dynamic repeated307

consensus for blockchains. In Fourth International Symposium on Foundations and Applications308

of Blockchain, 2021.309

3 Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef310

Widder, and Anca Zamfir. Formal specification and model checking of the tendermint311

blockchain synchronization protocol (short paper). In 2nd Workshop on Formal Methods for312

Blockchains, FMBC@CAV 2020, July 20-21, 2020, Los Angeles, California, USA (Virtual313

Conference), volume 84 of OASIcs, pages 10:1–10:8, 2020.314

4 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,315

pages 173–186, 1999.316

5 LM Goodman. Tezos—a self-amending crypto-ledger white paper. URL: https://www. tezos.317

com/static/papers/white paper. pdf, 2014.318

6 Jae Kwon and Ethan Buchman. Cosmos whitepaper, 2019.319

FMBC 2021


	1 Introduction
	2 Tezos Architecture
	3 Tenderbake Automaton
	4 TLA+
	5 Conclusion

