
HAL Id: hal-03398802
https://hal.science/hal-03398802

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Historical Changes and Future Trajectories of
Deforestation in the Ituri-Epulu-Aru Landscape

(Democratic Republic of the Congo)
Joël Masimo Kabuanga, Onésime Mubenga Kankonda, Mehdi Saqalli, Nicolas

Maestripieri, Thomas Mumuni Bilintoh, Jean-Pierre Mate Mweru, Aimé
Balimbaki Liama, Radar Nishuli, Landing Mané

To cite this version:
Joël Masimo Kabuanga, Onésime Mubenga Kankonda, Mehdi Saqalli, Nicolas Maestripieri, Thomas
Mumuni Bilintoh, et al.. Historical Changes and Future Trajectories of Deforestation in the
Ituri-Epulu-Aru Landscape (Democratic Republic of the Congo). Land, 2021, 10 (10), pp.1042.
�10.3390/land10101042�. �hal-03398802�

https://hal.science/hal-03398802
https://hal.archives-ouvertes.fr


land

Article

Historical Changes and Future Trajectories of Deforestation in
the Ituri-Epulu-Aru Landscape (Democratic Republic of
the Congo)

Joël Masimo Kabuanga 1,* , Onésime Mubenga Kankonda 1,2, Mehdi Saqalli 3 , Nicolas Maestripieri 4 , Thomas
Mu-muni Bilintoh 5, Jean-Pierre Mate Mweru 6, Aimé Balimbaki Liama 7, Radar Nishuli 7 and Landing Mané 8

����������
�������

Citation: Kabuanga, J.M.; Kankonda,

O.M.; Saqalli, M.; Maestripieri, N.;

Bilintoh, T.M., Mweru, J.-P.M.; Liama,

A.B.; Nishuli, R.; Mané, L. Historical

Changes and Future Trajectories of

Deforestation in the Ituri-Epulu-Aru

Landscape (Democratic Republic of

the Congo). Land 2021, 10, 1042.

https://doi.org/10.3390/land10101042

Academic Editor: Sofia Bajocco

Received: 17 March 2021

Accepted: 25 August 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Département d’Aménagement des Écosystèmes, Faculté de Gestion des Ressources Naturelles Renouvelables,
Université de Kisangani, Kisangani P.O. Box 2012, Democratic Republic of the Congo;
onesime.kankonda@unikis.ac.cd

2 Centre de Surveillance de la Biodiversité, Université de Kisangani, Kisangani P.O. Box 2012,
Democratic Republic of the Congo

3 CNRS (UMR 5602 GEODE) Maison de la Recherche de l’Université du Mirail, 5, Allées A. Machado,
CEDEX 1, 31058 Toulouse, France; mehdi.saqalli@univ-tlse2.fr

4 TerraNIS, 12 Avenue de l’Europe, 31520 Ramonville, France; nicolas.maestripieri@terranis.fr
5 School of Geography, Clark University, Worcester, MA 01610, USA; tbilintoh@clarku.edu
6 Ecole Post-Régionale d’Aménagement et de Gestion Intégrés des Forêts et des Territoires Tropicaux (ERAIFT),

Université de Kinshasa, Kinshasa P.O. Box 15.373, Democratic Republic of the Congo; jp.mate@eraift-rdc.org
7 Institut Congolais pour la Conservation de la Nature (ICCN), 13 Avenue des Cliniques,

Kinshasa P.O. Box 868 Kin1, Democratic Republic of the Congo; aime.joseph@yahoo.fr (A.B.L.);
radarnishuli3@gmail.com (R.N.)

8 Satellite Observatory of the Forests of Central Africa, 14, Sergent Moke—Q/Socimat, Concession Safricas,
Kinshasa, Democratic Republic of the Congo; lmane@osfac.net

* Correspondence: masimo.kabuang@student.unikis.ac.cd; Tel.: +243-826-369-021

Abstract: The Ituri-Epulu-Aru landscape (IEAL) is experiencing deforestation and forest degradation.
This deforestation is at the root of many environmental disturbances in a region characterized by
endemism in biodiversity. The importance of this article is to provide useful information for those
who wish to discuss a model that can be replicated for other territories affected by deforestation and
changes in natural and anthropogenic forest structure. This article focuses on the triangulation of
spatialized prospective scenarios in order to identify future trajectories based on the knowledge of
historical dynamics through the diachronic analysis of three satellite images (2003–2010–2014–2016).
The scenarios were designed in a supervised model implemented in the DINAMICA EGO platform.
The three scenarios: business as-usual (BAU), rapid economic growth (REG) and sustainable man-
agement of the environment (SME), extrapolating current trends, show that by 2061 this landscape
will always be dominated forests (+84%). Old-growth forests occupy 74.2% of the landscape area
in the BAU scenario, 81.4% in the SEM scenario and 61.2% in the REG scenario. The SEM scenario
gives hope that restoration and preservation of biodiversity priority habitats is still possible if policy
makers become aware of it.

Keywords: land use change; modeling; scenario; deforestation; DINAMICA EGO; PFBC landscapes;
Democratic Republic of the Congo

1. Introduction

Deforestation is one of the main environmental problems in the Democratic Republic
of the Congo (DRC) [1]. Studies show that deforestation and forest degradation cause
disturbances at several levels, such as biodiversity loss, soil erosion and global warming [2].
Indeed, these two processes lead to the modification of the composition and configuration of
forest landscapes [3]. Old-growth forest is considered as the priority habitat for biodiversity
because it corresponds with the undisturbed natural ecosystem [4,5]. Its replacement by
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other land uses is therefore of significant ecological concern [6]. Moreover, deforestation
and habitat loss represent complex phenomena linked to several causes, in particular the
expansion of agriculture, the extension of infrastructure, logging, economic, demographic,
cultural, technological, political factors and institutional establishment [7–9]. However, the
influence of these factors depends on their intensity and the duration of their pressure [10].

Although quantitative and qualitative studies on the influence of various causes
remain rare, the literature agrees that shifting slash-and-burn agriculture is the main driver
of deforestation in DR Congo [11,12]. Knowledge from studies of land use and occupation
changes is available at the national level [12,13], but it remains less numerous at the
provincial and local level, particularly in landscape conservation [13]. In the Ituri-Epulu-
Aru landscape (IEAL), studies on change stop at estimating forest area and deforestation
rates [2,14,15]. Moreover, studies on the spatiotemporal modeling of forests have recently
been produced however very few have been developed and applied at the scale of a
conservation landscape [1].

The Ituri-Epulu-Aru landscape is one of twelve conservation landscapes under the
Congo Basin Forest Partnership (CBFP). This landscape is mainly dominated by tropi-
cal rainforests [15]. Furthermore, it abounds in an exceptional biodiversity including in
particular more than 1192 species of plants, 62 species of large mammals (including the ex-
tremely rare okapi, the forest elephant and the chimpanzee) and 312 species of birds [15,16].
Deforestation and forest degradation are the main threats to this biodiversity.

The changes in land cover and use across the Ituri-Epulu-Aru landscape are poorly
understood and poorly documented [14]. Yet, it is the sum of local dynamics that deter-
mines change at the national, regional and global scale [17]. Consequently, the expansion
of deforestation raises a series of questions regarding the evolution of priority habitats for
biodiversity, its impact on the composition and configuration of the landscape, the role of
the dominant factors in the past dynamics and the possible future devastation of forests in
the short, medium and long term.

Remote sensing is useful for monitoring vegetation [18]. However, the mapping of
land use by remote sensing remains a methodological challenge in the tropical region,
given the heavy cloudiness there. Access to satellite images also remains limited. In
the Ituri-Epulu-Aru landscape, many institutions working in the management of natural
resources rely on cartographic material from national studies [2] regional or global due to
lack of technology or financial constraints [13]. However, the definition of the legend or
the observation time may not always meet the expectations of managers.

The interest of this study was to simulate deforestation in the future based on present
and past deforestation. In addition, the simulations were analyzed in contrasting scenarios
in order to plan future actions to fight against deforestation [7,8,19–21].

2. Materials and Methods
2.1. Study Area

The Ituri-Epulu-Aru landscape (2◦37′022′ ′–0◦31′030′ ′ N, 27◦34′034′ ′–30◦00′039′ ′ E,
40,862 km2) is one of the twelve CBFP landscapes (Figure 1). It is located in the north-
eastern part of the Democratic Republic of the Congo. Most of the landscape is located in
Ituri province (in the administrative territories of Mambasa, Irumu and Djugu). A part of
the landscape is included in the province of Haut-Uélé (territories of Wamba and Watsa).
Another part also affects the province of North Kivu from where part of the population
leaves and affects the landscape.
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Figure 1. Geographical and topographical context of the study area.

EIAL is characterized by its high biodiversity and number of endemic species. The
biophysical occupation of the Ituri-Epulu-Aru landscape is mainly dominated by dense
semievergreen dryland to closed canopy forests. These forests include, in particular, the
monodominant forests with Gilbertiodendron dewevrei and the mixed forests in which no
species is predominant. In the extreme northeast of the landscape there is the semide-
ciduous forest, the canopy of which is mainly composed of heliophilous species such as
Entandrophragma spp. and Khaya anthotheca, Albizia spp. [15,22,23]. Secondary forests and
the rural complex are very often along the roads. The region’s economic activities are
shifting slash-and-burn agriculture, artisanal and semi-industrial mining, artisanal and
industrial logging and animal husbandry. The agricultural area is divided into two distinct
sectors: the hut gardens and the fields far from the villages. The agriculture practiced by
the groups that traditionally live in the forest is based on a rotation of two years of crops
and ten years of fallow. The fields are small, generally less than 2 ha, and represent only a
small proportion of the agricultural mosaic. Recent immigrants practice more intensive
agriculture, with larger fields, shorter fallow periods, and greater clearing of old-growth
forest [22,23].

Land use at the landscape scales (Figure 1) includes the Okapis Wildlife Reserve
(OWR) (13,720 km2), the Mai-Tatu Community Reserve (proposed), a logging concession
Enzyme Refines Association (ENRA) (520 km2) and three community management zones:
Banana (575 km2), Andekau (6973 km2) and Bakwanza (2181 km2) [22,23].

2.2. Data Used
2.2.1. Satellite Images

Satellite images used for land use dynamics in the Epulu-Ituri-Aru landscape are
annual CARPE composites of 0.025 degree resolution. These composites come from Landsat
TM, ETM + and OLI images (respectively, Thematic Mapper, Enhanced Thematic Mapper
plus and Operational Land Imager). These composites are made up of four spectral bands:
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NIR (0.845–0.885 µm), RED (0.63–0.68 µm), SWIR1 (1.56–1.66 µm) and SWIR2 (2.1–2.3 µm).
These composites have undergone atmospheric, radiometric and geometric corrections [24].

The Central Africa Regional Program for the Environment (CARPE) composites were
chosen because they have no cloud cover and allow the analysis of multi-date changes.
They cover all the countries of the Congo Basin and can be downloaded free of charge from
the CARPE website (https://carpe.umd.edu/ (accessed on 3 September 2021)) [24]. These
images are organized in square tiles of one degree. For this article, 40 tiles were used for
the four dates selected (i.e., 10 tiles per date). The CBFP landscapes were created in 2002
and development works started in 2003 in the Epulu-Ituri-Aru landscape. Therefore, the
year 2003 was chosen as the reference date. In addition, 2016 was chosen in alignment with
a field data collection campaign. And 2010 is the year that roughly halves the observation
period (2003 and 2016). The year 2014 was chosen for the validation of the spatialized
prospective model. Indeed, 2014 is relatively close to 2010 and 2016 and far enough away
from 2003; an ideal time step for validation [25–27].

To ensure multi-temporal comparability, a series of preprocessing were useful. First,
the rectified images were projected in the same reference coordinate system: WGS 84, UTM
zones 35 North. Then, for each spectral band, a mosaic of tiles was created in the chosen
years. Radiometric shifts due to differences in acquisition dates were minimized by doing
histogram equalization while taking the sharper tiles as references.

2.2.2. Field Data

Supervised classification generally requires a certain number of training samples and
verification samples [26]. Typically, traditional search uses manual visual interpretation
to get points. Thus, the sampling consisted of the selection of the objects according to the
spectral profiles defined using the GPS field surveys (surveys from 20 December 2016 to
15 January 2017). Then, the training areas that were chosen, on the images after 2016, for
each class correspond to areas considered unchanged (built-up areas and inselberg for
example) or having signatures close to the profile of 2016. In total, 950 measurement points
have been taken (Table 1). This set was split into two groups of data: 665 used for the
classification of land use in 2016 (i.e., 70% geographic coordinates) and 285 points used for
the validation of the 2016 classification.

Table 1. Description of land use classes.

Land Cover Code Number of Points Description Sources

Old-growth forest Pf 257

Woody formation consists of a very dense cover of large
trees. Old-growth forest can be semi-deciduous or

evergreen, or even swampy. In all cases, the carpet of
grasses is absent, and the forest has not undergone

significant modification by human activities. The tree
layer can reach 50 m in height.

[24,28,29]

Secondary forest Sf 302

Woody formation corresponding to a stage of
reconstitution of forest massifs which have undergone

strong anthropogenic interventions, or which have
evolved from wastelands. It usually has a strong

dominance of moderately fast growing semi-heliophilic
species. The tree layer generally reaches 35 m in height

[6,24,29–31]

Non-Forest NF 315

Non-forest plant formation including wasteland, shrub
savannah, land cultivated on an itinerant or intensive

basis, as well as recent fallows. This class also includes
areas occupied by buildings, dwellings and other

high-density constructions as well as areas without
vegetation with bare soil, rocky outcrops or even sandy

beaches along rivers. This class is represented by the
major roads and their right-of-way

[24,28,30–32]

Water Ww 76 This class includes all bodies of water, including the Ituri
River and Epulu [13,24,28,30]

https://carpe.umd.edu/


Land 2021, 10, 1042 5 of 24

2.3. Methods

The technical process can be divided into 2 steps:

• Land use and land cover (LULC) classification.
• Modeling of deforestation.

The overall technical process is shown in Figure 2.
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2.3.1. Land Use and Land Cover (LULC) Classification

The Random Forest classification (RFC) was applied to the images of 2003, 2010, 2014
and 2016 via the R software [33] with the R package “RandomForest” [34] to obtain LULC
information. RFC [35] is a supervised technique of nonparametric statistical methods [36].
RFC has been used in several studies in the past [24,32,36–43]. In the RFC, when a sample
is entered into the model, each decision tree performs a separate evaluation to determine
which category the sample should belong to, and the category that is most often selected
is ultimately considered the category sample. The RF method can effectively reduce
the uncertainty of a particular algorithm and improve the precision of the discriminant
classification. The informational dimension of RF processing is larger and more complex
than that of other classification algorithms.

In this study, the data entered into the RF model included the full range of raw bands
of the annual composites of CARPE (RED, NIR, SWIR1 and SWIR2), Normalized difference
vegetation index (NDVI), Normalized difference moisture index (NDMI), Band5/Band 4
ratio (B54R), Normalized brown ratio (NBR), SRTM products. During the study, we found
that the classification accuracy of the full band combination was highest when comparing
different combinations of bands. Additionally, we have found that SRTM products improve
overall accuracy. The number of decision trees was set at 2000 using 70% of all samples.
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2.3.2. Modeling of Deforestation

Spatial modeling of deforestation was made on the basis of historical changes in land
use assessed between 2003 and 2016. The combination of the transition matrix (2003–2016)
adapted to three scenarios: business as usual (BAU), sustainable environmental manage-
ment (SEM) and rapid economic growth (REC), with maps of transition potential and
explanatory factors has enabled regular prospective monitoring up to 2061 to be estab-
lished using a probabilistic model designed in the DINAMICA EGO platform [10,21,44].
The deforestation simulation included: (i) selection of factors of change, (ii) transitions, (iii)
exploratory analysis of deforestation factors, (iv) simulation and (v) validation.

Selection of Variables

Variable selection eliminates overly correlated variables and contributes to the success
of the modeling [9,45]. On the basis of the literature, fieldwork and general reflection made
it possible to identify the variables (factors) explaining deforestation [11,14,22,23,30,46].
The variables identified were grouped into six categories (Agriculture, Economic factors,
Transport, Demographic factors, Sociopolitical factors, Biophysical factors [11]. Only spa-
tially explicit variables were retained for this study. Then, these variables were quantified
in a geographic information system (Figure 3). Finally, an exploratory univariate analysis,
calculating the correlation between the explanatory variables and deforestation and forest
degradation, was carried out to identify the relationships between deforestation and each
of the explanatory variables (Table 2).

Table 2. Explanatory variables of deforestation.

Category Variable Retained Code Sources

Agriculture
Distance to agricultural areas d_agri Spatial analysis [24]

Rural complex Comp [24]
Distance to rural complex d_comp Spatial analysis [24]

Economic factors

Distances to built-up areas d_abat Spatial analysis [24]
Distances to major center d_gcent Spatial analysis [24]

Forest concessions Ccf [47]
Mining square Mining [47]

Distance to mining squares d_mining Spatial analysis [47]

Transport
Distance to national road d_road1 Spatial analysis [47]

Distance to provincial road d_road2 Spatial analysis [47]
Distance to local road d_road3 Spatial analysis [47]

Demographic factors Population density Dens [48]

Sociopolitical factors
Protected areas Ap [49]

Agricultural zones delimited Areaagr [49]
community management Areamngt [49]

Biophysical factors

Elevation Dme [50]
Slope Slope Spatial analysis [50]

Distance to watercourses d_w Spatial analysis
[13,24,50]

Distances to non-forests d_nf Spatial analysis
[24,30,46]

Distance to degraded forest d_fd Spatial analysis [24]
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Figure 3. Maps of explanatory variables for deforestation. (a) distance to agricultural areas; (b) rural complex; (c) distance
to rural complex; (d) distances to built-up areas; (e) distances to major center; (f) forest concessions; (g) distance to
mining squares; (h) mining square; (i) distance to national road; (j) distance to provincial road; (k) distance to local road;
(l) population density; (m) protected areas; (n) agricultural zones delimited; (o) community management; (p) elevation;
(q) slope; (r) distance to watercourses; (s) distances to non-forests; (t) distance to degraded forest.

Transitions

The transition corresponds to the total amount of LULCC that occurred during the
simulation period. The quantities of change were calculated by the Markovian method.
They constitute an essential element in the simulation of changes in land cover and land
use because they determine the surface area to be allocated in space according to the change
probability maps and the various constraints defined [18]. Transitions modeled in this study
include (a) transition from old-growth to secondary forest (degradation), (b) transition from
old-growth to non-forest (deforestation), (c) transition from secondary forest to old-growth
(maturation), and (d) transition from secondary forest to non-forest (deforestation).

Exploratory Analysis of the Data

When the dynamics of LULCC was modelled, weight of evidence (WoE) was applied
to the transition probabilities of the project. The weight of evidence represents the influence
of each variable on the spatial probability of an i-j transition. A work of adjustment of the
weights of evidence was useful because the input data is not always entirely reliable, and
some categories resulting from the operations of discretization may be nonexistent. This
adjustment, requiring expert knowledge, brought relevant added value. The operation was
based on the automatically calculated values and is carried out through a visualization
interface made available by DINAMICA EGO. As required by the literature [18,51], no
fundamental modifications were applied. The purpose of the adjustment is twofold: to
model the most obvious functions (for example in the case of distances or altitude), and to
adjust the values deemed unrealistic. Then, pairwise tests were performed for categorical
maps to assess the independence hypothesis. The methods used are Chi2, Crammer’s V
index, contingency, entropy and joint uncertainty information [52]. The purpose of this
step was the selection of variables because the study of the past and the present which
was not the only way of explaining future deforestation. Its interest was to retain those
who best contribute to the establishment of each land use class. Although there is no
unanimity on the cut-off that should be used to exclude a variable, a common practice, also
adopted in this study, is to choose a cut-off of 0.5 from the Crammer V index. (Measure
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of the relationship between categorical variables). Above this value, the variables are
correlated [21,53].

Simulation of Deforestation

The simulation of land use changes is carried out in order to facilitate decision making.
The interest of this simulation lies in its ability to construct the future image of forests
according to three contrasting scenarios: a “trend scenario” (business as usual, (BAU))
which starts from the hypothesis of the absence of new economic or environmental poli-
cies, a “sustainable environmental management” (SEM) scenario in which legislation and
government subsidies encourage the emergence of forestry (multiplication of plantations
and agroforestry) and the protection of wood resources, and finally, a “socio-economic”
scenario (rapid economic growth, (REG)), i.e., acceleration of the destruction of tree and
shrub plant cover and expansion of agricultural land (tendency towards disaster).

Validation

The validation of the simulation model focused on budgeting for errors and correct
predictions [54,55]. In practice, this involves comparing three maps: (i) the map of the
initial year (2003), (ii) the simulated map in 2014, and (iii) the one produced by satellite
image classification in the same year (2014). This three map analysis shows how simulated
change compares to baseline change by revealing five components [54,56,57]: (1) the
reference change simulated correctly as a change (i.e., hits), (2) reference change simulated
incorrectly as persistence (i.e., misses), (3) reference persistence incorrectly simulated
as a change (i.e., false alarms), (4) persistence of the correctly simulated reference as
persistence (i.e., correct rejections) and (5) reference change simulated incorrectly as a
change to the wrong gain category (i.e., false results) (Table 3). Based on these pixels, two
types of errors were evaluated in order to judge the accuracy of the overall prediction
across the entire landscape. First, the quantity error (Q) was determined by the difference
between false alarms and misses (Q = |F −M|). Finally, the allocation error (A) calculated
by the difference of the total observed changes (OC = M + H) with the quantity errors
[A = (F + M) − Q]. The total observed changes (OC) are given by the sum of misses and
hits (OC = M + H). Also, the total predicted changes were determined by the combination
of false alarms and hits (PC = F + H).

Table 3. Approach to error budgeting and correct predictions. 1 = Old-growth forest; 2 = Secondary
forest; 3 = Non-Forest; 4 = Water.

Comparison of Three Maps

2003 2014 2014si Components

1 1 1
Reference persistence simulated

correctly as persistence
Correct rejections2 2 2

3 3 3
4 4 4

1 2 1

Reference change simulated
incorrectly as persistence Misses

1 3 1
1 4 1
2 1 2
2 3 2
2 4 2
3 1 3
3 2 3
3 4 3
4 1 4
4 2 4
4 3 4
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Table 3. Cont.

Comparison of Three Maps

2003 2014 2014si Components

1 1 2

Reference persistence simulated
incorrectly as change False Alarms

1 1 3
1 1 4
2 2 1
2 2 3
2 2 4
3 3 1
3 3 2
3 3 4
4 4 1
4 4 2
4 4 3

1 2 2

Reference change simulated
correctly as change Hits

1 3 3
1 4 4
2 1 1
2 3 3
2 4 4
3 1 1
3 2 2
3 4 4
4 1 1
4 2 2
4 3 3

1 2 3

Reference change simulated
incorrectly as change to the wrong

gaining category
Wrong Hits

1 2 4
1 3 2
1 3 4
1 4 2
1 4 3
2 1 3
2 1 4
2 3 1
2 3 4
2 4 1
2 4 3
3 1 2
3 1 4
3 2 1
3 2 4
3 4 1
3 4 2
4 1 2
4 1 3
4 2 1
4 2 3
4 3 1
4 3 2

3. Results
3.1. Assessment of the Quality of Land Use Maps

The overall precision of land cover classifications in the study area from 2003 to 2016
was 0.94 ± 0.03. In detail, old-growth forest, Non-Forest and Water exhibited a higher
classification accuracy than the Secondary Forest class. Their User Precision (UA) and
Producer Precision (PA) values were in all cases greater than 0.75 (Table 4). The precision
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was low for secondary forests, with AU of 0.8 ± 0.02 and PA of 0.78 ± 0.02. In addition,
non-forests had intermediate precision values, with AU of 0.82 ± 0.03 and BP of 0.8 ± 0.02.
There have been many instances in which secondary forests have been incorrectly classified
as old-growth forest and non-Forest.

Table 4. Accuracy assessments of land cover classifications.

Accuracy Land Use 2003 2010 2014 2016

User

Pf 0.91 0.93 0.89 0.98
Sf 0.78 0.82 0.79 0.77
Nf 0.81 0.82 0.79 0.85

Ww 0.92 0.94 0.91 0.90

Producer

Pf 0.89 0.90 0.86 0.94
Sf 0.77 0.79 0.76 0.81
Nf 0.79 0.80 0.78 0.82

Ww 0.90 0.92 0.89 0.95

Over all 0.91 0.93 0.93 0.97

3.2. Analysis of Historical Changes of Deforestation between 2003 and 2016

Table 5 presents: (i) forest areas (ha), (ii) deforested areas between 2003–2010 and
between 2010–2016 (ha) and (iii) observed deforestation rates by axis (%). For all dates,
old-growth forest represents more than 3,600,000 ha. The most deforestation event is
observed between 2010–2016. It is the deforestation of old-growth forests estimated at
more than 108,000 ha. It is worth recalling the dramatic increase in secondary forests. The
overall assessment of forest dynamics provides information on increasing deforestation
over the two periods. Indeed, 14,983 ha of forests were deforested between 2003–2010 and
over 37,000 ha between 2010–2016. As a result, the annual rates of deforestation almost
tripled between 2003–2016. They went from 0.05% to 0.14% between 2003 and 2016.

Table 5. Areas and annual rates of deforestation between 2003–2010 and 2010–2016.

Forest
Type

Forest Areas Deforested Areas

2003 2010 2016 2003–2010 2010–2016

Ha % Ha % Ha % DA Td DA Td

Pf 3,801,767 91.75 3,751,719 91.73 3,643,399 89.28 50,048 0.19 108,319 0.42
Sf 178,472 5.83 213,538 5.28 284,351 6.91 −35,065 −2.56 −70,813 −4.09

Total 3,980,240 97.58 3,965,257 91.73 3,927,751 96.19 14,983 0.05 37,505 0.14

Td = Annual rate of deforestation in percentage; DA = Deforested area in hectares.

3.2.1. Historical Transitions

Table 6 summarizes the transitions observed between 2003 and 2016. From a global
point of view, the historical dynamics of the landscape occur to the detriment of old-growth
forest s over the entire observation period. Old-growth forests decrease by 2.69% compared
to the proportion of 2003. They occupy from 91.75% in 2003. They barely represent 89% in
2016. In addition, secondary forests are experiencing an increase in area. They increased
from 5.83% in 2003 to 6.91% of the total landscape area in 2016. This increase in secondary
forests results from the conversion of old-growth forest s into secondary forests (2.18%) and
non-forests into secondary forests (1.14%). Furthermore, the non-forest class increased by
26%, from 2.12% in 2003 to 3.50% of the total area of the landscape in 2016. The proportion
of the landscape occupied by forests in 2003 and converted to non- forest in 2016 are
estimated at 2.52% of the total area of the landscape. Indeed, secondary forests are the
most affected by the changes. In terms of stability, the old-growth forest class shows great
stability. In addition, non-forests are very fluctuating. Indeed, they show a stability of 46%
compared to their proportion of 2003. The comparison of the proportions of land use in
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2003 with those of 2016 does not reveal any significant changes in the composition of land
use occupation. (X-squared = 0.46; df = 3; p = 0.93).

Table 6. Matrix of transitions between 2003 and 2016.

2003–2016
Land Use in 2016

Total 2003
Pf Sf Nf Ww

Land use
in 2003

Pf 87.66 2.18 1.90 0.00 91.75
Sf 1.61 3.59 0.62 0.00 5.83
Nf 0.00 1.14 0.97 0.00 2.12

Ww 0.00 0.00 0.00 0.31 0.31
Total 2016 89.28 6.91 3.50 0.31 100

3.2.2. Deforestation Effort between 2003 and 2016

The smallest deforestation spot is 0.06 ha for all periods and for both classes of forest
cover. On the other hand, the largest event of deforestation was estimated at 1007 ha over
the period 2010–2016 in old-growth forest s. In addition, between 2003–2010, the biggest
spot of deforestation in old-growth forest covers an area of 756 ha. The average area of
deforestation plots in old-growth forest is estimated at 1 ha and 1.6 ha, respectively between
2003–2010 and between 2010–2016. Indeed, the area of deforestation spots observed in
old-growth forest does not change significantly. depending on the observation period
(p-value = 0.39). However, in secondary forest, the average area of deforestation is esti-
mated at 1 ha between 2003–2010 and 0.7 ha between 2010–2016. The largest deforestation
spot is estimated at 240 ha between 2003–2010 and at 410 ha between 2010–2016. There is
also no significant difference between the areas of deforestation in secondary forest between
the two periods (p-value = 0.54). For the entire observation period (2003–2016), the average
area of deforestation in old-growth forest is 1.3 and 0.8 ha in secondary forest. Comparison
of the deforestation spots in old-growth forest with those observed in secondary forests
reveals a significant difference between the areas of deforestation spots observed in these
two forest types (p-value = 0.04). Old-growth forest appears to be more vulnerable to
deforestation than secondary forest. Taken as a whole, the deforestation spots observed
between 2003–2010 seem to be smaller than those observed between 2010 –2016. Their
average area is 1 ha between 2003–2010 and 1.2 ha between 2010–2016. Indeed, there is no
significant difference between the areas of the deforestation spots over the two periods
(p-value = 0.08). Figure 4 shows the variation in the areas of deforestation spots according
to the type of forest cover. The diamond represents the mean.
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Figure 5 illustrates these changes observed between 2003–2016. Visual analysis reveals
that the landscape seems to be more affected by deforestation in the Southeast. Deforesta-
tion forms a disturbance gradient linked to the road and to major centers. The area of the
wildlife reserve seems to be more stable. Indeed, this variability in forest deforestation
seems to be a function of land use (macro-zones).
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3.3. Future Trajectories of Deforestation
3.3.1. Validation of the Model in 2014

The comparison of the changes observed and predicted between 2003 and 2014 made
it possible to validate the simulation model of deforestation. The results of error budgeting
and correct prediction reveal that 88.1% of the pixels in the landscape are correct due to
observed and predicted consistency (Correct rejections [N]). Additionally, the correct pixels
due to an observed and predicted change (Hits [H]) represent 4.25% of the pixels in the
landscape. On the other hand, the errors due to a constancy observed but predicted to be
changed (False alarms [F]) amount to 1.67% of the pixels in the landscape. The errors due
to a change observed but predicted as constant (Misses [M]) are 5.42% (Figure 6). The total
observed changes (OC = M + H) are 9.66% while the total predicted changes (PC = F + H)
were underestimated with 5.92%.

The accuracy of the global prediction of changes across the entire landscape indicates
that the quantity errors (Q = |F − M|) are estimated at 3.75% of the landscape pixels
while the allocation errors [A = (F + M) − Q] represent only 3.34% pixels of the landscape.
Therefore, the total error (Q + A) is 7.09% pixels of the landscape.

Figure 7 gives a spatial overview of the distribution of errors and correct predictions.
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The landscape observed in 2014 consists of 90.20% of old-growth forests, 6.16% of
secondary forests, and 3.36% of non-forests and 0.28% of water. The concordance of
simulated and observed land cover is estimated at 84.87% of the landscape for old-growth
forests, 3.54% of the landscape for secondary forests and 1.37% of the landscape for non-
forests. In addition, the landscape simulated in 2014 consists of 87.42% of old-growth
forests, 8.17% of secondary forests, 4.11% of non-forests and 0.28% of water. The model
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seems to underestimate old-growth forests. It also overestimates secondary forests, non-
forests and water (Table 7).

Table 7. Comparison between observed and simulated land use.

Observed–Simulated
Simulated Land Use in 2014 Total

ObservedPf Sf Nf Ww

Observed
land use in

2014

Pf 84.87 3.64 1.68 0.00 90.20
Sf 1.55 3.54 1.06 0.00 6.16
Nf 0.99 0.99 1.37 0.00 3.36

Ww 0.00 0.00 0.00 0.29 0.28
Total simulated 87.42 8.17 4.11 0.29 100

3.3.2. Future Trajectories of Deforestation

The combination of the transition matrix adapted to the different BAU, SME and REG
scenarios with the transition potential maps and explanatory factors has made it possible
to establish regular prospective monitoring until 2061 and the evolving statistics of land
use areas (Figures 8–10). In the BUA scenario, the dynamic future of the landscape will
come at the expense of old-growth forests (Figure 8).
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Figure 10. Future evolution of the composition of the occupation according to the REG scenario.

In the SEM scenario, the dynamics of land use will benefit forests (Figure 9). Consid-
ering the changes to be observed between 2016 and 2061, 8.84% of the proportion of the
landscape occupied by old-growth forests will come from secondary forests (7.86%) and
non-forests to secondary forests (2.73%). Furthermore, the non-forest class will experience
a decrease in future years. They represent 3.50% of the proportion of the landscape in 2016.
They will cover only 2.71% of the landscape by 2061. The proportion of the landscape that
will remain unchanged is estimated at 87.03% of the total area of the landscape (respectively,
80.11% covered by old-growth forests, 5.95% by secondary forests, 0.66% non-forest and
0.31% water). Table 8 shows the transitions obtained in the SEM scenario between 2016
and 2061.

Table 8. Transition matrix in the SEM scenario between 2016 and 2061.

2016–2061
Land Use in 2061

Total 2016
Pf Sf Nf Ww

Land use
in 2016

Pf 80.11 7.86 1.30 0.00 89.28
Sf 0.21 5.95 0.75 0.00 6.91
Nf 0.12 2.73 0.66 0.00 3.50

Ww 0.00 0.00 0.00 0.31 0.31
Total 2061 80.44 16.54 2.71 0.31 100

The change in the composition of land cover in the SEM scenario between 2016 and
2061 is illustrated in Figure 9.

In the rapid economic growth scenario, the future dynamics of the landscape will
come at the expense of forests (Figure 10).

Between 2016 and 2061, 28.84% of the proportion of the landscape occupied by old-
growth forests will be converted to secondary forests (12.62%) and non-forests (17.52%).
The non-forest class will experience a dramatic increase in the years to come. It represents
3.51% of the proportion of the landscape in 2016. It will cover more than 25.25% of
the landscape by 2061. The proportion of the landscape that will remain unchanged is
estimated at 64.22% of the total area landscape (respectively, 59.13% covered by old-growth
forests, 1.92% by secondary forests, 2.86% non-forest and 0.31% water). Table 9 shows the
transitions obtained in the REG scenario between 2016 and 2061.
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Table 9. Transition matrix in the REC scenario between 2016 and 2061.

2016–2061
Land Use in 2061

Total 2016
Pf Sf Nf Ww

Land use
in 2016

Pf 59.13 12.62 17.52 0.00 89.28
Sf 0.11 1.92 4.87 0.00 6.91
Nf 0.07 0.58 2.86 0.00 3.50

Ww 0.00 0.00 0.00 0.31 0.31
Total 2061 59.31 15.13 25.25 0.31 100

The comparison of the proportions of land use simulated in 2061 with those observed
in 2016 shows significant differences in two different scenarios: BAU (X-squared = 16.46;
df = 3; p = 0.03) and REG (X-squared = 17.25; df = 3; p = 0.001). Moreover, the sim-
ulated occupation of the SEM is not statistically different from that observed in 2016
(X-squared = 20.71; df = 3; p = 0.06).

4. Discussion
4.1. Historical and Future Trajectories of Deforestation

The dynamics of land use in the study area are characterized by deforestation and
forest degradation. Deforestation observed in the Ituri-Epulu-Aru landscape shows signifi-
cant differences between periods, forest types and macro-zones (protected area, sustainable
management zone for natural resources and extraction zone). Indeed, before 2010, the
annual rate of deforestation was relatively low (0.05%) and the average area of deforestation
spots was 1 ha. It more than doubled between 2010–2016 reaching 0.14% per year and the
average area of deforestation spots increased by 1.2 ha. The significant decrease over time
in forest area confirms the hypothesis of continual anthropization of Ituri’s forests. How-
ever, comparing deforestation rates by period does not reveal any significant difference.
Likewise, in all cases, the average area of deforestation spots is not significantly different
over the two periods, which shows that there is no “period” effect on deforestation rates.

Considering land use, the differences in annual deforestation rates are very large
ranging from 0.02 to 3.05% for the period 2003–2010 and from 0.1 to 3.20% for the second
observation period. At the landscape level, these rates remain below the national average
of 0.22% per year [1]. Moreover, except in the OWR, these rates are above this average,
particularly in the second period. Several authors share the same opinion that deforestation
is increasing in the majority of forests [2,29].

Comparison of key deforestation figures obtained in this study with those of other
similar studies should be done with caution since the methodologies and data used are
not always compatible. FACET [2] estimates the area of old-growth forests in 2010 at
3,843,218.88 ha. This area is slightly less than that obtained in the present study. Some
scenes used may be different. Statistics from FACET [2] reveal increasing rates of defor-
estation, a trend shared by our results. Furthermore, Lusana et al. [14] estimate this area
at 4,049,204 ha in 2003 and 3,997,690 ha in 2010, i.e., a loss of 51,514 ha between 2003 and
2010. Note that this latest study is based on the mapping materials of Hansen et al. [13]
who overestimate the forest area [25]. The main reason given by these researchers is that
the scale of analysis does not allow a good definition of the forest. Thus, it is possible
that certain wastelands are confused with forests. This explains why the estimates of
Lusana et al. [14] seem to exceed those carried out in this study.

Deforestation rates observed in the Ituri-Epulu-Aru landscape remain relatively low
compared to other regions of the country, such as in the Bombo-Lumene reserve located
not far from Kinshasa (0.46% per year between 2000 and 2015), the Yangambi Biosphere
Reserve (4.5% between 2003 and 2016) [29] and very low compared to tropical America
(0.51%) or Tropical Asia (0.58%) [58].
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4.2. Simulation of Deforestation

This article provides useful information for those who wish to discuss a model that
can be replicated for other territories affected by deforestation and changes in natural and
anthropogenic forest structure. Fieldwork identified agriculture, forestry, infrastructure,
demographic factors, socio-political factors, economic factors and biophysical factors.
Among the variables retained, the distance from rural complexes, distance from national
roads, artisanal mining and distance from major centers seems to play an important role in
view of the main changes observed between 2003 and 2016. These results are similar to
those of several authors [11,59].

The development of images from trendy and contrasting prospective scenarios will
promote the identification of areas with socio-environmental issues concerning on the one
hand the living environment of Pygmy communities and on the other hand the preservation
of old-growth forests. For decades, primary and secondary forests have given way to crops
in agricultural areas [59]. The use of these deforested areas makes it possible to benefit
from new fertile land and therefore to increase agricultural production.

In summary, the trend of regression of the forest landscape in favor of culture and
urban spaces has been observed for several decades [2]. This is then done at the expense of
urban and village centers but also along the main communication axes (road network, net-
work of tracks) [3,11]. Moreover, this degradation mainly impacts old-growth forests [28].
Suddenly, deforestation leads to a loss of biodiversity due to the destruction of many
natural habitats [60]. The different prospective scenarios designed here take into account
the different socio-economic activities developed in the study environment.

In general, forest dynamics are regressive although secondary forests are increasing.
The trend scenario (BAU) suggests an alarming deforestation in the next four decades,
which makes it possible to verify the fourth hypothesis. In this BAU scenario, both non-
forests and secondary forests have increased. Indeed, this increase could be explained by
the increase in population and therefore the need for food and housing. In compensation
for this strong demand for land, there is a reduction in the area of old-growth forests. These
results are corroborated by those of Samie et al. [61] obtained in Punjab (Pakistan).

The catastrophic scenario (REG) predicts that natural plant formations will regress in
favor of anthropogenic ones. The sustainable environmental management (SEM), which
combines both the preservation of plant cover with agricultural activities, empowers
the state in its role of controlling deforestation and subsidizing domestic gas to replace
fuelwood. This is similar to the densification scenario developed by Lajoie and Hagen-
Zanker [62] which encourages the preservation of forests and limits urban sprawl in
Reunion Island by 2031.

The validation of the model constitutes a first step in the prospective modeling of
forests by 2061. The prospective model designed presents conclusive results and seems to be
able to better take into account the evolution trends, the latter, by its unsupervised character.

The prediction model developed in this study to estimate the quantities of land cover
changes produced values close to reality. In fact, it confirms, on the whole, the trends in
land use. Nevertheless, it presented difficulties in predicting the changes that took place
between 2003 and 2014. This is linked to the high observed and simulated constancy which
was 88% at the landscape scale. This means that our analysis, both at the landscape level
and at the level of land cover classes, highlights interesting results but which should be
qualified. Moreover, there are fewer false alarms than failures, indicating that the simulated
change is less than the baseline change. The quantity component does not indicate whether
the false alarms are less than the misses or vice versa. The quantity component is about the
same size as the allocation component. If our false alarms are less than your errors, it may
be because the rate of change during the calibration time interval is slower than the rate of
change during the validation time interval.

Overall, the observation of errors reveals that they are localized near the non-forests
observed. The limitation of the model lies mainly in the fact that there are other variables
that may explain the changes in land cover and use. These are, for example, political
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and institutional factors such as poverty, unemployment, conflicts and the forest code,
demographic factors such as migration and population distribution, cultural factors (house-
hold consumption) and economic factors (cost of labor and capital). The addition of these
additional variables was limited by their non-quantifiable nature and their unavailability
in digital format [19,27,55,63]. In addition to the variables used.

5. Conclusions

This article aimed to analyze deforestation in the Ituri-Epulu-Aru landscape. This
article provides valuable information on deforestation and forest degradation patterns. The
results obtained confirm the trend towards deforestation. Although the landscape has seen
a slight increase in the area of secondary forests, that of old-growth forests has declined
significantly. Taken as a whole, forests are shrinking as a result of the unsustainable land
use pattern characterized by shifting slash-and-burn agriculture with increasingly shorter
fallows. The great concern lies in maintaining priority habitats for the biodiversity of this
landscape. Our model predicts an increase in secondary forests over the entire landscape
studied. This increase is not good news; indeed, it is indicative of a strong deterioration
due, in particular, to subsistence activities.

Taking into account the results obtained, we propose that the landscape management
consortium initiates local environmental and social management plans around hot zones
of deforestation, in particular around Mambasa and Walese-Vonkutu. Land use should
favor the restoration of severely degraded landscapes while highlighting sustainable devel-
opment approaches (agro-ecology, renewable energies, etc.) and biodiversity conservation
(particularly in sensitive areas). Raising awareness and improving the agrarian system
through agroforestry techniques (particularly agro-forests, which are particularly suited to
the region) must be at the center of strategies for the creation and development of village
secondary forests, a pledge of the sustainable management of natural resources from which
the populations will be able to obtain forest products for their usual needs.

It is also recommended that future analyzes assess the influence of this deforestation
on the climate by quantifying the associated emissions. It would be interesting to say
the impact of this loss of forests on the well-being of neighboring populations in order to
further inform policy choices.
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