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Abstract 

Air quality monitoring and analysis have become a major issue in recent years. Metal oxide 

(MOX) gas sensors are very sensitive due to high variability of their resistivity in presence of 

gas. However, they are not selective, i.e. it is not possible to determine the nature and 

concentration of the gas using only variations in the resistance of the sensor. Noise 

spectroscopy is one of the solutions to improve selectivity. In this paper, we evaluate recent 

noise spectroscopy-based gases identifications methods, to distinguish the nature of different 

gases using a single MOX sensor. From noise measurements performed on MOX gas sensors 

with tungsten trioxide (WO3) sensing layer, under several nitrogen dioxide (NO2), ozone (O3) 

and carbon monoxide (CO) concentrations in dry air, we have created a database. This 

database is increased by extracting the spectral attributes of noise responses, and then 

reduced by using principal component analysis to extract only useful information. The results 



obtained in this study demonstrated that it is possible to distinguish three air quality gases 

with only one single WO3 sensor. 

 

1. Introduction 

Nowadays, there is a growing need for low-cost, low-power, miniaturized gas sensors mainly 

due to the connectivity of sensing devices on global network (internet of things) enabling 

immediate sharing of information in a variety of fields such as portable and connected devices 

for domestic and industrial air quality control, security and defence, food quality control … 

In the case of air quality where health, social and political issues have become important to 

the population, there is a strong demand for air pollution monitoring systems. Indeed, air 

pollution is characterized by the presence of a set of important pollutants of chemical origin 

(VOC, fine particles, ozone, nitrogen dioxide, carbon monoxide and sulphur dioxide) and 

biological (molds, mites). As this variety of pollutants is large and the concentrations harmful 

to health are very low and permanent in ambient air, it has become imperative to design 

detection systems that are sufficiently sensitive to detect and discriminate between several 

gases in polluted ambient air. In this context, a great deal of research and development work 

is being carried out to design small and cheap gas sensors with high sensitivity, selectivity and 

stability, with respect to a given application. Metal oxide (MOX) gas sensors are readily 

available and widely used in portable and low cost gas monitoring devices because of their 

high sensitivity, stability, and attractive life time. However, this type of gas sensor suffers an 

inherent lack of selectivity, because the gas detection mechanism is rather unspecific and 

more or less any type of reducing or oxidizing gas is detected.  

Due to this poor selectivity, MOX gas sensors are more often assembled into a multi sensor 

array that forms the core of an electronic nose. Electronic nose is a complex system used in 



the identification of gas mixtures. It consists of a multi sensor array, an information-processing 

unit, software with digital pattern-recognition algorithms and reference-library databases [1-

2]. The sensor array is composed of different sensors chosen to respond to a wide range of 

chemical classes. The outputs of individual sensors are collectively assembled and integrated 

to generate a distinct digital response pattern. Identification and classification of an analyte 

mixture is accomplished through recognition of this unique chemical signature (electronic 

fingerprint) of collective sensor responses. The challenge in miniaturizing devices and lowering 

power consumption is to minimize the number of sensors required for a given application. To 

do this, we must try to increase the amount of information provided by one sensor using 

advanced measurements, like temperature modulation or fluctuation enhanced sensing (FES). 

[3, 4]. 

The FES principle uses the fluctuations of the gas sensors’ response as an information source. 

This experimental technique is based on noise spectroscopy: the measurement and the 

analysis of the power spectral density (PSD) of the fluctuations measured at the terminals of 

sensors in the presence of one or more gases. Measuring these fluctuations caused by 

adsorption–desorption and diffusion noise provides enhanced selectivity and sensitivity. 

Several studies have shown that noise spectroscopy is a relevant signal-processing tool able 

to extract selective informations on multiple gases with a single sensor [4-6]. 

In earlier work [26], we developed a model of adsorption–desorption (A-D) noise based on the 

physical origin of noise in MOX sensors. From this model, we developed three gases 

identifications methods able to discriminate several gases characterizing air quality, as well as 

their concentration, with a single MOX sensor, under real operating conditions, i.e. in the 

permanent presence of a gas concentration.  



The capability of discriminating gases was evaluated using Principal Component Analysis 

(PCA). The content is organized as follows: 

(i) Section 2: General methodology 

(ii) Section 3: Measurement methods and device 

(iii) Section 4: Noise spectroscopy-based gases identifications methods 

(iv) Section 5: Results 

(v) Section 6: Conclusion 

 

2. General methodology 

Enhancement of the MOX gas sensors selectivity has been the subject of many studies for 

decades. Different measurement methodologies (dynamic response by thermal modulation, 

response in pulsed thermal mode, sensors arrays, noise spectroscopy…) associated with signal 

processing algorithms (Fast Fourier Transform, PCA, neural networks…) have been developed 

and have shown their possibilities [8-11]. The gas detection and identification technique that 

we are developing is focused on low frequency noise spectroscopy.  

The interest of measuring the noise response of a gas sensor comes from observing the change 

in spectral density of fluctuations in the resistance of the sensor in the presence of several 

gases. The advantage of this measurement technique is to acquire the response of the sensor 

in steady mode, ie after the response time of sensor. Furthermore, this technique does not 

depend on the characteristics of the dilution system of an experimental measurement bench 

and makes it possible to approach detection in the permanent presence of a gas mixture. The 

statistical study of microscopic fluctuations generating sensor resistance fluctuations 

constitutes an important source of information on the sensor itself. This high sensitivity is 

based on the fact that disturbances of microscopic fluctuations require only very low energy. 



The statistical distribution functions characterizing these fluctuations are data tables, which 

can contain a quantity of information greater by several orders of magnitude than that 

provided by a simple quantity, such as the variation of the resistance of the sensor used in 

classical measurement. In addition, the noise parameters that can be extracted from noise 

responses have a physical origin in the adsorption-desorption process of the gas molecules on 

the surface of the sensitive layer of the sensor. 

Used methodology for our study is summarized in Fig. 1. First, a noise response database is 

created by measuring the power spectrum of the amplified current fluctuations across the 

sensor when the concentration of the target gas is constant. The noise measurement system 

for gas sensors is described in section 3. Then, the database is increased by extracting the 

spectral attributes of the noise responses using the characterization methods presented in 

section 4, and then reduced using principal component analysis to extract only useful 

information. Gas discrimination is achieved by the online projection of measurements in the 

principal space consisting of the two main components. PCA is a robust and unsupervised 

model recognition approach commonly used for multivariate data analysis. It is a statistical 

procedure that converts a set of observations of possibly correlated variables into a new set 

of values called principal components. PCA has proven its effectiveness in many areas of 

application [12-14], including electronic noses [15] 



 

Fig. 1. Summary of the methodology used 

 

3. Measurement methods and device 

The specific noise spectroscopy system to measure the sensor noise response in air, nitrogen 

dioxide, carbon monoxide and ozone is the same one used in our recent paper [16]. It is 

presented in Fig.2. The power spectrum of the amplified current fluctuations across the sensor 

is measured using low noise current preamplifier and FFT spectrum analyser. The sensors are 

placed in a stainless steel measurement chamber where mixed gases can be admitted and 

evacuated via distribution valves. To obtain a linear flow and homogeneous mixture, the 

incoming gases are mixed by a diffuser after electronic gas flow controllers. The gas chamber, 



the preamplifier, the sensors biasing and the power supply for sensor local heating are 

incorporated in a Faraday cage. 

 

Fig. 2. General diagram of measurements setup used to characterize microsensors noise responses. 

 

The studied MOX gas sensors are based on tungsten trioxide (WO3). WO3 thin films were 

prepared by reactive radio frequency (13.56 Mhz) magnetron sputtering, using a 99.9% pure 

tungsten target. The thickness of the WO3 film is about 40 nm. The films were sputtered on 

SiO2/Si substrates with platinum interdigitated electrodes, in a reactive atmosphere of 

oxygen-argon mixture. The microsensor doesn’t have an integrated heating device. It was 

placed on a heated plate and biased by a voltage of 1V with a specific system of microtips. For 

more details concerning the preparation of the WO3 based sensing layer, one can see the 

descriptions given in [16]. As the resistance of the sensing layer is very high (MΩ range), and 

for best measurement conditions, the sensor is biased by a voltage source, and the fluctuation 



of the current crossing the sensing layer is amplified by a low noise current amplifier Stanford 

Research SR570 (LNA on figure 1). The power spectrum density (PSD) of the outputted voltage 

is recorded using a SR785 FFT Signal Analyzer, in the 0.1Hz-100kHz range, at a sampling rate 

of 256 000 samples/s. The build in high pass filter of the SR570 amplifier was set to a cutoff 

frequency of 0.03Hz with a -12dB/octave slope. The PSD of the current fluctuations was 

recorded when the gas microsensor was exposed to the target gas diluted in dry air and the 

sensor resistance was constant (steady state operating). The measurement time is about 10 

mn, mostly depending on the number of measurement points in the lowest frequency 

decades.  

The gas microsensor was exposed to 4 concentrations of three different gases characteristic 

of the air quality (see Table I), diluted in dry air. These are ozone and nitrogen dioxide, which 

are oxidizing gases, and carbon monoxide, which is a reducing gas. For each gas, the 

acquisition of the noise spectrum begins when the response of the sensor is stable (steady 

regime). Figure 3 shows an example of sensor response for an ozone concentration of 80 ppb 

for the complete measurement duration. 

TABLE I.  VARIOUS GASES CONCENTRATION USED IN EXPERIMENTAL SET UP 

Gases 
Concentrations 

C1 C2 C3 C4 

NO2 1 ppm 2 ppm 5 ppm 10 ppm 

O3 80 ppb 110 ppb 160 ppb 240 ppb 

CO 5 ppm 10 ppm 20 ppm 40 ppm 

 



 

Fig. 3. Example of a response of studied WO3 gas sensor under 80ppb ozone (O3) concentration. 

 

4. Noise Spectroscopy-based Gases Identifications Methods 

In this section, we first present the main noise sources present in MOX sensors. Then, we 

briefly describe the noise spectroscopy-based gases identifications methods developed in 

previous work. 

4.1 Noise sources in MOX gas sensors 

In MOX gas sensors, we observe intrinsic noise sources similar to those found in 

semiconductors, and additional noise sources related to the chemical processes on the surface 

of the sensitive layer. Intrinsic noise sources are: 



(i) The shot noise due to fluctuations of the carriers that create the conduction 

current. At low frequencies, the spectral density of conduction current is 

constant and is written: 

condI
IqS

cond

= 2      (1) 

where condI  is the conduction current; 

(ii) Thermal noise due to thermal agitation of the charge carriers in the 

semiconductor which causes voltage fluctuations. The noise current spectral 

density related to these voltage fluctuations is written: 

GTkS
th

I
= 4      (2) 

where k is the Boltzmann constant, T is the thermodynamic temperature and G 

is the conductance of semiconductor. The thermal noise is thus a white noise; 

(iii) The generation-recombination (G-R) noise caused by the carriers’ number 

fluctuations associated with the processes of generation and recombination. It’s 

an excess noise in addition to fundamental noise sources (shot noise and thermal 

noise). The spectral density of current fluctuations associated with the capture 

and emission of carriers by a single trap in the bulk semiconductor is given by the 

relation: 
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where LFK  is the current noise spectral density at low frequencies 

proportional to the G-R induced variation on the current, and τ the average time 

associated with a trap. When the generation-recombination involves interface 

traps, the phenomenon is called Random Telegraph Signal (RTS). If the 

fluctuations come from a large number of generation-recombination process, 

the spectral density approximately varies as 1/f in the low frequencies band [17]. 

The 1/f noise or flicker noise is predominant over the thermal noise or shot noise. 

It involves various energy traps. It is located in the bulk [18] or at the surface of 

semiconductor, or at the interface between semiconductor and electrical 

contact [19]. It is known that the characterization of excess noise in 

microelectronics devices is a measure of performance and quality. It provides 

relevant information on the traps density, type and location [20]. 

 

The additional noise sources in the metal-oxide gas sensors are related to the properties of 

the metal-oxide sensitive layer and the chemical environment. In metal oxides, the noise 

depends strongly on the oxygen stoichiometry and displacement of oxygen atoms. The 

electronic charge transport is associated with the presence of oxygen at the surface and in the 

crystal lattice sites of the metal-oxide. The adsorption-desorption process of oxygen atoms 

and the presence of inhomogeneities, stresses and grain boundaries in the metal oxide cause 

fluctuations of the oxygen density and, thus fluctuations of the electrical conductance [21]. 

In a gaseous environment, conductance fluctuations of microsensors due to free carrier’s 

number and mobility fluctuations are thus related to concentration and distribution 



fluctuations of chemical species. The measured noise spectra result from the superposition of 

three noise sources contributions: 

(i) The adsorption-desorption (A-D) noise due to the adsorption-desorption of gas 

molecules. It is similar to the G-R noise in intrinsic semiconductor; 

(ii) The diffusion noise related to the diffusion of molecules adsorbed on the surface; 

(iii) The shot noise due to the current through the potential barriers at grain 

boundaries in the sensitive layer. 

The dominant noise source in gas microsensors is the adsorption-desorption noise [22]. The 

modelling of the spectral behavior of A-D noise source is based on Wolkenstein’s theory [23]. 

Electrical conductivity fluctuations due to free carrier number and mobility fluctuations are 

proportional to the density fluctuations of adsorbed molecules: 

)()( 2

0 fSfS N =
     (4) 

where )( fS is the power spectral density (PSD) of electrical conductivity fluctuations. 

0 depends on free carrier density and mobility at adsorption-desorption equilibrium. 

)( fS N  is the PDS of adsorbed molecules density fluctuation which can be written [24,25]: 
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2N  is the mean square value of the adsorbed molecules density fluctuation N . The time 

constant   is  
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where a  and d  are the number of adsorbed and desorbed molecules per unit area, 

respectively. Whether using Langmuir’s theory or Wolkenstein’s theory, calculating the time 

constant shows dependence with the gas parameters (mass of adsorbed molecule, adsorption 

energy, gas partial pressure …). So, 0H  and cf are function of gas species. Details of the 

calculation of  and 
2N can be found in Reference [15]. 

In earlier work [26], we presented a model of adsorption–desorption (A-D) noise in MOX gas 

sensors, developing the idea that the fluctuation of the gas sensor resistance is, among other 

noise sources, due to the fluctuation of the density of gas molecules on the surface of the 

sensing film. The modeling was developed by taking into account the polycrystalline structure 

of the sensing layer and the effect of the adsorbed molecule’s density fluctuation on the grain 

boundary barrier height. From this model based on the physical origin of noise in MOX sensors, 

we developed three gases identifications methods. The first is based on the spectral 

decomposition of the noise responses. The second method uses the calculation of the first 



derivative of noise current spectral density, and the third, the product of the noise current 

spectral density by the frequency. 

4.2 Noise current spectral decomposition 

As the dominant noise source in gas sensors is A-D noise, low frequency noise spectra are 

characterized by a sum of several Lorentzian. The power density spectrum (PDS) of 

fluctuations of the total sensing layer resistance Rsensor is written [25]: 


=









+

=
g

i

ci

iRsensor

f

f
SfS

1
2

1

1
)(      (8) 

where g is the number of most prevalent grain sizes involved in the sensing layer. iS  and cif  

are, respectively, the low frequency noise level and the cut-off frequency of the Lorentzian 

number i. Their expressions are given in [25] and they depend on the nature of the detected 

gas, and on the grain size. If the gas sensor resistance Rsensor is biased by a voltage V0, the 

measured noise is converted into a current noise. It thus takes into account the contribution 

of A-D noise generated in the gas sensor resistance and converted into a current noise, and 

the contribution of thermal noise generated by the sensing layer resistance. The PSD of the 

fluctuations of the total terminal current across the gas sensor resistance can be written [25]: 
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At low frequencies the A-D noise will dominate and at high frequencies its will be dominated 

by a white noise due to the thermal noise induced by the sensing layer resistance. As the 



Lorenzian parameters depend on the nature and the concentration of the gas, the spectral 

decomposition of each spectrum enables to extract the noise parameters for each gas. 

4.3 First derivative of noise current spectral density 

In our recent work [26], we calculated the theoretical expression of the first derivative of the 

PSD of the gas sensor noise, and showed that it admitted a minimum which depends on the 

nature of the detected gas. 

Using “(9)”, the expression of the first derivative of the PSD of the gas sensor noise can be 

written as follows: 
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The first derivative of each single Lorentzian has a minimum at the frequency 3/cif  that 

depends on the nature of the detected gas.We have demonstrated that the complete 

expression of the first derivative of the PSD of the gas sensor noise has a minimum at a 

frequency between 3/1cf  and 3/cgf [25]. The extraction of this minimum thus enables 

to characterize the nature of the detected gas. 

4.4 Product of the noise current spectral density by the frequency 

Another gas identification method is based on the product ( ))()( fSfSf ThI sensor
−   where f 

is the frequency, )( fS
sensorI is the PSD of gas sensor noise current (9) and 
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This product is written as follows: 
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The product of frequency by the PSD of the gas sensing layer resistance fluctuations often has 

a maximum which is characteristic of the gas and, that is the combination of maxima of each 

term [16]. The extraction of the maximum of the product also enables to characterize the 

nature of the gas detected. 

 

5. Results 

In this section, we first present the results of the extraction of the frequency attributes from 

the spectra measured under the three target gases. Then, the results of the PCA on the created 

database are given and discussed. 

5.1 Spectral decomposition of the noise responses under different gases 

The developed gas identification methods are based on precise spectral decomposition of 

measured noise responses. To extract useful information from the measured noise across the 

sensor in the presence of gas, we take into account the characteristics of low noise amplifier 

by: 

( )2)( fA

S
S

LNA

measuredV

sensorI


 =       (12) 

where sensorIS is the intrinsic current spectral density of sensor, and measuredVS  is the 

measured noise voltage spectral density. )( fALNA  is the measured frequency response of 



the gain of the SR570 low noise current amplifier. Fig. 4 gives an example of current spectral 

density of the sensor under 10ppm of CO (curve1). 

 

Fig. 4. Spectral decomposition of a noise response under CO (10 ppm): measurements (curve 1), total noise 
(curve 2), adsorption-desorption noise modeled by lorentzians ( curve 3 and curve 4), white noise proportional 
to the resistance of the sensor (curve 5) and extracted noise model of low-noise current preamplifier (curve 6). 

 

All measured spectra clearly show Lorentzian components according to adsorption-desorption 

noise theory. Indeed, the noise generated due to the adsorption of a gas on one type of 

adsorption site, with a given adsorption energy, has a Lorentzian spectrum. For the three 

studied gases, we observe that two Lorentzians dominate the low frequency spectrum. Over 

1 kHz we observe white noise mainly composed of the thermal noise due to sensitive layer 



resistance and the thermal noise of the amplifier due to the feedback resistor. Details of 

spectral decomposition are also plotted in Fig. 4. Measured noise spectra is higher by one or 

more orders of magnitude compared to amplifier noise level (curve 6). The extracted noise 

parameters of spectral decomposition of all measured spectra are reported in Table II, 

according to notations of equation (9). The values and the variation ranges of spectral 

parameters are specific for each gas. For all studied gas concentrations, the evolution of 

thermal noise is consistent with the evolution of the resistance of the sensitive layer in the 

presence of each of the three studied gases. 

TABLE II.  EXTRACTED NOISE PARAMETERS OF SPECTRAL DECOMPOSITION OF ALL MEASURED SPECTRA  

Gas / Concentration S1 
(A2/Hz) 

fC1 (Hz) 
S2 

(A2/Hz) 
fC2 (Hz) 

STh 
(A2/Hz) 

O3 / C1 7 10-21 0,1 1 10-25 5 3 10-26 

O3 / C2 8 10-21 0,1 1 10-25 5 2,5 10-26 

O3 / C3 1 10-20 0,1 4 10-25 5 2 10-26 

O3 / C4 1,2 10-20 0,1 5 10-25 5 1,5 10-26 

NO2 / C1 3 10-23 0,2 7 10-25 5 5 10-26 

NO2 / C2 2 10-23 0,2 9 10-25 5 4,5 10-26 

NO2 / C3 1,5 10-23 0,2 7 10-25 5 4 10-26 

NO2 / C4 1 10-23 0,2 7 10-25 5 3,5 10-26 

CO / C1 1,2 10-22 0,2 7 10-25 10 2,5 10-26 

CO / C2 1,3 10-22 0,2 3 10-25 10 2,8 10-26 

CO / C3 1,5 10-22 0,2 3 10-25 10 3 10-26 

CO / C4 2 10-22 0,2 3 10-25 10 3,2 10-26 

 

5.2 First derivative of the PSD of the noise responses under different gases 

The first derivative of noise current spectral density of the measured gas sensor noise is 

calculated as (2) using extracted parameters of TABLE II. In Fig.5 we present the plots of the 



first derivative of the PSD of the gas sensor noise response under four concentrations of 

nitrogen dioxide. We have similar curves for ozone and carbon monoxide. For the three gases, 

we clearly observe that the first derivative of the measured gas sensor noise spectrum 

presents a negative minimum at a frequency between 3/1cf  and 3/2cf , according to 

the developed theory in [26]. These negative minimums are reported in TABLE III and have 

specific value ranges for each gas. Such result shows the consistency of this gases 

identification method. The minimum of first derivative of PSD is rather sharp and depends on 

the nature of the detected gas. 

 

Fig. 5. Plots of the first derivtive of noise current spectral density for the four concentrations of nitrogen 
dioxide. 

 

 



 

TABLE III.  MINIMUM OF THE FIRST DERAVATIVE OF THE PSD OF NOISE CURRENT SPECTRAL DENSITY (A2/HZ2) 

Gas 
Concentration 

C1 C2 C3 C4 

O3 -4 10-20 -5,2 10-20 -6,2 10-20 -7,8 10-20 

NO2 -9,8 10-23 -6,5 10-23 -5 10-23 -3,2 10-23 

CO -3,9 10-22 -4,2 10-22 -4,9 10-22 -6,5 10-22 

 

5.3 Product of the PSD of the noise responses by the frequency 

In Fig. 6, we plot the product ( ))()( fSfSf ThI sensor
−   in the case of ozone, nitrogen dioxide 

and carbon monoxide using the extracted parameters in TABLE II. Over 100 Hz, we observe a 

1/f slope as predicted in (11) for all concentrations of studied gases. On the other hand, at low 

frequencies, the behavior is different for each gas. For NO2, the curves of the product of noise 

current spectral density by the frequency show two maximums of approximately equal values 

while the maximum at lower frequency is higher for CO. The curves for ozone have a particular 

behavior because of the higher sensitivity of tungsten trioxide to this gas. This high sensitivity 

to ozone is characterized by a higher low frequency noise level compared to other gases.  

So, the quantity ( ))()( fSfSf ThI sensor
−  , has a maximum which is characteristic of the nature 

of the detected gas. Extracted maximums are reported in TABLE IV and have specific value 

ranges for each gas. Thus, detecting the maximum of the ( ))()( fSfSf ThI sensor
−   is a 

sensitive method to identify a gas. This result confirms that the choice of this parameter seems 

interesting for the identification of the detected gas compared to other parameters such as 

the average slope of the product )( fSf
sensorI [27] or the characteristic frequency of the 

maximum of this same product [28]. 

 



 

Fig. 6. Plots of the quantity ( ))()( fSfSf ThI sensor
− 

 for four concentrations of ozone (O3), nitrogen dioxide (NO2) 

and carbon monoxide (CO) detected by metal-oxide gas microsensor with tungsten trioxide (WO3) sensing layer. 

 

TABLE IV.  MAXIMUM OF THE PRODUCT OF THE PSD OF NOISE CURENT SPECTRAL DENSITY BY THE FREQUENCY (A2) 

Gas 
Concentration 

C1 C2 C3 C4 

O3 3,3 10-22 4 10-22 5 10-22 6 10-22 

NO2 3 10-24 2 10-24 1,3 10-24 1,2 10-24 

CO 1,1 10-23 1,2 10-23 1,3 10-23 2 10-23 

 

5.4 Data analysis for gas identification 

For each of the three gas identification methods, we have shown that the extracted 

parameters were different for ozone, nitrogen dioxide and carbon monoxide. The ability to 

discriminate several gases using our different noise spectroscopy-based gas identifying 



methods has been evaluated by the principal component analysis (PCA). Our noise database 

consists of Tables II, II and IV. The PCA enable us to convert the set of observation of correlated 

or uncorrelated variables of our database into a new set of values (principal components). 

Then, the score plots of PCA show the relations between these analyzed variables (different 

concentrations of the three gases in our studies). PCA has been performed using the Pearson 

matrix calculation. The PCA variables are the all extracted parameters of the spectral 

decomposition (TABLE II), the minimum of first derivative of noise current spectral density 

(TABLE III) and the maximum of the product of the PSD of noise current spectral density by 

the frequency (TABLE IV). The observations are the set of twelve concentrations of the studied 

gases. 

The calculation of the correlation matrix shows that several variables are correlated and 

others uncorrelated. For our study, the first low frequency magnitude S1 of spectral 

decomposition is correlated with the minimum of first derivative of PSD and the maximum of 

( ))()( fSfSf ThI sensor
− 

. Conversely, values of thermal noise are uncorrelated with values of cut-

off frequency of the second lorentzian. About the variability of the PCA eigenvalues, the 

majority of the inertia is carried by two axes PC1 and PC2 (about 91% cumulated) which are 

therefore the two principal components. Table V presents the coordinates of the PCA variables 

according to PC1 and PC2. H1 and Fc1 are the low frequency magnitude and cut-off frequency 

of first lorentzian, respectively. H2 and Fc2 are the low frequency magnitude and cut-off 

frequency of second lorentzian, respectively. TH is the thermal noise. Min_Si’ is the minimum 

of first derivative of PSD. F0 is the frequency at this minimum and Max_fSi is the maximum of 

product of PSD by the frequency. 

 



TABLE V.  TABLE OF CORRELATIONS BETWEEN VARIABLES AND THE TWO PRINCIPAL COMPONENTS.  

PCA Variable PC1 PC2 

H1 0,992 -0,059 

Fc1 -0,988 0,051 

H2 -0,509 -0,578 

Fc2 -0,445 0,873 

TH -0,720 -0,510 

Min_Si
’ -0,988 0,051 

F0 -0,987 0,065 

Max_fSi 0,990 -0,049 

 

All PCA variables have a significant length in the PC1 / PC2 plane. The PC1 axis is rather related 

to H1 and Max_fSi while the PC2 axis is rather related to the Fc2 parameter. The scores plot of 

the first two principal components is given in Fig. 7. We clearly observe three groups of data. 

Each group corresponds to one gas. A first separation can be made according to the PC1 

component. The corresponding ozone data has a strongly positive PC1 values due to a higher 

value of the H1 and Max_fSi extracted parameters, while the NO2 and the CO have negative 

PC1 values. The component PC2 makes it possible to separate these two gases. Indeed, the 

values for NO2 have a negative value of PC2 and are therefore rather related to the parameter 

TH and H2. Conversely, the values for CO have a positive value of PC2. CO is further 

characterized by Fc2 parameters. PCA results show that a clear discrimination is possible 

between the three studied gases. 

 

 



 

Fig. 7. PCA scores plot 

 

These results were obtained with three gases diluted in dry air. Under actual conditions for 

measuring pollutants in the atmosphere, humidity is present in proportions ranging from 15% 

to almost 100%, and it is known that the response of MOX sensors is affected by the presence 

of humidity, which leads to a decrease of the sensor response. However, as explained in 

Section 2, noise spectroscopy provides a quantity of information greater by several orders of 

magnitude than that provided by a simple measurement of the resistance of the sensor. So, 

we may think that the spectral attributes studied in this article, associated with powerful 

classification algorithms such as Support Vector Machines, k Nearest Neighbors or Neural 



Networks, will allow the identification of target gases to continue, even in the presence of 

humidity. 

 

6. Conclusion 

In this paper, we have presented new developments in gases identification methods using 

noise spectroscopy. These methods are based on precise spectral decomposition of measured 

noise responses of micro sensor under gases. For each method, we studied the ability to 

discriminate the nature of detected gas. In particular, the minimum of the first derivative of 

noise current spectral density is different for each studied gases. Similarly, we have observed 

that the maximum of the product of noise current spectral density by the frequency is 

characteristic of the nature of the detected gas. Finally, the PCA multivariable analysis method 

has been applied to all extracted spectral data and has shown that it is possible to identify the 

nature of three gas using noise spectroscopy-based methods applied to one single MOX gas 

sensor. 

After these promising results, more work is in progress in order to: 

− increase the database by adding more gases concentrations and mixing the gases with 

each other and with humidity; 

− test the detection of other gases representative of air quality, such as BTEX (benzene, 

toluene, ethyl benzene, xylene); 

− study whether the number of spectral attributes used for gases identification can be 

reduced; 



− experiment classification algorithms such as Support Vector Machines, k Nearest 

Neighbors or Neural Networks. 
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