Calibration of micro Pirani vacuum gauges for internal pressure measurement in miniaturized vacuum chambers

P. Coste¹, F. Parrain¹, A. Bosseboeuf¹, C. Bessouet¹, J.Moulin¹ and Y. Jang²

Center for Nanoscience and Nanotechnology (C2N), University Paris Saclay, CNRS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France.

Nextron Corporation, Room 609, V1 Tower, 273-20 Geejwa-Ro, Geumjeong-Gu, Busan, 46257, South Korea

Miniaturized vacuum chambers typically have vacuum feedthroughs and fittings with a low and poorly known conductance, a rather high and variable outgassing rate, and often, non-negligible leak rates. Consequently, the internal pressure is difficult to estimate with a good accuracy from the usual external pressure measurement, notably when in situ heating/cooling is performed or when a gas is injected. To solve this issue, one or several micro Pirani gauges [1, 2] can be integrated inside the chamber for direct internal pressure measurement, at least in the 10⁻⁴ mbar to a few hundreds of mbar range. In order to calibrate such micro Pirani gauges and overall their gas dependencies, we specifically developed a vacuum set-up equipped with three high accuracy (0.5%) absolute capacitance gauges, a dedicated electronic card with a 16 bits AD converter, and an acquisition/calibration software. These tools were used for the calibration at 21°C of the response in N₂ (Fig.1) and the gas dependencies in a large pressure range (Fig.2) for Ar, H₂ and ambient Air (Rh=40%) of HVS Vac03k and Vac04 micro Pirani sensors in TO39 package from Heiman[™] company [1]. The gas dependency below ~1 mbar is close to results reported by K. Jousten [3] for macroscopic Pirani gauges but with a larger discrepancy for H₂ than for Argon (Fig. 2.). At higher pressure, the responses for Ar and H_2 rapidly diverge from N_2 response and are also drastically different from macroscopic Pirani gauges. The Air pressure differs significantly from N₂ pressure only beyond a few mbars. Future works will investigate the case of other gases and the effect of temperature.

Fig.1 MicroPirani sensors response in N_2 with fits by V=a[P/(1+b.P)+c] function.

Fig.2 Gas dependencies of microPirani sensors. (true pressure vs N₂ equivalent pressure).

References

[1] S. Wilfert and C. Edelmann, Miniaturized vacuum gauges, J. Vac. Sci. Technol. A 22 p.309 (2004)
[2] F. Völklein, C. Dütsch, M. Grau, J. Schieferdecker, M.Simon, K. Storck, MEMS pirani type vacuum sensor with extended sensitivity, GMA/ITG-Factagung Sensoren und Messysteme p.42-46 (2012)
[3] K. Jousten, on the gas species dependencies of Pirani vacuum Gauges, J. Vac. Sci. Technol. A 26 p.352 (2008)