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Abstract In this paper, we establish the exponential BV stability of general sys-
tems of discretized scalar conservation laws with positive speed. The focus is on
numerical approximation of such systems using a wide class of slope limiter schemes
built from the upwind monotone flux. The proof is based on a Lyapunov analysis
taken from the continuous theory [11] and a careful use of Harten formalism.
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1 Introduction

1.1 Literature Review

In this work, we are interested in the exponential stability of systems of scalar
conservation laws using boundary feedback laws. The system under consideration
is a set of d nonlinear scalar conservation laws coupled at the boundary by a square
matrix H of size d:

∀1 ≤ i ≤ d,


∂tRi + ∂x[fi(Ri)] = 0
Ri(t, 0) = [HR(t, 1)]i
Ri(0, x) = R0

i (x) ∈ BV ([0, 1])
(1)

where R : R+ × [0, 1] 7→ Rd (d ∈ N∗), fi : R 7→ R. For coherence, it is assumed that
all characteristic velocities are positive and consequently, the boundary condition
in (1) is adapted. In [13], the author proves the well-posedness of such system
using front-tracking techniques and a classical Kruzkov analysis. The case where
the sign of characteristic velocities is not fixed is out of the scope of this article.
This corresponds to a problem of traffic junction treated in [3][2] just to mention
a few.
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More specifically, the focus is on the exponential stability of (1). The problem
is equivalent to find sufficient conditions on H such that for any R0 initial data,
the solution to (1) converges exponentially fast toward zero in the sense that

∀t ≥ 0, ||R(t, .)||X ≤ Ce−γt||R0||X (2)

where C, γ > 0 are constants independent on t and || · ||X is a norm on a Banach
space X.

In [7, Chapter 1], typical examples of systems modeled by hyperbolic PDEs
with such feedback boundary conditions are cited; the telegrapher equations for
electrical lines, the shallow water (Saint-Venant) equations for open channels [20],
the isothermal Euler equations for gas flow in pipelines or even the Aw-Rascle
equations [4] for road traffic. However it should be noted that, in previous ex-
amples, there is often an in-domain coupling which is not present in our model.
Moreover, fluxes are sometimes not scalar which renders the analysis far more com-
plicated. Hence, the family of systems we study, constitutes a simplified model for
more realistic systems cited above. It introduces techniques helping in the complex
studies on general systems of conservation and balance laws from [7, Chapter 1].

Additionally, the stabilization of similar systems with non-local terms receive
more and more attention. We can cite [8] where the authors added a nonlocal
zeroth order term to be stabilized. In this article, uncertainties on parameters and
on the state of the system are allowed and an adaptive command built from an
observer is designed. In [12], authors propose a spectral analysis to stabilize a
scalar linear transport equation with a non-local velocity. The control is exerted
at the boundary. Then, by a Lyapunov analysis they prove a local stability result
for the nonlinear version of the system.

Notation: For all R ∈ Rd, |R| designates the canonical euclidean norm of R.
For matrices M ∈ Md(R), |M | = sup |MR|

|R|=1, R∈Rd
. For 1 ≤ p ≤ ∞ and all matrices

M ∈Md(R), |M |p is subordinate norm of lp. D+
d (R) is the set of diagonal strictly

positive matrices. The real ρp(M) for matrices M ∈Md(R) is defined by:

ρp(M) := inf
∆∈D+

d (R)
|∆M∆−1|p.

Spaces Lp on [0, 1] are embedded with their canonical norms ||.||Lp . The space
Liploc(R+;E) corresponds to functions from R+ to a Banach space E which are
locally Lipschitz. Let f be a C1 function from R to R. Let a, b ∈ R, then if a = b,
the notation:

f(b)− f(a)

b− a := f ′(a) (3)

is imposed all along the article.

1.2 Stability of the PDE system without discretization

For the continuous PDE system, there are many results giving sufficient conditions
on H to ensure exponential stability. One can mention the introduction of [13] for
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a review of some of these results. The criterion which is relevant in this paper is
given here:

ρ∞(H) := inf∆∈D+
d (R)|∆H∆

−1|∞ < 1. (4)

Owing (4), we proved the exponential stability in space X = BV ([0, 1]) of systems
of scalar conservation laws with positive velocities of propagation in [13]. In this
work, the Banach space X = BV ([0, 1]) is also considered and the focus is on the
exponential stability of the corresponding numerical solutions.

1.3 The numerical problem

In this paper, the focus is on finite volume approximations of system (1):

Rn+1
j −Rnj

dt
+
fnj+1/2 − f

n
j−1/2

dx
= 0

where n, j are respectively the time and space index. More precisely, we find suf-
ficient condition on H such that the discretized version of (1) is exponentially
stable.

The upwind flux fnj+1/2 = f(Rnj ) is known for its simplicity and its good prop-
erties. It is consistent and under a classic hypothesis of CFL, it is Total Variation
Decreasing (TVD) and monotone [17] for scalar equations. These characteristics
allow to prove easily that when the parameter of discretization tends towards zero,
the numerical solution tends towards the unique entropy solution of the problem.
For an introduction on the notion of entropy solution, we refer to [17]. However,
it is over diffusive and only first order accurate. In order to correct such behavior,
one can use the additional precision of a second order scheme taking:

fnj+1/2 = f(Rnj + R̃nj )

where for example R̃nj =
Rnj+1 −R

n
j

dx

dx

2
. However, a second order scheme cannot be

TVD by Godunov Theorem and have oscillatory behaviors around discontinuities.
Moreover, it can also be unstable as it is the case for the example cited just above.
This is why one introduces a slope limiter φ [23] whose role is to damp the effect of
the second order flux around discontinuities. The slope limiter scheme is defined
taking:

R̃j := φ

(
Rnj −R

n
j−1

dx
,
Rnj+1 −R

n
j

dx

)
dx

2

where φ is called the slope limiter that will be defined carefully later. The main
contribution of the paper is to find sufficient condition on φ and H to prove the ex-
ponential BV ([0, 1]) stability of the numerical solution built from the slope limiter
scheme giving an explicit formula for the dissipation rate.

There are several results for the stabilization of discretized 1D wave equation.
A very instructive survey from Trélat [30] gives an insight of techniques for the
stabilization of discretized hyperbolic PDEs. One can also cite [29] where the
authors prove the boundary stabilization of a semi-discretized 1D wave equation.
Adding a numerical viscosity term damping high frequencies, they prove a uniform
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exponential stability decay of the energy uniformly with respect to the parameter
of discretization. The article [28] deals with the case of an in-domain damping.

The main concern is to obtain a uniform observability inequality whose con-
stant is independent on the parameter of discretization. This is not an easy task
since the observability of the continuous system does not necessarily imply the
same for the fully discrete or the semi discrete system. The survey [33] summa-
rizes most of the main results about this question. The main problem comes from
high frequency modes and their group velocity. The group velocity of two consec-
utive high frequency modes tends to zero as the discretization parameter goes to
zero which prevent from using Ingham’s inequality. This makes the observation
(at a finite fixed time) very difficult as the discretization get finer [24]. This is why
it is primordial to add a non physical numerical viscosity in order to damp these
high frequencies.

For completeness, we cite [15] where the author prove the uniform exponential
decay for another semi-discretized scheme simulating an in-domain damped wave
equation. The case of semilinear wave equation is treated in [1]. The method to
deduce exponential stabilization for the full discretized case is given in [16].

However to the author’s knowledge, few results are known about the stabiliza-
tion of discretized transport equations of the form (1). The method presented here
is very different from observation inequalities techniques. We rather use discrete
Lyapunov functions to prove exponential decay of our solution. In a L2 framework,
the articles [18,5] prove a stabilization result for discretized linear balance laws
coupled in the domain and at the boundary using such techniques. However, it
does not seem to be generalizable to a BV context for nonlinear scalar conserva-
tion laws. In section 3, we address this problem introducing a discrete Lyapunov
functional in BV.

1.4 Problem setting

For wellposedness and scheme convergence results, we consider a more general
boundary condition: 

∂tR+ ∂x[f(R)] = 0
R(t, 0) = g(R(t, 1))
R(0, x) = R0(x) ∈ BV ([0, 1]).

(5)

where the following hypothesis on f and g hold:

– f is diagonal in the sense that:

∀1 ≤ i ≤ d, R ∈ Rd, fi(R) = fi(Ri).

Moreover, all the fi seen as functions from R to R are non decreasing. Doing
so, the boundary condition of (5) has sense.

– There exist two positive constants 0 < vmin < vmax such that for all 1 ≤ i ≤ d,

∀(u, v) ∈ R2, vmin|u− v| ≤ |fi(u)− fi(v)| ≤ vmax|u− v|. (6)

– The boundary feedback function g : Rd 7→ Rd is Lipschitz with Lipschitz con-
stant Lg > 0. Moreover, we impose g(0) = 0.
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Remark 1 The components of a solution R to (5) interact with each others only at
the boundary.

In this paper, the framework is BV ([0, 1]). This space is embedded with its
classical norm || · ||BV ([0,1]) defined by

∀R ∈ BV ([0, 1]), ||R||BV ([0,1]) = TV[0,1](R) + ||R||L1([0,1]) (7)

where:

TV (R) = sup
n, (x1,...,xn)

{
n−1∑
i=1

|R(xi+1)−R(xi)|

}
.

The reason why the BV space is considered is because any function with
bounded variations has a left limit and a right limit at each point x of [0, 1].
Hence, it is easy to define the trace operator and impose a boundary condition.
Moreover, BV ([0, 1]) has a very interesting property of compactness which will be
very useful when we will pass to the limit when the parameter of discretization
tends towards zero. These properties are summed up in a lemma and a theorem
(see references [9, Lemma 2.1, Theorem 2.4]) :

Lemma 1 Let R : [0, 1] 7→ Rd with bounded variations. Then for all x ∈ (0, 1), the

left and right limit

R(x−) = lim
y→x−

R(y), R(x+) = lim
y→x+

R(y)

exist. Moreover, R(0+) and R(1−) are also well defined and R has at most countably

many point of discontinuities.

The following theorem is from Helly and states the compactness of BV ([0, 1])
in L1

loc(R
+, L1([0, 1])).

Theorem 1 Let (Rν)ν be a sequence of functions from R+ × [0, 1] to Rd such that

there exists constants C, M and L satisfying

∀ν > 1, x ∈ [0, 1], t ≥ 0, TV[0,1](Rν(t, .)) ≤ C, |Rν(t, x)| ≤M (8)

and

∀0 ≤ t, s ≤ T, ||Rν(t, .)−Rν(s, .)||L1([0,1]) ≤ L|t− s|. (9)

Then there exists a subsequence (Rµ)µ converging toward a certain R in

L1
loc(R

+, L1([0, 1])) and this limit satisfies (8)-(9) with Rν replaced by R.

When the initial data is supposed to be L∞ only, an entropic solution exists
and is unique [22]. Moreover, it is possible to define the trace in a certain sense
[26,32]. However, the method we use to prove exponential stability crucially uses
the BV hypothesis and this is why the L∞ framework is out of the scope of this
paper.

5



1.5 Outline

The article is organized as follows. In section 2, we precisely define the slope limiter
scheme and prove the convergence in BV ([0, 1]) of the corresponding numerical
solution. As a by-product, a well-posedness result for system (5) is proved. In
section 3, the framework is restricted to linear boundary feedback operator g(R) =
HR. Then, the exponential stability of the scheme in BV ([0, 1]) is proved giving an
explicit formula for the dissipation rate. Passing to the limit, we give another proof
of the exponential stability of the continuous system which was already stated in
[13]. In section 4, simulations are given to illustrate results from section 3. A study
of saturated controls is also given. Finally, the conclusions and perspectives are
exposed in the last part of this work.

2 Well-posedness and numerical approximation results

In this section, we introduce rigorously the slope limiter scheme corresponding to
(5) and prove the convergence of such a scheme. Firstly, let us consider a space
step dx = 1/N (N ∈ N∗) and a time step dt > 0 such that the following CFL
condition holds (recall the definition of vmax in (6)):

vmaxν ≤ 1− ξ (10)

with

ν :=
dt

dx

and where ξ is a real number such that:

0 < ξ < 1.

Doing so, the space-time mesh is given by:

∀n ∈ N, 1 ≤ j ≤ N,
{
xj := (j − 1/2)dx
tn := ndt

, Cj := (xj − dx/2, xj + dx/2).

− − − − − − − − −− − − − − − − −

C1 C2 · · · · · · CN

x1 x2 · · · · · · xN

Fig. 1: The space grid

All along this paper, the superscript n is exclusively allocated to designate time
indices. Whereas, subscripts i and j are the indices corresponding respectively
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to the vector component and space grid. The numerical approximation R0
∆x of

R0 ∈ BV ([0, 1]) is given below

∀1 ≤ j ≤ N, x ∈ Cj , R0
∆x(x) =

1

dx

∫
Cj

R0(x)dx. (11)

In our context, the definition of a four point finite volume scheme is given below:

Definition 1 A four-point finite volume scheme is defined a follows:

– The scheme is initialized defining (R0
j )1≤j≤N as in (11).

– Then the numerical solution is built by induction. For n ∈ N, (Rnj )1≤j≤N is

supposed to be given. We define (Rn+1
j )1≤j≤N using the following relation

∀ 2 ≤ j ≤ N − 1,
Rn+1
j −Rnj

dt
+
fnj+1/2 − f

n
j−1/2

dx
= 0 (12)

where fnj+1/2 is the approximation of the flux at the right interface of cell j:

∀1 ≤ j ≤ N − 1, fnj+1/2 = f̃(Rnj−1, R
n
j , R

n
j+1). (13)

The function f̃ is called the three point approximation of the flux f . The choice
of such a function will be given later with careful justifications.

– At the boundary the scheme degenerates into the upwind one:
Rn+1
N −RnN

dt
+
f(RnN )− f(RnN−1)

dx
= 0

Rn+1
1 −Rn1

dt
+
f(Rn1 )− f(Rn0 )

dx
= 0

Rn0 := g(RnN ).

(14)

There are many possibilities for the choice of the function f̃ . For example, one
can take:

f̃(Rnj−1, R
n
j , R

n
j+1) = f(Rnj ).

It corresponds to the classic upwind scheme when the transport velocity is
positive. Recalling what was said in the introduction, the first main advantage of
such scheme is that it is TVD and consistent allowing convergence towards a weak
solution to (5). The other advantage is that it is monotone forcing the scheme to
converge towards the unique entropy solution of (5). However, it is known for its
diffusivity giving poor results in simulation. This is why one introduces the slope
limiter flux [31] [23]:

f̃(Rnj−1, R
n
j , R

n
j+1) = f(Rnj + R̃nj ) (15)

where the term R̃nj is given by a piecewise linear approximation of the solution:

∀1 ≤ i ≤ d, R̃ni,j = φ

(
Rni,j −R

n
i,j−1

dx
,
Rni,j+1 −R

n
i,j

dx

)
dx

2

where φ is assumed to be of the form:
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φ(u, v) =

{
0 if v = 0
φr(u/v)ψdx(v) otherwise

(16)

such that there exists 0 ≤ β < 1/2 such that:

|ψdx(v)| ≤ v and |ψdx(v)| ≤ dx−β (17)

and φr : R→ R and for all r ≤ 0, φr(r) = 0.
The natural choice for ψdx is:

ψdx(v) =

{
v if |v| ≤ dx−β

sign(v)dx−β otherwise.

Hence, if Rni,j+1 −R
n
i,j 6= 0, then:

R̃ni,j := φr

(
rni,j+1/2

)
ψdx

(
Rnj+1 −R

n
j

dx

)
dx

2
.

The variable rni,j+1/2 ∈ Rd is defined by:

∀1 ≤ i ≤ d, rni,j+1/2 :=
Rni,j −R

n
i,j−1

Rni,j+1 −R
n
i,j

.

Remark 2 When the flux is linear, slope limiter schemes and flux limiter schemes
coincide [23, p. 114].

The slope limiter φ is designed such that when the solution is regular i.e
rj+1/2 ≈ 1, the flux f̃ is closed to a second order flux. On the contrary, when
the solution is not regular (rj+1/2 � 1) or admits a local extrema (rj+1/2 ≤ 0),
the second order scheme gives poor oscillatory results. In this case, we prefer to
give more weight on the upwind TVD scheme imposing φ ≈ 0. We refer to [23,
Section 6.6-6.9] for a more complete description of how slope limiter schemes were
designed.

We define the following coefficient for all 1 ≤ i ≤ d, 1 ≤ j ≤ N − 1, which will
be useful all along this article:

ani,j−1 := ν
fi(R

n
i,j + R̃ni,j)− fi(R

n
i,j−1 + R̃ni,j−1)

Rni,j + R̃ni,j −R
n
i,j−1 − R̃

n
i,j−1

×
(

1 +
φr(r

n
i,j+1/2)

2rn
i,j+1/2

ψdx(
Rni,j+1−R

n
i,j

dx )
Rni,j+1−Rni,j

dx

−
φr(r

n
i,j−1/2)

2

ψdx(
Rni,j−R

n
i,j−1

dx )
Rni,j−Rni,j−1

dx

)
.

(18)

For the pathologic cases, one defines ani,j−1 as follows:

– If Rni,j − R
n
i,j−1 = 0 (ie rni,j+1/2 = 0 and rni,j−1/2 ill-defined), then ani,j−1 :=

νf ′i(R
n
i,j).

– Otherwise, if Rni,j − R
n
i,j−1 6= 0 and Rni,j+1 − R

n
i,j = 0 (rni,j+1/2 is ill-defined),

the coefficient
φr(r

n
i,j+1/2)

2rn
i,j+1/2

ψdx(
Rni,j+1−R

n
i,j

dx )
Rn
i,j+1

−Rn
i,j

dx

is replaced by zero in (18).

8



– If Rni,j+R̃
n
i,j−R

n
i,j−1−R̃

n
i,j−1 = 0, then recall that

fi(R
n
i,j+R̃

n
i,j)−fi(R

n
i,j−1+R̃

n
i,j−1)

Rni,j+R̃
n
i,j−Rni,j−1−R̃ni,j−1

=

f ′i(R
n
i,j + R̃ni,j) by the convention of notation (3).

For j = N , we set:

ani,N−1 := ν
f i(Rni,N )− f i(Rni,N−1)

Rni,N −R
n
i,N−1

.

The diagonal matrix with ani,j as entries is denoted Anj := diag{ani,j | 1 ≤ i ≤ d}.
Hence, the scheme can be reformulated under an upwind form:

Rn+1
j = Rnj −A

n
j−1(Rnj −R

n
j−1).

In order to ensure that our scheme is TVD, we impose the following condition
of the slope limiter φ:

Hypothesis 1 There exists 0 ≤ vnum ≤ vmin such that:

0 ≤ φr(r) ≤ min

{
2

(
1

νvmax
− 1

)
r, 2

(
1− vnum

vmin

)}

This hypothesis is fundamental to ensure Harten’s condition [19]:

Lemma 2 If Hypothesis 1 is satisfied, then Harten’s condition is satisfied:

νvnum ≤ ain,j ≤ 1. (19)

Proof Looking at (18), one has:

ani,j ≤ νvmax

(
1 +

φr(r
n
i,j+1/2)

2rn
i,j+1/2

)
,

ani,j ≥ νvmin

(
1−

φr(r
n
i,j−1/2)

2

)
.

By Hypothesis 1:

νvmax

(
1 +

φr(r
n
i,j+1/2)

2rn
i,j+1/2

)
≤ 1,

νvmin

(
1−

φr(r
n
i,j−1/2)

2

)
≥ νvnum

which immediately gives the result of the Lemma.

Before going into the main result of this section, we introduce a new no-
tation. Let R∆x be the piecewise constant function equal to Rnj on each cell
[ndt, (n+ 1)dt]×Cj . This numerical approximation helps us proving the existence
of a solution to (5). Meanwhile, Kruzhkov theory allows to prove the uniqueness.
To prove the following Theorem 2, techniques are quite classical and plenty of
works deal with the convergence of slope limiter schemes for scalar conservation
laws in several dimensions and when the domain is the whole real line [10] [21]
[25]. In our case, this is a bit more complex since we have to take into account the
boundary condition.
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Theorem 2 System (5) admits a unique entropy solution R ∈ L∞loc(R
+, BV ([0, 1]))∩

Liploc(R+, L1([0, 1])) in the sense that for all T > 0:

– The entropy decay estimate holds:

∀k ∈ Rd,
d∑
i=1

∫ T

0

∫ 1

0

{
|Ri−ki|∂tϕi+(fi(Ri)−fi(ki))sign(Ri−ki)∂xϕi

}
dxdt ≥ 0

(20)
for all ϕi ≥ 0 and ϕi ∈ C1

c (]0, T [×]0, 1[).

– R(0, .) = R0 in the almost everywhere sense.

– R(., 0+) = g(R(., 1−)) in the almost everywhere sense.

Moreover, the following convergence properties hold

∀t ≥ 0, dt > 0, TV[0,1](R(t, .)) ≤ lim sup
N→+∞

sup
s∈[t,t+dt]

TV[0,1](R∆x(s, .)). (21)

∀t ≥ 0, lim
N→∞

||R(t, .)−R∆x(t, .)||L1([0,1]) = 0. (22)

Proof The proof is given in Appendix A.

3 Exponential BV stability

In this section, we focus on a particular case of system of (5).
∂tR+ ∂x[f(R)] = 0
R(t, 0) = HR(t, 1)
R(0, x) = R0(x) ∈ BV ([0, 1]).

(23)

where H ∈Md(R). We introduce the following stability hypothesis.

Hypothesis 2 The feedback matrix H satisfies:

ρ1(H) < 1.

Remark 3 By [11, Remark 1.4]

∀M ∈Md(R), ρ1(H) = ρ∞(H)

so that Hypothesis 2 can also be written as:

ρ∞(H) < 1.

The following Lyapunov functional is proposed for functions which are constant
on the space mesh.
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Definition 2 Let N be in N∗, γ > 0 and P ∈ D+
d (R). For any function R piecewise

constant on cells Cj taking its values in Rd, the BV Lyapunov functional L is given
by

L(R) =
d∑
i=1

Pi

N−1∑
j=0

|Ri,j+1 −Ri,j |e−γxj

where

x0 := −dx/2, R0 := HRN .

Next lemma ensures the equivalence between L and || · ||BV ([0,1]) defined in (7).

Lemma 3 Suppose Hypothesis 2. For all P ∈ D+
d (R+) such that |PHP−1|1 ≤ 1 and

for all γ > 0, there exists a constant C(P, γ,H) > 1 such that for all N ∈ N∗ and all

functions R piecewise constant on cells (Cj)j :

L(R)

C(P, γ,H)
≤ ||R||BV ([0,1]) ≤ C(P, γ,H)L(R). (24)

Proof We define the extension R̃ of R at C0 := (−dx, 0) setting R̃(x) = HR(1) on
C0. In [13, Lemma 2], it is proved that:

L(R)

C(P, γ,H)
≤ TV (R̃) + ‖R̃‖L1([0,1]) ≤ C(P, γ,H)L(R). (25)

Additionally, as R̃ is an extension on the left boundary of R and by the defi-
nition of the BV norm, it holds:

‖R‖BV ([0,1]) ≤ TV (R̃) + ‖R̃‖L1([0,1]) = ‖R‖BV ([0,1]) + |R1 − R̃0|+ |R̃0|dx.

As R̃0 = HRN by definition and as ‖ · ‖L∞([0,1]) ≤ C‖ · ‖BV ([0,1]) (C > 0 is a
constant depending on the parameters of the problem only), one has:

‖R‖BV ([0,1]) ≤ TV (R̃) + ‖R̃‖L1([0,1]) ≤ C(H)‖R‖BV ([0,1]).

Hence, using (25), it holds:

L(R)

C(P, γ,H)
≤ ||R||BV ([0,1]) ≤ C(P, γ,H)L(R).

where we may have changed the constant C(P, γ,H). The lemma is proved.

The reason why we introduce a discrete Lyapunov functional is because we
cannot deduce the exponential stability of the numerical solution from the stability
of the “continuous” one proven in [13]. Indeed, the convergence of the numerical
solution towards the continuous solution is only proven to be in L1

loc(R
+;L1([0, 1]))

in general [17, Theorem 5.2]. This is not enough to prove an exponential stability
result even in L1([0, 1]). This is why, we need to study the stability property of
the scheme in itself introducing a discrete Lyapunov functional. The main result
of this paper is given in the following theorem whose proof is the object of the
section.

11



Theorem 3 Under Hypothesis 1-2 and for all γ > 0, 0 ≤ c < vnum, P ∈ D+
d (Rd)

such that |PHP−1|1 < e−γ , there exists ε such that if γdt < ε, the discrete Lyapunov

estimate holds:

∀n ≥ 0, L(Rn) ≤ e−cγndtL(R0).

To understand the consequences of Theorem 3, we consider a limiter φr satis-
fying Hypothesis 1 with vnum = αvmin and α ∈ [0, 1]. Then, a Sweby diagram [27]
is drawn in Figure 2 where the colored region represents the zone corresponding
to Hypothesis 1. Theorem 3 states that for such φr the dissipation rate of the
numerical solution is bounded from below by αvmin(= vnum). Remark that the
best estimation vnum = vmin ⇐⇒ α = 1 is obtained for only one scheme φr = 0
which is the upwind scheme.

y = 2( 1
νvmax

− 1)r

r

y

y = 2(1− α)

φr(r)

Fig. 2: The Sweby diagram

Proof Let N,n be positive integers. By the definition of L, we have:

L(Rn+1) =
d∑
i=1

Pi

N−1∑
j=0

|Rn+1
i,j+1 −R

n+1
i,j |e

−γxj .

The ith component of the Lyapunov functional L is given here:

Li(Rn+1) :=
N−1∑
j=0

|Rn+1
i,j+1 −R

n+1
i,j |e

−γxj .

For 1 ≤ i ≤ d and 1 ≤ j ≤ N − 1, we estimate the intensity of the discontinuity
Rn+1
i,j+1 −R

n+1
i,j .

12



Rn+1
i,j+1 −R

n+1
i,j = (1− ani,j)(R

n
i,j+1 −R

n
i,j) + ani,j−1(Rni,j −R

n
i,j−1)

where anj was defined in (18). Because of the Harten’s condition (19) we have for
1 ≤ i ≤ d and 1 ≤ j ≤ N − 1:

|Rn+1
i,j+1 −R

n+1
i,j | ≤ (1− ani,j)|R

n
i,j+1 −R

n
i,j |+ ani,j−1|R

n
i,j −R

n
i,j−1|. (26)

Multiplying by e−γxj and summing over 1 ≤ j ≤ N − 1, we get

∑N−1
j=1 |R

n+1
i,j+1 −R

n+1
i,j |e

−γxj ≤
N−2∑
j=1

(1− ani,j(1− e
−γdx))|Rni,j+1 −R

n
i,j |e

−γxj

+(1− ani,N−1)|Rni,N −R
n
i,N−1|e

−γxN−1

+ani,0|R
n
i,1 −R

n
i,0|e

−γdx/2.

Coming back to the Lyapunov functional Li, it holds:

Li(Rn+1) ≤
N−2∑
j=1

(1− ani,j(1− e
−γdx))|Rni,j+1 −R

n
i,j |e

−γxj

+(1− ani,N−1)|Rni,N −R
n
i,N−1|e

−γxN−1

+ani,0|R
n
i,1 −R

n
i,0|e

−γdx/2

+|Rn+1
i,1 −Rn+1

i,0 |e
γdx/2.

Now, we estimate |Rn+1
i,1 −Rn+1

i,0 |:

Rn+1
i,1 −Rn+1

i,0 = Rni,1 + ani,0(Rni,0 −R
n
i,1)−Rn+1

i,0

= (Rni,1 −R
n
i,0)(1− ani,0) +Rni,0 −R

n+1
i,0 .

(27)

Taking the absolute value and by triangle inequality, one obtains:

|Rn+1
i,1 −Rn+1

i,0 | ≤ (1− ani,0)|Rni,1 −R
n
i,0|+ |R

n
i,0 −R

n+1
i,0 |.

This gives:

Li(Rn+1) ≤
N−2∑
j=1

(1− ani,j(1− e
−γdx))|Rni,j+1 −R

n
i,j |e

−γxj

+(1− ani,N−1)|Rni,N −R
n
i,N−1|e

−γxN−1

+(1− ani,0(1− e−γdx))|Rni,1 −R
n
i,0|e

γdx/2

+|Rn+1
i,0 −Rni,0|e

γdx/2

which is no more than:

Li(Rn+1) ≤
N−2∑
j=0

(1− ani,j(1− e
−γdx))|Rni,j+1 −R

n
i,j |e

−γxj

+(1− ani,N−1)|Rni,N −R
n
i,N−1|e

−γxN−1

+|Rn+1
i,0 −Rni,0|e

γdx/2.

13



Using the fact that there exists ε such that for γdx ≤ ε, 1 − e−γdx ≥ c
vnum

γdx

(because c
vnum

< 1 by assumption), we get:

Li(Rn+1) ≤
N−2∑
j=0

(1− ani,j
cγdx

vnum
)|Rni,j+1 −R

n
i,j |e

−γxj

+(1− ani,N−1)|Rni,N −R
n
i,N−1|e

−γxN−1

+|Rn+1
i,0 −Rni,0|e

γdx/2.

Then we add and subtract (1−ani,N−1
cγdx
vnum

)|Rni,N −R
n
i,N−1|e

−γ(N−1)dx in the first
and second line respectively to get:

Li(Rn+1) ≤
N−1∑
j=0

(1− ani,j
cγdx

vnum
)|Rni,j+1 −R

n
i,j |e

−γxj

−ani,N−1(1− cγdx

vnum
)|Rni,N −R

n
i,N−1|e

−γxN−1

+|Rn+1
i,0 −Rni,0|e

γdx/2.

Finally, using the fact that anN−1(RnN −R
n
N−1) = −(Rn+1

N −RnN ) and the fact that

1− ani,j
cγdx
vnum

≤ 1− cγdt (see (19)), the estimate of Li writes:

Li(Rn+1) ≤ (1− cγdt)Li(Rn)

−(1− cγdx

vnum
)|Rn+1

i,N −R
n
i,N |e

−γxN−1

+|Rn+1
i,0 −Rni,0|e

γdx/2.

Using the discrete boundary condition (14), one changes the last boundary term:

Li(Rn+1) ≤ (1− cγdt)Li(Rn)

−(1− cγdx

vnum
)|Rn+1

i,N −R
n
i,N |e

−γxN−1

+|[HRn+1
N ]i − [HRnN ]i|eγdx/2.

Multiplying by Pi and summing over all the 1 ≤ i ≤ d, an estimate on L writes:

L(Rn+1) ≤ (1− cγdt)L(Rn)

−
d∑
i=1

Pi|Rn+1
i,N −R

n
i,N |(1−

cγdx

vnum
)e−γxN−1

+
d∑
i=1

Pi|[HRn+1
N ]i − [HRnN ]i|eγdx/2.

Using the definition of | · |1, the boundary terms can be compared with each others:

L(Rn+1) ≤ (1− cγdt)L(Rn)

+(|PHP−1|1eγdx/2 − (1− cγdx

vnum
)e−γxN−1)

d∑
i=1

Pi|Rn+1
i,N −R

n
i,N |.

14



As P ∈ D+
d (R) is such that |PHP−1|1 < e−γ , we get for γdx sufficiently small

(that is to say γdx < ε(c, vnum, H)):

L(Rn+1) ≤
(

1− cγdt
)
L(Rn).

Summing with respect to time, one obtains:

L(Rn+1) ≤
(

1− cγdt
)n+1

L(R0).

Using the fact that 1− x ≤ e−x, the result of Lemma 3 is proved.

Remark 4 The rate of exponential convergence γc given by Theorem 3 is weaker
than the one given in [13] for the continuous setting γvmin. This is mainly due
to the choice of the limiter which guaranties only (19). To recover the rate of
convergence from [13], one should impose:

νvmin ≤ ain,j ≤ 1

which is true for the upwind scheme but not for other limiters.

The following Theorem was already proved in [13]. The main difference here is
that the proof comes from the convergence of our finite volume scheme.

Theorem 4 Under Hypothesis 2 and for all P ∈ D+
d (R), γ > 0 such that |PHP−1|1 <

e−γ , there exists a constant C(P, γ,H) depending only on P, γ,H such that the entropy

solution to (23) verifies

∀t ≥ 0, ||R(t, ·)||BV ([0,1]) ≤ C(P, γ,H) exp
(
− γvmint

)
||R0||BV ([0,1]).

Proof For this proof, we take φ ≡ 0 which corresponds to the upwind scheme. As
a consequence, it is possible to take vnum = vmin in Hypothesis 1. Then, it suffices
to pass to the limit as N goes to infinity in Lemma 3 using estimates (22), (21)
and the equivalence between norms L, || · ||BV ([0,1]) (see (24)).

4 Simulations

In this section, we illustrate numerically that slope limiter schemes are clearly
less dissipative than the upwind scheme and capture better the behavior of the
continuous solution. For computations, we consider the case where d = 4, dtdx = 0.4
and the flux is given by:

∀1 ≤ i ≤ 4, x ∈ R, fi(Ri) = 0.5Ri +
0.5

2i−1
arctan(Ri).

In such a case, min and max velocities are vmin = 0.5 and vmax = 1. Concerning
the limiter, it is chosen as:

φr(r) = max{min{r, 1}, 0}, ψdx(v) =

{
v if |v| ≤ dx−β

sign(v)dx−β otherwise

with β = 0.49. This limiter is called a minmod limiter.
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4.1 Dissipativity of the scheme

If the focus is on the dissipativity of the scheme alone, a relevant boundary con-
dition is:

H =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

In such a case, the boundary condition does not dissipate energy. For a smooth
initial data:

R1(t = 0, .) = · · · = R4(t = 0, .) = cos(2πx),

we compare the BV ([0, 1]) norm of the solution given by the upwind scheme with
the one given by the limiter one. It is expected that the limiter scheme is less
dissipative than the upwind one when the solution is regular.

(a) dt = 10−2 (b) dt = 5× 10−4

Fig. 3: The BV norm of the solution for the non dissipative case

One sees in Figure 3a-3b that this is indeed the case. Obviously when the grid
is fine enough, the dissipation created by the upwind scheme is negligible and
results for both schemes are similar. Next, we can do the same analysis imposing
this time, a dissipative feedback boundary condition:

H =


0.5 0.1 0 0.1
0.1 0.5 0.1 0
0 0.1 0.5 0.1

0.1 0 0.1 0.5

 .

An optimization routine gives ρ1(H) = 0.7. Moreover, a less regular initial data is
examined: 

R0
1 = x ≥ 0.5

R0
2 = −(x < 0.5) + (x ≥ 0.5)

R0
3 = x ≥ 0.5

R0
4 = −(x < 0.5) + (x ≥ 0.5).
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One obtains Figures 4a-4b for the evolution of the BV norm:

(a) dt = 10−2 (b) dt = 5× 10−4

Fig. 4: The BV norm of the solution for the dissipative case

The black dashed line corresponds to the estimation of the rate of convergence
γvnum (vnum = 0.5vmin, γ = − log(0.7) here) given by Theorem 3. We see this is not
optimal since the rate of convergence is underestimated. Then, when the solution
is small enough, it should be wise to take vmin = mini f

′
i(0) in Theorem 3 in order

to estimate the rate of convergence when the solution is small (in L∞([0, 1])). This
rate is represented by the dashed dotted line for the upwind scheme (vnum = vmin)
in figures 4a-5b. This estimation fits better with the numerical experiments. With
these results, one sees that Theorem 3 gives only a lower bound on the exponential
convergence rate and not a precise estimation of it. Another remark to make is
that the limiter scheme captures better the dissipation rate, the upwind scheme
dissipating too much when the grid is coarse.

If we change the limiter, we have similar numerical results. For example, one
can take the Van Leer limiter:

φr(r) =
r + |r|
1 + |r| .
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(a) dt = 10−2 (b) dt = 5× 10−4

Fig. 5: The Van-Leer case

For completeness, we plot a part of the left trace of the solution for t < 15
(dt = 5× 10−4).

(a) R1(t, 0) (b) R2(t, 0)

Fig. 6: Trace of the solution

One clearly sees that the solution is rapidly damped when time evolves.

4.2 Comparison with the exact solution

An interesting analysis would be to compare convergence rates when it is possible
to calculate the exact solution using the characteristics method. This is done by
taking d = 2 and a linear flux given by:{

f1(R1) = R1

f2(R2) = 1.6×R2.

The initial data is taken as follows:

18



{
R0

1 = cos(2πx)
R0

2 = sin(2πx).

For the non dissipative boundary condition, one takes:

H =

(
0 1
1 0

)
.

One obtains Figure 7 where the energy dynamics are compared for both slope
limiter and upwind schemes ( dtdx = 0.4) and also for the exact solution:

(a) dt = 10−2 (b) dt = 10−3

Fig. 7: Non dissipative case: comparison with the exact solution

Note that the exact solution is calculated thanks to a recursive python routine
that follows the characteristics backward in time. Additionally, the BV norm of
the exact solution is calculated by sampling the solution uniformly, E(1/dx) times
over the segment [0, 1].

For the dissipative boundary condition, one takes:

H =

(
0.2 0.5
0.5 0.2

)

for which ρ1(H) = 0.7. In this case, the evolution of the BV norm is represented
in Figure 8 in the same way as in Figure 7.
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(a) dt = 10−2 (b) dt = 10−3

Fig. 8: Dissipative case: comparison with the exact solution

For both dissipative and non dissipative cases, we can make the same conclu-
sions as in section 4.1 in the sense that the upwind scheme dissipates too much
when the grid is coarse whereas the slope limiter scheme fits better with the exact
solution.

4.3 Saturated control

In this section, we analyze an example of system of scalar conservation laws for
d = 2 with saturated feedback control law. The same example as [13] is considered:

∂tR+ ∂x[f(R)] = 0
R(t, 0) = HR(t, 1) +Bu(t)
R(0, x) = R0(x) ∈ BV ([0, 1])

(28)

where:

u(t) = σ(KR(t, 1)).

The operator σ is the saturation by component with level of saturation equal to
one:

∀1 ≤ i ≤ 2, x ∈ R,
{
σi(x) = x if |x| ≤ 1
σi(x) = sign(x) otherwise.

Matrices are defined as follows.

H =

(
0 1.1
1 0

)
, B = I2, K =

(
0 −0.1050

−0.1045 0

)
.

As nonlinear flux, one takes f(R) = ΛR+ 0.2(arctan(R1), arctan(R2)) with

Λ =

(
1 0
0
√

2

)
.

For the scheme parameters, it is imposed that dt = 10−2 and ν = 0.4. Then, we
take R0 constant with value in (−40, 40)2 and look if the solution does not blow up
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at infinite time in BV norm. In this way, it is possible to estimate the projection
of the basin of attraction onto the space of constant initial data. Results are given
below for the upwind and the minmod slope limiter scheme:

(a) Upwind (b) Minmod limiter

Fig. 9: Comparison of basins of attraction (dt = 10−2)

The x-axis corresponds to the value of the first component of the initial data
R0

1(x) = R0
1 ∈ R whereas the y-axis corresponds to the value of the second com-

ponent of the initial data R0
2(x) = R0

2 ∈ R. Contours correspond to the rate of
exponential decay of the numerical solution for a time window of 50 seconds. If
it is negative, the solution decays exponentially fast in BV norm. If it is positive,
we have exponential divergence. The black thick contour corresponds to a dissipa-
tion rate equal to zero. Here, the same figure is plotted with a finer discretization
dt = 10−3 for the minmod limiter scheme.

Fig. 10: Basin of attraction for dt = 10−3

We see that the upwind scheme overestimates the basin of attraction whereas
it is not the case for the minmod slope limiter scheme.
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5 Conclusion

The exponential BV stability of general slope limiter scheme for system (23) has
been established with an estimate of the dissipation rate. The main idea was to use
Harten’s formalism. Then, using new discrete Lyapunov techniques, we concluded
on the exponential stability of the numerical solution in the spirit of the continuous
case. The dissipation rate is estimated from below uniformly with respect to the
discretization. Finally, the convergence of the scheme towards the entropy solution
was established using the boundedness of ψdx.

There are some questions which remain open. The case of time dependent flux
may not change the philosophy of the proof of exponential stability. However if we
add a source term coupling the equations inside the domain the analysis is far from
being obvious. Then the case where there are positive and negative characteristic
velocities is not treated but this is only a question of change of variable. Finally
combining both difficulties of velocities with different signs and the one of source
terms, we know that a Lyapunov function does not exist in the continuous case
[6]. It does not seem extravagant to suppose that such Lyapunov function does
not exist in the discrete case. Backstepping techniques were designed to solve this
difficulty when the flux is linear but it is not obvious that such methods can be
directly applied to the corresponding numerical system.

A Proof of Theorem 2

The uniqueness can be proved by classical Kruzhkov techniques [13, Appendix B]. For the
existence and the convergence result, it relies on classical techniques of BV estimates based
on the CFL condition (10). This is why we do not give any proof of these estimates and focus
only on the effect of the boundary condition which is less classical. For more details, we refers
to [14].

Let N be a positive integer and denote R∆x the numerical approximation given in Defini-
tion 1. We recall that we defined Rn0 as:

Rn0 = g(RnN ).

A.1 The L∞ estimate

Now, define for all ndt < ν
2

:= τ , the index jν(n) such that 2
ν

(n − 1)dt ≤ jν(n)dx < 2
ν
ndt.

From now on, we suppose that the time index n verifies ndt < τ . Under a CFL like condition
(10), it is easy to prove that:

max
ndt<τ

jν (n)≤j≤N

|Rnj | ≤ max
0≤j≤N

|R0
j | (29)

and that:

max
ndt<τ

0≤j≤jν (n)

|Rnj | ≤ max
ndt<τ

|Rn0 |+ max
0≤j≤N

|R0
j |.

Then, the Lipschitz character of the boundary condition allows to transform last inequality

max
ndt<τ

0≤j≤jν (n)

|Rnj | ≤ C(Lg) max
ndt<τ

|RnN |+ max
0≤j≤N

|R0
j |

where C(Lg) is a constant depending only on Lg . Finally, one can easily bound the left bound-
ary term by the L∞ norm of the initial data to get:
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max
ndt<τ

0≤j≤jν (n)

|Rnj | ≤ (1 + C(Lg)) max
0≤j≤N

|R0
j |. (30)

Gathering (30) and (29), it holds:

‖R∆x‖L∞([0,τ ]×[0,1]) ≤ (1 + C(Lg))‖R0
∆x‖L∞([0,1]).

Repeating this process, we obtain the following L∞ estimate for any T > 0:

‖R∆x‖L∞([0,T ]×[0,1]) ≤ C(Lg , T )‖R0
∆x‖L∞([0,1]).

where C depends only on T , Lg , ξ and vmax. By the fact that (R0
∆x)N is bounded in L∞

(recall that R0 is in BV ([0, 1])), the L∞ estimate holds:

‖R∆x‖L∞([0,T ]×[0,1]) ≤ C‖R0‖L∞([0,1]) (31)

where C depends only on T , Lg , ξ and vmax.

A.2 The TV estimate

We have,

TV (Rn• ) = TV[0,jν ](R
n
• ) + TV[jν ,N ](R

n
• ). (32)

Under the CFL condition (10), it is easy to prove that the first term on the left hand side of
(32) can be bounded by a boundary term and an initial data term:

TV[0,jν ](R
n
• ) ≤ TV[0,n](R•0) + TV (R0

•).

Moreover, by the Lipschitz character of the boundary condition, we get:

TV[0,jν ](R
n
• ) ≤ LgTV[0,n](R•N ) + TV (R0

•).

Finally under (10), We can bound TV[0,n](R
•
N ) by TV (R0

•) to obtain:

TV[0,jν ](R
n
• ) ≤ (1 + Lg)TV (R0

•). (33)

Similarly, it is possible to prove that:

TV[jν ,N ](R
n
• ) ≤ TV (R0

•). (34)

and with (33), the following TV estimate holds:

∀ndt < τ, TV (Rn• ) ≤ C(Lg , T )TV (R0
•).

Repeating the process, one gets the following bound in TV for ndt < T with T > 0:

TV (Rn• ) ≤ C(Lg , T )TV (R0
•)

where C(Lg , T ) is a constant that depends solely on Lg and T . By the fact that (R0
· )N

converges towards R0 in BV ([0, 1]), one bounds the right hand side of last equation:

∀ndt ≤ T, TV (Rn• ) ≤ C(Lg , T, R
0). (35)
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A.3 The L1([0, 1]) continuity estimate

For all integers n > 1,

N∑
j=0

|Rn+1
j −Rnj |dx =

N∑
j=1

|Anj−1(Rnj −Rnj−1)|dx+ |Rn+1
0 −Rn0 |dx

≤
N∑
j=1

|Anj−1||Rnj −Rnj−1|dx+ Lg |Rn+1
N −RnN |dx

=

N−1∑
j=0

|Anj ||Rnj+1 −Rnj |dx+ Lg |AnN−1(RnN −R
n
N−1)|dx

≤ (1 + Lg)TV (Rn• )dx.

By the triangle inequality, it holds for n,m > 0

N∑
j=0

|Rn+mj −Rnj |dx ≤ dx

n+m−1∑
l=n

(1 + Lg)TV (Rl•).

And by the boundedness of the total variation (35), we get

N∑
j=0

|Rn+mj −Rnj |dx ≤ C(Lg , (n+m)dt,R0)mdx.

which is no more than:

‖R∆x((n+m)dt, ·)−R∆x(ndt, ·)‖L1([0,1]) ≤ C(Lg , f, (n+m)dt,R0)mdt. (36)

A.4 The L1
loc(R

+) continuity estimate

We define for T > 0, nT := E(T/dt). For all integers 0 ≤ j ≤ N − 1, we have the following
estimate:

nT∑
n=0

|Rnj+1 −Rnj |dt =

nT∑
n=0

dt|(an+1
j )−1(Rn+1

j+1 −R
n
j+1)|

≤ Cdt

nT∑
n=0

|Rn+1
j+1 −R

n
j+1|.

where we have used the fact that the ani,js are bounded from below because of the Harten’s

condition (19). By the triangular inequality, it holds for j0 < j1:

nT∑
n=0

|Rnj1 −R
n
j0
|dt ≤ Cdt

j1∑
j=j0

TV[1,nT+1](R
•
j+1). (37)

Similarly to proof of the boundedness of the space total variation (see (35)), we can prove
the corresponding result for the time total variation. That is to say:

∀T > 0, 0 ≤ j ≤ N, TV[0,nT ](R
•
j ) ≤ C(T,R0, Lg).

Injecting this in (37), the following continuity estimate writes:

‖R∆x(·, j1dx)−R∆x(·, j0dx)‖L1([0,T ]) ≤ C(T,R0, Lg , f)(j1 − j0)dx. (38)

24



A.5 Conclusion

By Helly’s Theorem, the sequence (R∆x)N converges (up to a subsequence) in L1
loc(R

+×[0, 1])

to a function R ∈ L1
loc(R

+, BV ([0, 1])) ∩ Liploc(R+, L1([0, 1])). It remains to prove that R is
an entropy solution to (5).

Let k ∈ Rd and define qk(u) := f(u

⊥

k) − f(k ⊥ u), ηk(u) = |u − k|. The proof of the
following result crucially depends on (17) and is given in a more general context in [10]. We
give it here for completeness.

Lemma 4 (Discrete entropy estimate)
For all k ∈ Rd, N ∈ N∗, we have for all n ∈ N, 1 ≤ j ≤ N, 1 ≤ i ≤ d:

1
dt

(|Rn+1
i,j − ki| − |R

n
i,j − ki|) + 1

dx
(qk(Rni,j + ˜Rni,j)− qk(Rni,j−1 + ˜Rni,j−1)) ≤ Cdx1−2β .

(39)

In order to ease the reading, the i index is dropped until the end of the proof. We take

ϕ ∈ Cc(]0, T [×]0, 1[). Multiplying (39) by Inj (ϕ) :=

∫ tn+1

tn

∫ xj+dx/2

xj−dx/2
ϕ(t, x)dtdx and summing

over n, j, one gets:

nT∑
n=0

N∑
j=1

ηk(Rn+1
j )− ηk(Rnj )

dt
Inj (ϕ)+

nT∑
n=0

N∑
j=1

qk(Rnj + R̃nj )− qk(Rnj−1 + R̃nj−1)

dx
Inj (ϕ) ≤ Cdx1−2β .

A numerical integration by parts (owing the fact that ϕ is zero at the boundary of [0, T ]×[0, 1]),
we get:

nT∑
n=0

N∑
j=1

ηk(Rnj )
In−1
j (ϕ)− Inj (ϕ)

dt
+

nT∑
n=0

N∑
j=1

qk(Rnj + R̃nj )
Inj (ϕ)− Inj+1(ϕ)

dx
≥ Cdx1−2β .

Passing to the limit owing that β < 1/2, one gets∫ T

0

∫ 1

0
ηk(R)∂tϕ+ qk(R)∂xϕdxdt ≥ 0.

A.5.1 Boundary conditions and convergence estimates

To finish the proof of the existence of a solution to (5), it remains to show that the initial and
boundary conditions are verified in the almost everywhere sense. Let ε > 0 and 0 < s < 1

||R(0, .)−R∆x(0, .)||L1([0,1]) ≤ ||R(0, .)−R(s, .)||L1([0,1]) + ||R(s, .)−R∆x(s, .)||L1([0,1])

+||R∆x(s, .)−R∆x(0, .)||L1([0,1])

≤ 2C(g,R0)s+ ||R(s, .)−R∆x(s, .)||L1([0,1]).

where we have used (36) to get the last inequality and the fact that R ∈ Liploc(R+, L1([0, 1])).
Integrating with respect to s on an interval [0, t] for 0 ≤ t ≤ 1, one gets

||R(0, .)−R∆x(0, .)||L1([0,1]) ≤ C(g,R0)t+
1

t

∫ t

0
||R(s, .)−R∆x(s, .)||L1([0,1])ds

≤ C(g,R0)t+
1

t

∫ 1

0
||R(s, .)−R∆x(s, .)||L1([0,1])ds
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Taking t = ε
2C(g,R0)

and N sufficiently large such that

∫ 1

0
||R(s, .) − R(s, .)||L1([0,1])ds ≤

ε2

4C(g,R0)
, one finally obtains:

||R(0, .)−R∆x(0, .)||L1([0,1]) ≤ ε.

By the fact that R0
∆x converges towards R0 in L1([0, 1]), we deduce that R(0, .) = R0 in a L1

sense and R(0, .) = R0 almost everywhere.

Remark 5 The same procedure can be repeated for any t ≥ 0 and prove (22).

Remark 6 We can use the same technique to prove that the boundary condition R(t, 0) =
g(R(t, 1)) is satisfied in the almost everywhere sense. In this case, the continuity estimate (38)
is the key tool (see [13, p.24] for details).

The final step is to prove the convergence estimate (21). We give the sketch of the proof
(see [13, p.24-25] for more details). In fact (21) is a consequence of Helly’s Theorem applied to

the sequence (R∆x)N>Ñ where Ñ > 1, on a time interval [t, t+ dt] (dt > 0). Then it suffices

to take the limit when Ñ goes to infinity and when dt goes to zero.
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