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Exponential stability of a general slope limiter scheme for scalar conservation laws subject to a dissipative boundary condition
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In this paper, we establish the exponential BV stability of general systems of discretized scalar conservation laws with positive speed. The focus is on numerical approximation of such systems using a wide class of slope limiter schemes built from the upwind monotone flux. The proof is based on a Lyapunov analysis taken from the continuous theory [11] and a careful use of Harten formalism.

1 Introduction

Literature Review

In this work, we are interested in the exponential stability of systems of scalar conservation laws using boundary feedback laws. The system under consideration is a set of d nonlinear scalar conservation laws coupled at the boundary by a square matrix H of size d:

∀1 ≤ i ≤ d,    ∂ t R i + ∂x[f i (R i )] = 0 R i (t, 0) = [HR(t, 1)] i R i (0, x) = R 0 i (x) ∈ BV ([0, 1]) (1) 
where R : R + × [0, 1] → R d (d ∈ N * ), f i : R → R. For coherence, it is assumed that all characteristic velocities are positive and consequently, the boundary condition in (1) is adapted. In [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF], the author proves the well-posedness of such system using front-tracking techniques and a classical Kruzkov analysis. The case where the sign of characteristic velocities is not fixed is out of the scope of this article. This corresponds to a problem of traffic junction treated in [START_REF] Andreianov | Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network[END_REF][2] just to mention a few.

More specifically, the focus is on the exponential stability of [START_REF] Alabau-Boussouira | Nonlinear damped partial differential equations and their uniform discretizations[END_REF]. The problem is equivalent to find sufficient conditions on H such that for any R 0 initial data, the solution to (1) converges exponentially fast toward zero in the sense that ∀t ≥ 0, ||R(t, .)|| X ≤ Ce -γt ||R 0 || X [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] where C, γ > 0 are constants independent on t and || • || X is a norm on a Banach space X.

In [7, Chapter 1], typical examples of systems modeled by hyperbolic PDEs with such feedback boundary conditions are cited; the telegrapher equations for electrical lines, the shallow water (Saint-Venant) equations for open channels [START_REF] Hayat | On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the C 1 norm[END_REF], the isothermal Euler equations for gas flow in pipelines or even the Aw-Rascle equations [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] for road traffic. However it should be noted that, in previous examples, there is often an in-domain coupling which is not present in our model. Moreover, fluxes are sometimes not scalar which renders the analysis far more complicated. Hence, the family of systems we study, constitutes a simplified model for more realistic systems cited above. It introduces techniques helping in the complex studies on general systems of conservation and balance laws from [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF]Chapter 1].

Additionally, the stabilization of similar systems with non-local terms receive more and more attention. We can cite [START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF] where the authors added a nonlocal zeroth order term to be stabilized. In this article, uncertainties on parameters and on the state of the system are allowed and an adaptive command built from an observer is designed. In [START_REF] Coron | Output feedback stabilization for a scalar conservation law with a nonlocal velocity[END_REF], authors propose a spectral analysis to stabilize a scalar linear transport equation with a non-local velocity. The control is exerted at the boundary. Then, by a Lyapunov analysis they prove a local stability result for the nonlinear version of the system. Spaces L p on [0, 1] are embedded with their canonical norms ||.|| L p . The space Lip loc (R + ; E) corresponds to functions from R + to a Banach space E which are locally Lipschitz. Let f be a C 1 function from R to R. Let a, b ∈ R, then if a = b, the notation:

f (b) -f (a) b -a := f (a) (3) 
is imposed all along the article.

Stability of the PDE system without discretization

For the continuous PDE system, there are many results giving sufficient conditions on H to ensure exponential stability. One can mention the introduction of [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF] for a review of some of these results. The criterion which is relevant in this paper is given here:

ρ∞(H) := inf ∆∈D + d (R) |∆H∆ -1 |∞ < 1. (4) 
Owing (4), we proved the exponential stability in space X = BV ([0, 1]) of systems of scalar conservation laws with positive velocities of propagation in [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF]. In this work, the Banach space X = BV ([0, 1]) is also considered and the focus is on the exponential stability of the corresponding numerical solutions.

The numerical problem

In this paper, the focus is on finite volume approximations of system (1):

R n+1 j -R n j dt + f n j+1/2 -f n j-1/2 dx = 0
where n, j are respectively the time and space index. More precisely, we find sufficient condition on H such that the discretized version of ( 1) is exponentially stable.

The upwind flux f n j+1/2 = f (R n j ) is known for its simplicity and its good properties. It is consistent and under a classic hypothesis of CF L, it is Total Variation Decreasing (TVD) and monotone [START_REF] Eymard | Solution of Equation in R n (Part 3)[END_REF] for scalar equations. These characteristics allow to prove easily that when the parameter of discretization tends towards zero, the numerical solution tends towards the unique entropy solution of the problem. For an introduction on the notion of entropy solution, we refer to [START_REF] Eymard | Solution of Equation in R n (Part 3)[END_REF]. However, it is over diffusive and only first order accurate. In order to correct such behavior, one can use the additional precision of a second order scheme taking:

f n j+1/2 = f (R n j + Rn j )
where for example Rn

j = R n j+1 -R n j dx dx 2
. However, a second order scheme cannot be TVD by Godunov Theorem and have oscillatory behaviors around discontinuities. Moreover, it can also be unstable as it is the case for the example cited just above. This is why one introduces a slope limiter φ [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] whose role is to damp the effect of the second order flux around discontinuities. The slope limiter scheme is defined taking:

Rj := φ R n j -R n j-1 dx , R n j+1 -R n j dx dx 2
where φ is called the slope limiter that will be defined carefully later. The main contribution of the paper is to find sufficient condition on φ and H to prove the exponential BV ([0, 1]) stability of the numerical solution built from the slope limiter scheme giving an explicit formula for the dissipation rate. There are several results for the stabilization of discretized 1D wave equation. A very instructive survey from Trélat [START_REF] Trélat | Stabilization of Semilinear PDEs, and Uniform Decay under Discretization[END_REF] gives an insight of techniques for the stabilization of discretized hyperbolic PDEs. One can also cite [START_REF] Tebou | Uniform boundary stabilization of the finite difference space discretization of the 1 -d wave equation[END_REF] where the authors prove the boundary stabilization of a semi-discretized 1D wave equation. Adding a numerical viscosity term damping high frequencies, they prove a uniform exponential stability decay of the energy uniformly with respect to the parameter of discretization. The article [START_REF] Tébou | Uniform exponential long time decay for the space semidiscretization of a locally damped wave equation via an artificial numerical viscosity[END_REF] deals with the case of an in-domain damping.

The main concern is to obtain a uniform observability inequality whose constant is independent on the parameter of discretization. This is not an easy task since the observability of the continuous system does not necessarily imply the same for the fully discrete or the semi discrete system. The survey [START_REF] Zuazua | Propagation, observation, and control of waves approximated by finite difference methods[END_REF] summarizes most of the main results about this question. The main problem comes from high frequency modes and their group velocity. The group velocity of two consecutive high frequency modes tends to zero as the discretization parameter goes to zero which prevent from using Ingham's inequality. This makes the observation (at a finite fixed time) very difficult as the discretization get finer [START_REF] Marica | Localized solutions for the finite difference semi-discretization of the wave equation[END_REF]. This is why it is primordial to add a non physical numerical viscosity in order to damp these high frequencies.

For completeness, we cite [START_REF] Ervedoza | Observability properties of a semi-discrete 1D wave equation derived from a mixed finite element method on nonuniform meshes[END_REF] where the author prove the uniform exponential decay for another semi-discretized scheme simulating an in-domain damped wave equation. The case of semilinear wave equation is treated in [START_REF] Alabau-Boussouira | Nonlinear damped partial differential equations and their uniform discretizations[END_REF]. The method to deduce exponential stabilization for the full discretized case is given in [START_REF] Ervedoza | Uniformly exponentially stable approximations for a class of damped systems[END_REF].

However to the author's knowledge, few results are known about the stabilization of discretized transport equations of the form (1). The method presented here is very different from observation inequalities techniques. We rather use discrete Lyapunov functions to prove exponential decay of our solution. In a L 2 framework, the articles [START_REF] Gerster | Discretized feedback control for systems of linearized hyperbolic balance laws[END_REF][START_REF] Banda | Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws[END_REF] prove a stabilization result for discretized linear balance laws coupled in the domain and at the boundary using such techniques. However, it does not seem to be generalizable to a BV context for nonlinear scalar conservation laws. In section 3, we address this problem introducing a discrete Lyapunov functional in BV.

Problem setting

For wellposedness and scheme convergence results, we consider a more general boundary condition:

   ∂ t R + ∂x[f (R)] = 0 R(t, 0) = g(R(t, 1)) R(0, x) = R 0 (x) ∈ BV ([0, 1]).
(

) 5 
where the following hypothesis on f and g hold:

f is diagonal in the sense that:

∀1 ≤ i ≤ d, R ∈ R d , f i (R) = f i (R i ).
Moreover, all the f i seen as functions from R to R are non decreasing. Doing so, the boundary condition of (5) has sense. -There exist two positive constants 0 < v min < vmax such that for all 1 ≤ i ≤ d,

∀(u, v) ∈ R 2 , v min |u -v| ≤ |f i (u) -f i (v)| ≤ vmax|u -v|. ( 6 
)
-The boundary feedback function g : R d → R d is Lipschitz with Lipschitz constant Lg > 0. Moreover, we impose g(0) = 0.

Remark 1 The components of a solution R to (5) interact with each others only at the boundary.

In this paper, the framework is BV ([0, 1]). This space is embedded with its classical norm || • || BV ([0,1]) defined by

∀R ∈ BV ([0, 1]), ||R|| BV ([0,1]) = T V [0,1] (R) + ||R|| L 1 ([0,1]) (7) 
where:

T V (R) = sup n, (x1,...,xn) n-1 i=1 |R(x i+1 ) -R(x i )| .
The reason why the BV space is considered is because any function with bounded variations has a left limit and a right limit at each point x of [0, 1]. Hence, it is easy to define the trace operator and impose a boundary condition. Moreover, BV ([0, 1]) has a very interesting property of compactness which will be very useful when we will pass to the limit when the parameter of discretization tends towards zero. These properties are summed up in a lemma and a theorem (see references [9, Lemma 2.1, Theorem 2.4]) :

Lemma 1 Let R : [0, 1] → R d with bounded variations. Then for all x ∈ (0, 1), the left and right limit

R(x -) = lim y→x - R(y), R(x + ) = lim y→x + R(y)
exist. Moreover, R(0 + ) and R(1 -) are also well defined and R has at most countably many point of discontinuities.

The following theorem is from Helly and states the compactness of BV ([0, 1]) in L 1 loc (R + , L 1 ([0, 1])).

Theorem 1 Let (Rν )ν be a sequence of functions from R + × [0, 1] to R d such that there exists constants C, M and L satisfying

∀ν > 1, x ∈ [0, 1], t ≥ 0, T V [0,1] (Rν (t, .)) ≤ C, |Rν (t, x)| ≤ M (8) 
and

∀0 ≤ t, s ≤ T, ||Rν (t, .) -Rν (s, .)|| L 1 ([0,1]) ≤ L|t -s|. (9) 
Then there exists a subsequence (Rµ)µ converging toward a certain R in

L 1 loc (R + , L 1 ([0, 1]
)) and this limit satisfies (8)- [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF] with Rν replaced by R.

When the initial data is supposed to be L ∞ only, an entropic solution exists and is unique [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. Moreover, it is possible to define the trace in a certain sense [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF][START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF]. However, the method we use to prove exponential stability crucially uses the BV hypothesis and this is why the L ∞ framework is out of the scope of this paper.

Outline

The article is organized as follows. In section 2, we precisely define the slope limiter scheme and prove the convergence in BV ([0, 1]) of the corresponding numerical solution. As a by-product, a well-posedness result for system (5) is proved. In section 3, the framework is restricted to linear boundary feedback operator g(R) = HR. Then, the exponential stability of the scheme in BV ([0, 1]) is proved giving an explicit formula for the dissipation rate. Passing to the limit, we give another proof of the exponential stability of the continuous system which was already stated in [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF]. In section 4, simulations are given to illustrate results from section 3. A study of saturated controls is also given. Finally, the conclusions and perspectives are exposed in the last part of this work.

Well-posedness and numerical approximation results

In this section, we introduce rigorously the slope limiter scheme corresponding to [START_REF] Banda | Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws[END_REF] and prove the convergence of such a scheme. Firstly, let us consider a space step dx = 1/N (N ∈ N * ) and a time step dt > 0 such that the following CFL condition holds (recall the definition of vmax in ( 6)):

vmaxν ≤ 1 -ξ (10) 
with

ν := dt dx
and where ξ is a real number such that:

0 < ξ < 1.
Doing so, the space-time mesh is given by:

∀n ∈ N, 1 ≤ j ≤ N, x j := (j -1/2)dx t n := ndt , C j := (x j -dx/2, x j + dx/2). - - - - - - - - - - - - - - - - - C 1 C 2 • • • • • • C N x 1 x 2 • • • • • • x N Fig. 1:
The space grid All along this paper, the superscript n is exclusively allocated to designate time indices. Whereas, subscripts i and j are the indices corresponding respectively to the vector component and space grid. The numerical approximation R

0 ∆x of R 0 ∈ BV ([0, 1]) is given below ∀1 ≤ j ≤ N, x ∈ C j , R 0 ∆x (x) = 1 dx Cj R 0 (x)dx. ( 11 
)
In our context, the definition of a four point finite volume scheme is given below:

Definition 1 A four-point finite volume scheme is defined a follows:

-The scheme is initialized defining (R 0 j ) 1≤j≤N as in ( 11). -Then the numerical solution is built by induction. For n ∈ N, (R n j ) 1≤j≤N is supposed to be given. We define (R n+1 j ) 1≤j≤N using the following relation

∀ 2 ≤ j ≤ N -1, R n+1 j -R n j dt + f n j+1/2 -f n j-1/2 dx = 0 ( 12 
)
where f n j+1/2 is the approximation of the flux at the right interface of cell j:

∀1 ≤ j ≤ N -1, f n j+1/2 = f (R n j-1 , R n j , R n j+1 ). ( 13 
)
The function f is called the three point approximation of the flux f . The choice of such a function will be given later with careful justifications. -At the boundary the scheme degenerates into the upwind one:

           R n+1 N -R n N dt + f (R n N ) -f (R n N -1 ) dx = 0 R n+1 1 -R n 1 dt + f (R n 1 ) -f (R n 0 ) dx = 0 R n 0 := g(R n N ). (14) 
There are many possibilities for the choice of the function f . For example, one can take:

f (R n j-1 , R n j , R n j+1 ) = f (R n j
). It corresponds to the classic upwind scheme when the transport velocity is positive. Recalling what was said in the introduction, the first main advantage of such scheme is that it is TVD and consistent allowing convergence towards a weak solution to [START_REF] Banda | Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws[END_REF]. The other advantage is that it is monotone forcing the scheme to converge towards the unique entropy solution of (5). However, it is known for its diffusivity giving poor results in simulation. This is why one introduces the slope limiter flux [31] [23]:

f (R n j-1 , R n j , R n j+1 ) = f (R n j + Rn j ) (15) 
where the term Rn j is given by a piecewise linear approximation of the solution:

∀1 ≤ i ≤ d, Rn i,j = φ R n i,j -R n i,j-1 dx , R n i,j+1 -R n i,j dx dx 2
where φ is assumed to be of the form: [START_REF] Ervedoza | Uniformly exponentially stable approximations for a class of damped systems[END_REF] such that there exists 0 ≤ β < 1/2 such that:

φ(u, v) = 0 if v = 0 φr(u/v)ψ dx (v) otherwise
|ψ dx (v)| ≤ v and |ψ dx (v)| ≤ dx -β (17) 
and φr : R → R and for all r ≤ 0, φr(r) = 0. The natural choice for ψ dx is:

ψ dx (v) = v if |v| ≤ dx -β sign(v)dx -β otherwise. Hence, if R n i,j+1 -R n i,j = 0, then: Rn i,j := φr r n i,j+1/2 ψ dx R n j+1 -R n j dx dx 2 .
The variable r n i,j+1/2 ∈ R d is defined by:

∀1 ≤ i ≤ d, r n i,j+1/2 := R n i,j -R n i,j-1 R n i,j+1 -R n i,j
.

Remark 2 When the flux is linear, slope limiter schemes and flux limiter schemes coincide [23, p. 114].

The slope limiter φ is designed such that when the solution is regular i.e r j+1/2 ≈ 1, the flux f is closed to a second order flux. On the contrary, when the solution is not regular (r j+1/2

1) or admits a local extrema (r j+1/2 ≤ 0), the second order scheme gives poor oscillatory results. In this case, we prefer to give more weight on the upwind TVD scheme imposing φ ≈ 0. We refer to [23, Section 6.6-6.9] for a more complete description of how slope limiter schemes were designed.

We define the following coefficient for all 1 ≤ i ≤ d, 1 ≤ j ≤ N -1, which will be useful all along this article:

a n i,j-1 := ν f i (R n i,j + Rn i,j ) -f i (R n i,j-1 + Rn i,j-1 ) R n i,j + Rn i,j -R n i,j-1 -Rn i,j-1 × 1 + φr(r n i,j+1/2 ) 2r n i,j+1/2 ψ dx ( R n i,j+1 -R n i,j dx ) R n i,j+1 -R n i,j dx - φr(r n i,j-1/2 ) 2 ψ dx ( R n i,j -R n i,j-1 dx ) R n i,j -R n i,j-1 dx . (18) 
For the pathologic cases, one defines a n i,j-1 as follows:

-If R n i,j -R n i,j-1 = 0 (ie r n i,j+1/2 = 0 and r n i,j-1/2 ill-defined), then a n i,j-1 := νf i (R n i,j ). -Otherwise, if R n i,j -R n i,j-1 = 0 and R n i,j+1 -R n i,j = 0 (r n i,j+1/2 is ill-defined), the coefficient φr(r n i,j+1/2 ) 2r n i,j+1/2 ψ dx ( R n i,j+1 -R n i,j dx ) R n i,j+1 -R n i,j dx
is replaced by zero in [START_REF] Gerster | Discretized feedback control for systems of linearized hyperbolic balance laws[END_REF].

-If R n i,j + Rn i,j -R n i,j-1 -Rn i,j-1 = 0, then recall that fi(R n i,j + Rn i,j )-fi(R n i,j-1 + Rn i,j-1 ) R n i,j + Rn i,j -R n i,j-1 -Rn i,j-1 = f i (R n i,j + Rn i,j
) by the convention of notation (3). For j = N , we set:

a n i,N -1 := ν f i (R n i,N ) -f i (R n i,N -1 ) R n i,N -R n i,N -1
.

The diagonal matrix with a n i,j as entries is denoted A n j := diag{a n i,j | 1 ≤ i ≤ d}. Hence, the scheme can be reformulated under an upwind form:

R n+1 j = R n j -A n j-1 (R n j -R n j-1 ).
In order to ensure that our scheme is TVD, we impose the following condition of the slope limiter φ:

Hypothesis 1 There exists 0 ≤ vnum ≤ v min such that:

0 ≤ φr(r) ≤ min 2 1 νvmax -1 r, 2 1 - vnum v min
This hypothesis is fundamental to ensure Harten's condition [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF]:

Lemma 2 If Hypothesis 1 is satisfied, then Harten's condition is satisfied:

νvnum ≤ a i n,j ≤ 1. ( 19 
)
Proof Looking at [START_REF] Gerster | Discretized feedback control for systems of linearized hyperbolic balance laws[END_REF], one has:

a n i,j ≤ νvmax 1 + φr(r n i,j+1/2 ) 2r n i,j+1/2 , a n i,j ≥ νv min 1 - φr(r n i,j-1/2 ) 2 .
By Hypothesis 1:

νvmax 1 + φr(r n i,j+1/2 ) 2r n i,j+1/2 ≤ 1, νv min 1 - φr(r n i,j-1/2 ) 2 ≥ νvnum
which immediately gives the result of the Lemma.

Before going into the main result of this section, we introduce a new notation. Let R ∆x be the piecewise constant function equal to R n j on each cell [ndt, (n + 1)dt] × C j . This numerical approximation helps us proving the existence of a solution to [START_REF] Banda | Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws[END_REF]. Meanwhile, Kruzhkov theory allows to prove the uniqueness. To prove the following Theorem 2, techniques are quite classical and plenty of works deal with the convergence of slope limiter schemes for scalar conservation laws in several dimensions and when the domain is the whole real line [START_REF] Chainais-Hillairet | Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF] [21] [START_REF] Osher | On the convergence of difference approximations to scalar conservation laws[END_REF]. In our case, this is a bit more complex since we have to take into account the boundary condition.

Theorem 2 System (5) admits a unique entropy solution R ∈ L ∞ loc (R + , BV ([0, 1])) ∩ Lip loc (R + , L 1 ([0, 1]
)) in the sense that for all T > 0:

-The entropy decay estimate holds:

∀k ∈ R d , d i=1 T 0 1 0 |R i -k i |∂ t ϕ i +(f i (R i )-f i (k i ))sign(R i -k i )∂xϕ i dxdt ≥ 0 (20) for all ϕ i ≥ 0 and ϕ i ∈ C 1 c (]0, T [×]0, 1[).
-R(0, .) = R 0 in the almost everywhere sense.

-R(., 0 + ) = g(R(., 1 -)) in the almost everywhere sense.

Moreover, the following convergence properties hold

∀t ≥ 0, dt > 0, T V [0,1] (R(t, .)) ≤ lim sup N →+∞ sup s∈[t,t+dt] T V [0,1] (R ∆x (s, .)). ( 21 
)
∀t ≥ 0, lim

N →∞ ||R(t, .) -R ∆x (t, .)|| L 1 ([0,1]) = 0. ( 22 
)
Proof The proof is given in Appendix A.

3 Exponential BV stability

In this section, we focus on a particular case of system of (5).

   ∂ t R + ∂x[f (R)] = 0 R(t, 0) = HR(t, 1) R(0, x) = R 0 (x) ∈ BV ([0, 1]). ( 23 
)
where H ∈ M d (R). We introduce the following stability hypothesis.

Hypothesis 2

The feedback matrix H satisfies:

ρ 1 (H) < 1. Remark 3 By [11, Remark 1.4] ∀M ∈ M d (R), ρ 1 (H) = ρ∞(H)
so that Hypothesis 2 can also be written as:

ρ∞(H) < 1.
The following Lyapunov functional is proposed for functions which are constant on the space mesh.

Definition 2 Let N be in N * , γ > 0 and P ∈ D + d (R). For any function R piecewise constant on cells C j taking its values in R d , the BV Lyapunov functional L is given by

L(R) = d i=1 P i N -1 j=0 |R i,j+1 -R i,j |e -γxj
where

x 0 := -dx/2, R 0 := HR N .
Next lemma ensures the equivalence between L and || • || BV ([0,1]) defined in [START_REF] Bastin | Stability and boundary stabilization of 1-D hyperbolic systems[END_REF].

Lemma 3 Suppose Hypothesis 2. For all P ∈ D + d (R + ) such that |P HP -1 | 1 ≤ 1 and for all γ > 0, there exists a constant C(P, γ, H) > 1 such that for all N ∈ N * and all functions R piecewise constant on cells (C j ) j :

L(R) C(P, γ, H) ≤ ||R|| BV ([0,1]) ≤ C(P, γ, H)L(R). ( 24 
)
Proof We define the extension R of R at C 0 := (-dx, 0) setting R(x) = HR(1) on C 0 . In [13, Lemma 2], it is proved that:

L(R) C(P, γ, H) ≤ T V ( R) + R L 1 ([0,1]) ≤ C(P, γ, H)L(R). (25) 
Additionally, as R is an extension on the left boundary of R and by the definition of the BV norm, it holds:

R BV ([0,1]) ≤ T V ( R) + R L 1 ([0,1]) = R BV ([0,1]) + |R 1 -R0 | + | R0 |dx.
As R0 = HR N by definition and as

• L ∞ ([0,1]) ≤ C • BV ([0,1]) (C >
0 is a constant depending on the parameters of the problem only), one has:

R BV ([0,1]) ≤ T V ( R) + R L 1 ([0,1]) ≤ C(H) R BV ([0,1]) .
Hence, using [START_REF] Osher | On the convergence of difference approximations to scalar conservation laws[END_REF], it holds:

L(R) C(P, γ, H) ≤ ||R|| BV ([0,1]) ≤ C(P, γ, H)L(R).
where we may have changed the constant C(P, γ, H). The lemma is proved.

The reason why we introduce a discrete Lyapunov functional is because we cannot deduce the exponential stability of the numerical solution from the stability of the "continuous" one proven in [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF]. Indeed, the convergence of the numerical solution towards the continuous solution is only proven to be in [START_REF] Eymard | Solution of Equation in R n (Part 3)[END_REF]Theorem 5.2]. This is not enough to prove an exponential stability result even in L 1 ([0, 1]). This is why, we need to study the stability property of the scheme in itself introducing a discrete Lyapunov functional. The main result of this paper is given in the following theorem whose proof is the object of the section.

L 1 loc (R + ; L 1 ([0, 1])) in general
Theorem 3 Under Hypothesis 1-2 and for all γ > 0, 0 ≤ c < vnum, P ∈ D + d (R d )

such that |P HP -1 | 1 < e -γ , there exists ε such that if γdt < ε, the discrete Lyapunov estimate holds:

∀n ≥ 0, L(R n ) ≤ e -cγndt L(R 0 ).
To understand the consequences of Theorem 3, we consider a limiter φr satisfying Hypothesis 1 with vnum = αv min and α ∈ [0, 1]. Then, a Sweby diagram [START_REF] Sweby | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] is drawn in Figure 2 where the colored region represents the zone corresponding to Hypothesis 1. Theorem 3 states that for such φr the dissipation rate of the numerical solution is bounded from below by αv min (= vnum). Remark that the best estimation vnum = v min ⇐⇒ α = 1 is obtained for only one scheme φr = 0 which is the upwind scheme.

y = 2( 1 νvmax -1)r r y y = 2(1 -α) φr(r)

Fig. 2: The Sweby diagram

Proof Let N, n be positive integers. By the definition of L, we have:

L(R n+1 ) = d i=1 P i N -1 j=0 |R n+1 i,j+1 -R n+1 i,j |e -γxj .
The ith component of the Lyapunov functional L is given here:

L i (R n+1 ) := N -1 j=0 |R n+1 i,j+1 -R n+1 i,j |e -γxj .
For 1 ≤ i ≤ d and 1 ≤ j ≤ N -1, we estimate the intensity of the discontinuity

R n+1 i,j+1 -R n+1 i,j . R n+1 i,j+1 -R n+1 i,j = (1 -a n i,j )(R n i,j+1 -R n i,j ) + a n i,j-1 (R n i,j -R n i,j-1
) where a n j was defined in [START_REF] Gerster | Discretized feedback control for systems of linearized hyperbolic balance laws[END_REF]. Because of the Harten's condition [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] we have for 1 ≤ i ≤ d and 1 ≤ j ≤ N -1:

|R n+1 i,j+1 -R n+1 i,j | ≤ (1 -a n i,j )|R n i,j+1 -R n i,j | + a n i,j-1 |R n i,j -R n i,j-1 |. (26) 
Multiplying by e -γxj and summing over 1 ≤ j ≤ N -1, we get

N -1 j=1 |R n+1 i,j+1 -R n+1 i,j |e -γxj ≤ N -2 j=1 (1 -a n i,j (1 -e -γdx ))|R n i,j+1 -R n i,j |e -γxj +(1 -a n i,N -1 )|R n i,N -R n i,N -1 |e -γx N -1 +a n i,0 |R n i,1 -R n i,0 |e -γdx/2 .
Coming back to the Lyapunov functional L i , it holds:

L i (R n+1 ) ≤ N -2 j=1 (1 -a n i,j (1 -e -γdx ))|R n i,j+1 -R n i,j |e -γxj +(1 -a n i,N -1 )|R n i,N -R n i,N -1 |e -γx N -1 +a n i,0 |R n i,1 -R n i,0 |e -γdx/2 +|R n+1 i,1 -R n+1 i,0 |e γdx/2 .

Now, we estimate

|R n+1 i,1 -R n+1 i,0 |: R n+1 i,1 -R n+1 i,0 = R n i,1 + a n i,0 (R n i,0 -R n i,1 ) -R n+1 i,0 = (R n i,1 -R n i,0 )(1 -a n i,0 ) + R n i,0 -R n+1 i,0 . (27) 
Taking the absolute value and by triangle inequality, one obtains:

|R n+1 i,1 -R n+1 i,0 | ≤ (1 -a n i,0 )|R n i,1 -R n i,0 | + |R n i,0 -R n+1 i,0 |.
This gives:

L i (R n+1 ) ≤ N -2 j=1 (1 -a n i,j (1 -e -γdx ))|R n i,j+1 -R n i,j |e -γxj +(1 -a n i,N -1 )|R n i,N -R n i,N -1 |e -γx N -1 +(1 -a n i,0 (1 -e -γdx ))|R n i,1 -R n i,0 |e γdx/2 +|R n+1 i,0 -R n i,0 |e γdx/2
which is no more than:

L i (R n+1 ) ≤ N -2 j=0 (1 -a n i,j (1 -e -γdx ))|R n i,j+1 -R n i,j |e -γxj +(1 -a n i,N -1 )|R n i,N -R n i,N -1 |e -γx N -1 +|R n+1 i,0 -R n i,0 |e γdx/2 .
Using the fact that there exists ε such that for γdx ≤ ε, 1 -e -γdx ≥ c vnum γdx (because c vnum < 1 by assumption), we get:

L i (R n+1 ) ≤ N -2 j=0 (1 -a n i,j cγdx vnum )|R n i,j+1 -R n i,j |e -γxj +(1 -a n i,N -1 )|R n i,N -R n i,N -1 |e -γx N -1 +|R n+1 i,0 -R n i,0 |e γdx/2 .
Then we add and subtract (1

-a n i,N -1 cγdx vnum )|R n i,N -R n i,N -1 |e -γ(N -1
)dx in the first and second line respectively to get:

L i (R n+1 ) ≤ N -1 j=0 (1 -a n i,j cγdx vnum )|R n i,j+1 -R n i,j |e -γxj -a n i,N -1 (1 - cγdx vnum )|R n i,N -R n i,N -1 |e -γx N -1 +|R n+1 i,0 -R n i,0 |e γdx/2 .
Finally, using the fact that

a n N -1 (R n N -R n N -1 ) = -(R n+1 N -R n N
) and the fact that 1 -a n i,j cγdx vnum ≤ 1 -cγdt (see [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF]), the estimate of L i writes:

L i (R n+1 ) ≤ (1 -cγdt)L i (R n ) -(1 - cγdx vnum )|R n+1 i,N -R n i,N |e -γx N -1 +|R n+1 i,0 -R n i,0 |e γdx/2 .
Using the discrete boundary condition ( 14), one changes the last boundary term:

L i (R n+1 ) ≤ (1 -cγdt)L i (R n ) -(1 - cγdx vnum )|R n+1 i,N -R n i,N |e -γx N -1 +|[HR n+1 N ] i -[HR n N ] i |e γdx/2 .
Multiplying by P i and summing over all the 1 ≤ i ≤ d, an estimate on L writes:

L(R n+1 ) ≤ (1 -cγdt)L(R n ) - d i=1 P i |R n+1 i,N -R n i,N |(1 - cγdx vnum )e -γx N -1 + d i=1 P i |[HR n+1 N ] i -[HR n N ] i |e γdx/2 .
Using the definition of |•| 1 , the boundary terms can be compared with each others:

L(R n+1 ) ≤ (1 -cγdt)L(R n ) +(|P HP -1 | 1 e γdx/2 -(1 - cγdx vnum
)e -γx N -1 )

d i=1 P i |R n+1 i,N -R n i,N |. As P ∈ D + d (R) is such that |P HP -1 | 1 < e -γ
, we get for γdx sufficiently small (that is to say γdx < ε(c, vnum, H)):

L(R n+1 ) ≤ 1 -cγdt L(R n ).
Summing with respect to time, one obtains:

L(R n+1 ) ≤ 1 -cγdt n+1 L(R 0 ).
Using the fact that 1 -x ≤ e -x , the result of Lemma 3 is proved.

Remark 4 The rate of exponential convergence γc given by Theorem 3 is weaker than the one given in [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF] for the continuous setting γv min . This is mainly due to the choice of the limiter which guaranties only [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF]. To recover the rate of convergence from [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF], one should impose:

νv min ≤ a i n,j ≤ 1
which is true for the upwind scheme but not for other limiters.

The following Theorem was already proved in [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF]. The main difference here is that the proof comes from the convergence of our finite volume scheme.

Theorem 4 Under Hypothesis 2 and for all

P ∈ D + d (R), γ > 0 such that |P HP -1 | 1 < e -γ ,
there exists a constant C(P, γ, H) depending only on P, γ, H such that the entropy solution to [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] 

verifies ∀t ≥ 0, ||R(t, •)|| BV ([0,1]) ≤ C(P, γ, H) exp -γv min t ||R 0 || BV ([0,1]) .
Proof For this proof, we take φ ≡ 0 which corresponds to the upwind scheme. As a consequence, it is possible to take vnum = v min in Hypothesis 1. Then, it suffices to pass to the limit as N goes to infinity in Lemma 3 using estimates [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF], [START_REF] Kröner | Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions[END_REF] and the equivalence between norms L, || • || BV ([0,1]) (see [START_REF] Marica | Localized solutions for the finite difference semi-discretization of the wave equation[END_REF]).

Simulations

In this section, we illustrate numerically that slope limiter schemes are clearly less dissipative than the upwind scheme and capture better the behavior of the continuous solution. For computations, we consider the case where d = 4, dt dx = 0.4 and the flux is given by:

∀1 ≤ i ≤ 4, x ∈ R, f i (R i ) = 0.5R i + 0.5 2 i-1 arctan(R i ).
In such a case, min and max velocities are v min = 0.5 and vmax = 1. Concerning the limiter, it is chosen as:

φr(r) = max{min{r, 1}, 0}, ψ dx (v) = v if |v| ≤ dx -β sign(v)dx -β otherwise
with β = 0.49. This limiter is called a minmod limiter.

Dissipativity of the scheme

If the focus is on the dissipativity of the scheme alone, a relevant boundary condition is:

H =     0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0     .
In such a case, the boundary condition does not dissipate energy. For a smooth initial data:

R 1 (t = 0, .) = • • • = R 4 (t = 0, .) = cos(2πx),
we compare the BV ([0, 1]) norm of the solution given by the upwind scheme with the one given by the limiter one. It is expected that the limiter scheme is less dissipative than the upwind one when the solution is regular. Fig. 3: The BV norm of the solution for the non dissipative case One sees in Figure 3a-3b that this is indeed the case. Obviously when the grid is fine enough, the dissipation created by the upwind scheme is negligible and results for both schemes are similar. Next, we can do the same analysis imposing this time, a dissipative feedback boundary condition:

H =     0.5 0.1 0 0.1 0.1 0.5 0.1 0 0 0.1 0.5 0.1 0.1 0 0.1 0.5     .
An optimization routine gives ρ 1 (H) = 0.7. Moreover, a less regular initial data is examined:

       R 0 1 = x ≥ 0.5 R 0 2 = -(x < 0.5) + (x ≥ 0.5) R 0 3 = x ≥ 0.5 R 0 4 = -(x < 0.5) + (x ≥ 0.5).
One obtains Figures 4a-4b for the evolution of the BV norm:

(a) dt = 10 -2 (b) dt = 5 × 10 -4
Fig. 4: The BV norm of the solution for the dissipative case

The black dashed line corresponds to the estimation of the rate of convergence γvnum (vnum = 0.5v min , γ = -log(0.7) here) given by Theorem 3. We see this is not optimal since the rate of convergence is underestimated. Then, when the solution is small enough, it should be wise to take v min = min i f i (0) in Theorem 3 in order to estimate the rate of convergence when the solution is small (in L ∞ ([0, 1])). This rate is represented by the dashed dotted line for the upwind scheme (vnum = v min ) in figures 4a-5b. This estimation fits better with the numerical experiments. With these results, one sees that Theorem 3 gives only a lower bound on the exponential convergence rate and not a precise estimation of it. Another remark to make is that the limiter scheme captures better the dissipation rate, the upwind scheme dissipating too much when the grid is coarse.

If we change the limiter, we have similar numerical results. For example, one can take the Van Leer limiter:

φr(r) = r + |r| 1 + |r| . (a) dt = 10 -2 (b) dt = 5 × 10 -4
Fig. 5: The Van-Leer case

For completeness, we plot a part of the left trace of the solution for t < 15 (dt = 5 × 10 -4 ). One clearly sees that the solution is rapidly damped when time evolves.

Comparison with the exact solution

An interesting analysis would be to compare convergence rates when it is possible to calculate the exact solution using the characteristics method. This is done by taking d = 2 and a linear flux given by:

f 1 (R 1 ) = R 1 f 2 (R 2 ) = 1.6 × R 2 .
The initial data is taken as follows:

R 0 1 = cos(2πx) R 0 2 = sin(2πx).
For the non dissipative boundary condition, one takes:

H = 0 1 1 0 .
One obtains Figure 7 where the energy dynamics are compared for both slope limiter and upwind schemes ( dt dx = 0.4) and also for the exact solution: For the dissipative boundary condition, one takes:

H = 0.2 0.5 0.5 0.2
for which ρ 1 (H) = 0.7. In this case, the evolution of the BV norm is represented in Figure 8 in the same way as in Figure 7. For both dissipative and non dissipative cases, we can make the same conclusions as in section 4.1 in the sense that the upwind scheme dissipates too much when the grid is coarse whereas the slope limiter scheme fits better with the exact solution.

Saturated control

In this section, we analyze an example of system of scalar conservation laws for d = 2 with saturated feedback control law. The same example as [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF] is considered:

   ∂ t R + ∂x[f (R)] = 0 R(t, 0) = HR(t, 1) + Bu(t) R(0, x) = R 0 (x) ∈ BV ([0, 1]) (28) 
where:

u(t) = σ(KR(t, 1)).
The operator σ is the saturation by component with level of saturation equal to one:

∀1 ≤ i ≤ 2, x ∈ R, σ i (x) = x if |x| ≤ 1 σ i (x) = sign(x) otherwise.
Matrices are defined as follows.

H = 0 1.1 1 0 , B = I 2 , K = 0 -0.1050 -0.1045 0 .
As nonlinear flux, one takes f (R) = ΛR + 0.2(arctan(R 1 ), arctan(R 2 )) with

Λ = 1 0 0 √ 2 .
For the scheme parameters, it is imposed that dt = 10 -2 and ν = 0.4. Then, we take R 0 constant with value in (-40, 40) 2 and look if the solution does not blow up at infinite time in BV norm. In this way, it is possible to estimate the projection of the basin of attraction onto the space of constant initial data. Results are given below for the upwind and the minmod slope limiter scheme: We see that the upwind scheme overestimates the basin of attraction whereas it is not the case for the minmod slope limiter scheme.
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The exponential BV stability of general slope limiter scheme for system [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF] has been established with an estimate of the dissipation rate. The main idea was to use Harten's formalism. Then, using new discrete Lyapunov techniques, we concluded on the exponential stability of the numerical solution in the spirit of the continuous case. The dissipation rate is estimated from below uniformly with respect to the discretization. Finally, the convergence of the scheme towards the entropy solution was established using the boundedness of ψ dx .

There are some questions which remain open. The case of time dependent flux may not change the philosophy of the proof of exponential stability. However if we add a source term coupling the equations inside the domain the analysis is far from being obvious. Then the case where there are positive and negative characteristic velocities is not treated but this is only a question of change of variable. Finally combining both difficulties of velocities with different signs and the one of source terms, we know that a Lyapunov function does not exist in the continuous case [START_REF] Bastin | On boundary feedback stabilization of non-uniform linear 2 × 2 hyperbolic systems over a bounded interval[END_REF]. It does not seem extravagant to suppose that such Lyapunov function does not exist in the discrete case. Backstepping techniques were designed to solve this difficulty when the flux is linear but it is not obvious that such methods can be directly applied to the corresponding numerical system.

A Proof of Theorem 2

The uniqueness can be proved by classical Kruzhkov techniques [START_REF] Dus | Bv exponential stability for systems of scalar conservation laws using saturated feedback[END_REF]Appendix B]. For the existence and the convergence result, it relies on classical techniques of BV estimates based on the CFL condition [START_REF] Chainais-Hillairet | Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF]. This is why we do not give any proof of these estimates and focus only on the effect of the boundary condition which is less classical. For more details, we refers to [START_REF] Dus | Exponential stability of a general slope limiter scheme for scalar conservation laws subject to a dissipative boundary condition[END_REF].

Let N be a positive integer and denote R ∆x the numerical approximation given in Definition 1. We recall that we defined R n 0 as:

R n 0 = g(R n N ).
A.1 The L ∞ estimate Now, define for all ndt < ν 2 := τ , the index jν (n) such that 2 ν (n -1)dt ≤ jν (n)dx < 2 ν ndt. From now on, we suppose that the time index n verifies ndt < τ . Under a CFL like condition [START_REF] Chainais-Hillairet | Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF], it is easy to prove that:

max ndt<τ jν (n)≤j≤N |R n j | ≤ max 0≤j≤N |R 0 j | (29) 
and that:

max ndt<τ 0≤j≤jν (n) |R n j | ≤ max ndt<τ |R n 0 | + max 0≤j≤N |R 0 j |.
Then, the Lipschitz character of the boundary condition allows to transform last inequality

max ndt<τ 0≤j≤jν (n) |R n j | ≤ C(Lg) max ndt<τ |R n N | + max 0≤j≤N |R 0 j |
where C(Lg) is a constant depending only on Lg. Finally, one can easily bound the left boundary term by the L ∞ norm of the initial data to get:

max ndt<τ 0≤j≤jν (n) |R n j | ≤ (1 + C(Lg)) max 0≤j≤N |R 0 j |. (30) 
Gathering ( 30) and ( 29), it holds:

R ∆x L ∞ ([0,τ ]×[0,1]) ≤ (1 + C(Lg)) R 0 ∆x L ∞ ([0,1]) .
Repeating this process, we obtain the following L ∞ estimate for any T > 0:

R ∆x L ∞ ([0,T ]×[0,1]) ≤ C(Lg, T ) R 0 ∆x L ∞ ([0,1]) .
where C depends only on T , Lg, ξ and vmax. By the fact that

(R 0 ∆x ) N is bounded in L ∞ (recall that R 0 is in BV ([0, 1])), the L ∞ estimate holds: R ∆x L ∞ ([0,T ]×[0,1]) ≤ C R 0 L ∞ ([0,1]) (31) 
where C depends only on T , Lg, ξ and vmax.

A.2 The TV estimate

We have,

T V (R n • ) = T V [0,jν ] (R n • ) + T V [jν ,N ] (R n • ). (32) 
Under the CFL condition [START_REF] Chainais-Hillairet | Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF], it is easy to prove that the first term on the left hand side of (32) can be bounded by a boundary term and an initial data term:

T V [0,jν ] (R n • ) ≤ T V [0,n] (R • 0 ) + T V (R 0 • ).
Moreover, by the Lipschitz character of the boundary condition, we get:

T V [0,jν ] (R n • ) ≤ LgT V [0,n] (R • N ) + T V (R 0 • ).
Finally under [START_REF] Chainais-Hillairet | Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF], We can bound T V

[0,n] (R • N ) by T V (R 0 • ) to obtain: T V [0,jν ] (R n • ) ≤ (1 + Lg)T V (R 0 • ). (33) 
Similarly, it is possible to prove that:

T V [jν ,N ] (R n • ) ≤ T V (R 0 • ). (34) 
and with [START_REF] Zuazua | Propagation, observation, and control of waves approximated by finite difference methods[END_REF], the following T V estimate holds:

∀ndt < τ, T V (R n • ) ≤ C(Lg, T )T V (R 0 • ).
Repeating the process, one gets the following bound in T V for ndt < T with T > 0:

T V (R n • ) ≤ C(Lg, T )T V (R 0 • )
where C(Lg, T ) is a constant that depends solely on Lg and T . By the fact that (R 0 • ) N converges towards R 0 in BV ([0, 1]), one bounds the right hand side of last equation:

∀ndt ≤ T, T V (R n • ) ≤ C(Lg, T, R 0 ). ( 35 
) A.3 The L 1 ([0, 1]) continuity estimate For all integers n > 1, N j=0 |R n+1 j -R n j |dx = N j=1 |A n j-1 (R n j -R n j-1 )|dx + |R n+1 0 -R n 0 |dx ≤ N j=1 |A n j-1 ||R n j -R n j-1 |dx + Lg|R n+1 N -R n N |dx = N -1 j=0 |A n j ||R n j+1 -R n j |dx + Lg|A n N -1 (R n N -R n N -1 )|dx ≤ (1 + Lg)T V (R n • )dx.
By the triangle inequality, it holds for n, m > 0

N j=0 |R n+m j -R n j |dx ≤ dx n+m-1 l=n (1 + Lg)T V (R l • ).
And by the boundedness of the total variation (35), we get

N j=0 |R n+m j -R n j |dx ≤ C(Lg, (n + m)dt, R 0 )mdx.
which is no more than:

R ∆x ((n + m)dt, •) -R ∆x (ndt, •) L 1 ([0,1]) ≤ C(Lg, f, (n + m)dt, R 0 )mdt. (36) 
A. [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] The L 1 loc (R + ) continuity estimate

We define for T > 0, n T := E(T /dt). For all integers 0 ≤ j ≤ N -1, we have the following estimate:

n T n=0 |R n j+1 -R n j |dt = n T n=0 dt|(a n+1 j ) -1 (R n+1 j+1 -R n j+1 )| ≤ Cdt n T n=0 |R n+1 j+1 -R n j+1 |.
where we have used the fact that the a n i,j s are bounded from below because of the Harten's condition [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF]. By the triangular inequality, it holds for j 0 < j 1 :

n T n=0 |R n j 1 -R n j 0 |dt ≤ Cdt j 1 j=j 0 T V [1,n T +1] (R • j+1 ). ( 37 
)
Similarly to proof of the boundedness of the space total variation (see ( 35)), we can prove the corresponding result for the time total variation. That is to say:

∀T > 0, 0 ≤ j ≤ N, T V [0,n T ] (R • j ) ≤ C(T, R 0 , Lg).
Injecting this in (37), the following continuity estimate writes: R ∆x (•, j 1 dx) -R ∆x (•, j 0 dx) L 1 ([0,T ]) ≤ C(T, R 0 , Lg, f )(j 1 -j 0 )dx. (38)

A.5 Conclusion

By Helly's Theorem, the sequence (R ∆x ) N converges (up to a subsequence) in L 1 loc (R + ×[0, 1]) to a function R ∈ L 1 loc (R + , BV ([0, 1])) ∩ Lip loc (R + , L 1 ([0, 1])). It remains to prove that R is an entropy solution to [START_REF] Banda | Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws[END_REF].

Let k ∈ R d and define q k (u) := f (u ⊥ k) -f (k ⊥ u), η k (u) = |u -k|. The proof of the following result crucially depends on [START_REF] Eymard | Solution of Equation in R n (Part 3)[END_REF] and is given in a more general context in [START_REF] Chainais-Hillairet | Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate[END_REF]. We give it here for completeness.

Lemma 4 (Discrete entropy estimate)

For all k ∈ R d , N ∈ N * , we have for all n ∈ N, 1 ≤ j ≤ N, 1 ≤ i ≤ d:

1 dt (|R n+1 i,j -k i | -|R n i,j -k i |) + 1 dx (q k (R n i,j + Rn i,j ) -q k (R n i,j-1 + Rn i,j-1 )) ≤ Cdx 1-2β . ( 39 
)
In order to ease the reading, the i index is dropped until the end of the proof. We take ϕ ∈ Cc(]0, T [×]0, 1[). Multiplying (39) by I n j (ϕ) :=

t n+1
t n

x j +dx/2

x j -dx/2 ϕ(t, x)dtdx and summing over n, j, one gets:

n T n=0 N j=1 η k (R n+1 j ) -η k (R n j ) dt I n j (ϕ)+ n T n=0 N j=1
q k (R n j + Rn j ) -q k (R n j-1 + Rn j-1 ) dx I n j (ϕ) ≤ Cdx 1-2β .

A numerical integration by parts (owing the fact that ϕ is zero at the boundary of [0, T ]×[0, 1]), we get:

n T n=0 N j=1 η k (R n j ) I n-1 j (ϕ) -I n j (ϕ) dt + n T n=0 N j=1
q k (R n j + Rn j )

I n j (ϕ) -I n j+1 (ϕ) dx ≥ Cdx 1-2β .
Passing to the limit owing that β < 1/2, one gets T 0 1 0 η k (R)∂tϕ + q k (R)∂xϕdxdt ≥ 0.

A.5.1 Boundary conditions and convergence estimates

To finish the proof of the existence of a solution to [START_REF] Banda | Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws[END_REF], it remains to show that the initial and boundary conditions are verified in the almost everywhere sense. Let ε > 0 and 0 < s < 1 ||R(0, .) -R ∆x (0, . By the fact that R 0 ∆x converges towards R 0 in L 1 ([0, 1]), we deduce that R(0, .) = R 0 in a L 1 sense and R(0, .) = R 0 almost everywhere.

Remark 5

The same procedure can be repeated for any t ≥ 0 and prove [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF].

Remark 6 We can use the same technique to prove that the boundary condition R(t, 0) = g(R(t, 1)) is satisfied in the almost everywhere sense. In this case, the continuity estimate (38) is the key tool (see [13, p.24] for details).

The final step is to prove the convergence estimate [START_REF] Kröner | Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions[END_REF]. We give the sketch of the proof (see [13, p.24-25] for more details). In fact ( 21) is a consequence of Helly's Theorem applied to the sequence (R ∆x ) N > Ñ where Ñ > 1, on a time interval [t, t + dt] (dt > 0). Then it suffices to take the limit when Ñ goes to infinity and when dt goes to zero.

Notation:

  For all R ∈ R d , |R| designates the canonical euclidean norm of R. For matrices M ∈ M d (R), |M | = sup |M R| |R|=1, R∈R d . For 1 ≤ p ≤ ∞ and all matrices M ∈ M d (R), |M |p is subordinate norm of l p . D + d (R)is the set of diagonal strictly positive matrices. The real ρp(M ) for matrices M ∈ M d (R) is defined by: ρp(M ) := inf ∆∈D + d (R) |∆M ∆ -1 |p.
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t t 0 ||Rt 1 0 1 0

 011 )|| L 1 ([0,1]) ≤ ||R(0, .) -R(s, .)|| L 1 ([0,1]) + ||R(s, .) -R ∆x (s, .)|| L 1 ([0,1]) +||R ∆x (s, .) -R ∆x (0, .)|| L 1 ([0,1]) ≤ 2C(g, R 0 )s + ||R(s, .) -R ∆x (s, .)|| L 1 ([0,1]) .where we have used (36) to get the last inequality and the fact thatR ∈ Lip loc (R + , L 1 ([0, 1])).Integrating with respect to s on an interval [0, t] for 0 ≤ t ≤ 1, one gets||R(0, .) -R ∆x (0, .)|| L 1 ([0,1]) ≤ C(g, R 0 )t + 1 (s, .) -R ∆x (s, .)|| L 1 ([0,1]) ds ≤ C(g, R 0 )t + 1 ||R(s, .) -R ∆x (s, .)|| L 1 ([0,1]) ds Taking t = ε 2C(g,R 0 ) and N sufficiently large such that ||R(s, .) -R(s, .)|| L 1 ([0,1]) ds ≤ ε 2 4C(g, R 0 ), one finally obtains:||R(0, .) -R ∆x (0, .)|| L 1 ([0,1]) ≤ ε.