Gil Panal
email: gilpanal@gmail.com

Luís Arandas
email: luis.arandas@inesctec.pt

Beat Byte Bot: A Chatbot Architecture for Web-based Audio Management

The use of chatbots for content management and creation is pervasive. From the collaboration promoted by the web and its community, this paper presents research done on chatbots, content management architectures and web audio. Building on the universal use of social platforms for audio recording and transmission, as well as the robustness of chat platforms to handle microphones and audio uploading, a new architecture for sharing music content using the cloud is proposed. It promotes a path of sharing, inclusion and above all fosters a new way to establish audio communities with the help of chatbots. A functional multi-server chatbot-based architecture is presented with a multitrack audio editor as web application.

Introduction

The use of chatbots promotes a new paradigm in human-computer interaction [START_REF] Følstad | Chatbots and the new world of HCI[END_REF]]. These define software that simulates human behaviour conversationally, and through the way they exist in programming interfaces eventually help people in certain tasks. Its use allows users to ask questions about a specific topic, ask for references or news, as well as to assist in the treatment of the most varied types of media files [START_REF] Brandtzaeg | Chatbots: changing user needs and motivations[END_REF]. There have been research proposals from conversation-based music recommender systems [START_REF] Jin | MusicBot: Evaluating critiquing-based music recommenders with conversational interaction[END_REF], serverless computing [START_REF] Yan | Building a chatbot with serverless computing[END_REF]] and even in routine teaching [START_REF] Bii | Teacher Attitude towards Use of Chatbots in Routine Teaching[END_REF]]. As management systems, chatbots can be programmed to undertake almost any task in the platform they exist, which offers multiple opportunities for the digital music community. Building on previous research [START_REF] Adamopoulou | Chatbots: History, technology, and applications[END_REF], this paper presents a modular and functional architecture of a system entitled Beat Byte Bot. A web-based system composed of several servers that in turn allows users to make music together on a multitrack browser application with the assistance of a chatbot. Its structure as a computational system is described, why some paths were taken in the development, iterations are proposed as well as discussed directions for other platforms of this type.

Web-based chatbots for music

Given the existing services that allow the creation of chatbots, it is accessible for all developers to create quickly and from scratch [START_REF] Adamopoulou | Chatbots: History, technology, and applications[END_REF]. There are even platforms -as services -dedicated to providing specialised infrastructure for this purpose, which is the case of Microsoft Azure [START_REF] Tajane | AI Based Chat-Bot Using Azure Cognitive Services[END_REF]] and IBM Watson [START_REF] Godse | Implementation of chatbot for ITSM application Using IBM watson[END_REF]]. The number of chat services that enable the connection with these platforms is also large e.g. Facebook and Slack [START_REF] Kozhevnikov | Library development for creating bots on Slack, Telegram and Facebook Messengers[END_REF]]. More and more chat services evolve and provide dedicated application programming interfaces (APIs) with multiple methodologies for developers to interact with [START_REF] Shakhovska | Development of the Speechto-Text Chatbot Interface Based on Google API[END_REF], and this demonstrates functional plurality and a greater and greater web ecosystem. In the particular case of chatbots in web-based audio applications, we propose a conceptual division into two major areas important for the present research: 1) audio recognition and analysis, where we have e.g. AudD bot and Tadam bot1 made with the ACRCloud music recognition toolkit [START_REF] Medina | Audio fingerprint parameterization for multimedia advertising identification[END_REF]; and 2) music recommendation [START_REF] Kozhevnikov | Development of an intelligent recommender assistant using the telegram platform[END_REF], where we have e.g. Groovy bot [START_REF] Sari | Chatbot Developments in The Business World[END_REF], Jukebot2 and MusicBot [START_REF] Jin | MusicBot: Evaluating critiquing-based music recommenders with conversational interaction[END_REF]][Yucheng et al. 2019]. There are also a large number of web services regarding music production workstations, given the potentialities of the browser -e.g. Soundtrap [START_REF] Lind | Soundtrap: A collaborative music studio with Web Audio[END_REF]. This is a fertile field to the application of chatbots, and that is where part of the proposed architecture focuses, featuring a connection point to the audio managed by the chatbot from the various users on the system.

Beat Byte Bot architecture

Today, almost all chat platforms have audio upload and record functionality and this demonstrates an opportunity for file processing, orchestration and management [START_REF] Zimmermann | Audiopeer: A collaborative distributed audio chat system[END_REF]]. This opportunity, thanks to the public access to source code and APIs [START_REF] Stallman | Free software, free society: Selected essays of Richard M[END_REF]], allows creative communities to create new networks and systems that deal with audio on the web. From the ubiquitous possibilities provided and the potential scientific contributions, the Beat Byte Bot system was developed as an example of a possible architecture that can be used in the future of web-based digital music services. A centralized architecture [see Kim 2021 for decentralization] that connects different cloud services, built to work with web technologies, with five distinct components [START_REF] Nikoui | Internet of Things architecture challenges: A systematic review[END_REF]. These have been developed to provide system modularity in order to coexist together -one of which belongs to the chosen chat platform, Telegram and its instant messaging servers3 [START_REF] Hasyim | Web-Based Telegram Chatbot Management System: Create Chatbot Without Programming Language Requirements[END_REF]. The four remaining components are divided in: 1) the chatbot; 2) a middleware API; 3) an external storage database (DB); and 4) a multitrack audio editor as a web application. All research development is publicly hosted on GitHub4 interfacing with the other needed services [START_REF] Daniel | Multi-platform chatbot modeling and deployment with the Jarvis framework[END_REF]. As shown in Figure 1, there are several links between modules, and the same is done given the specifics of the platform on which they run. In the following sections the functionalities of each part of the system are detailed.

The Telegram servers and the chatbot

Telegram's message servers are the main point of data management, as they are the ones that originate and record the data in the first place. The developed chatbot exists completely interconnected with the provided API. It is implemented in Node.js [START_REF] Jannat | Ubiquitous emotion recognition using audio and video data[END_REF]] and deployed using the Heroku platform, a cloud service that provides Unix machines [as in [START_REF] Arandas | Towards large-scale artistic practice with web technologies[END_REF]. When a user is connected to a functional chat with the bot and uploads audio -either in direct recording or by the file system -it is connected with the Telegram Bot API and hosted on its servers. From there, and whenever functional within a chat room, the bot continuously receives messages and then analyses them to know if they are audio messages. This is done real-time through a communication established on Heroku using the library telegraf.js5 [START_REF] Mardan | Deploying Node.js Apps[END_REF]]. Based on chat administrator permissions, a metadata-based analysis is then made to the content [START_REF] Saribekyan | Security analysis of Telegram[END_REF]]. Here we directly identify and transmit the uploads of the users to other modules of the architecture6 . When successful, a connection is made with the next module, an external DB (see section 3.2). Using firebase-admin software development kit, the chatbot has instant control to this DB for reading and writing, allowing it to orchestrate the data from the detected audio files. The Telegram API maximum limit file size is of 20Mb for downloads, and the server can handle a maximum of 2Gb independently of the number of files, which makes wav format and others without compression or lossless not suitable to exchange due to its large size [START_REF] Harchol-Balter | Size-based scheduling to improve web performance[END_REF]]. The chatbot is the fundamental connection point between the users in the chat, what they type and record, and the rest of the architecture.

Firebase realtime DB storage

As mentioned, every time the chatbot detects an audio file, information is retrieved from the message -e.g. file identification (ID), name of the Telegram channel or group and file format -in JavaScript Object Notation (JSON) format [START_REF] Smith | Beginning JSON[END_REF]]. Here, the nested data structure is automatically parsed and attributes are checked such as its duration, file size, title and mime type (e.g. mpeg and ogg) [START_REF] Freed | Multipurpose internet mail extensions (MIME) part two: Media types[END_REF]. After parsing, it is saved in a container in Firebase Realtime DB [START_REF] Moroney | The firebase realtime database[END_REF]]. An external NoSQL DB hosted by Google services [START_REF] Khawas | Application of firebase in android app development-a study[END_REF]. By keeping this module dedicated to recording data from the various audio files -given the capabilities of the platform in question -we can quickly expand the system without worrying about computing power [START_REF] Tanna | Serverless Web Applications with React and Firebase: Develop real-time applications for web and mobile platforms[END_REF]. In order to structure the data with the collaborative use of Beat Byte Bot in mind, when creating a new group or channel in Telegram, adding the chatbot means that we can start creating a song. That song is composed of multiple audio files, recorded or uploaded, that will be detected by the chatbot to follow the flow of the proposed architecture (see Figure 2 for the data structure).

Server middleware API

In order to integrate the DB with the web application (see section 4), a dedicated middleware API was developed. Also made in Node.js and hosted on Heroku [START_REF] Andersson | Increasing the Throughput of a Node.js Application: Running on the Heroku Cloud App Platform[END_REF] with a different instance than the chatbot, containing libraries such as Express.js [START_REF] Liang | Express supervision system based on NodeJS and MongoDB[END_REF], Crypto, Axios and Multer [START_REF] Wittern | A look at the dynamics of the JavaScript package ecosystem[END_REF], GraphQL (Apollo)7 [START_REF] Porcello | Learning GraphQL: declarative data fetching for modern web apps[END_REF], Firebase and Google APIs, allows data management between the Telegram servers and the DB with the ability to write and erase. It extends possible connections to the system being an independent module. This middleware ends up being a bridge to the chatbot, also being able to deal with collections. This is an implemented feature offered to increase the relationship between songs users make. As a song is composed of several audio files, a collection is composed of several songs and can be initiated in the chat using the user commandcollection: <collection name string> 8 . It is a specific server connected to the other modules that can establish links with other web applications. Some of its functions -providing bidirectionality -are listed in the following table.

The web browser application

As a practical example of the application of this chatbot, a web-based multitrack audio editor is presented. Extending the presented functionalities, we promote a collaborative ecosystem [START_REF] Lazzarini | Prototyping of ubiquitous music ecosystems[END_REF], as well as a use case for music management, production and listening. A type of web application that uses the various functionalities provided, in which several users can collaborate, listen and compose. The client side is built with standard web languages, JavaScript, HTML and CSS [as in [START_REF] Werner | trackswitch.js: A versatile web-based audio player for presenting scientific results[END_REF] with the library Bootstrap 4 [[START_REF] Krause | Introducing Bootstrap 4[END_REF]]. For the multitrack editor the library Waveform Playlist 9 v.3.2.4 [START_REF] Pauwels | pywebaudioplayer: Bridging the gap between audio processing code and attractive visualisations based on web technology[END_REF]] is used, with features such as: 1) a timeline-based interface; 2) the ability to solo or mute each track; 3) time control and visualization; and 4) track markers [START_REF] Mahadevan | EarSketch: Teaching computational music remixing in an online Web Audio based learning environment[END_REF]]. Using the automatic decision taken by the various modules, this multitrack editor presents a way for multiple users distributed around the world to contribute to the same end, adding content to a song. There are three pages: 1) the landing page with several buttons for each song; 2) the collection page which offers the possibility to see to which collections a specific song belongs to; and 3) the detail page which has the multitrack editor and a drag-n-drop zone allowing the web user to add audio files to the session then subsequently added to the DB. It is possible to record or upload audio but it is not possible to create a song project or a collection, that is just done in the Telegram application through the chatbot. Also, on each page there is an implementation of the Telegram login widget 10 that allows each user to connect -if administrator of the chat group in question, enabling file upload or delete. When using the widget, the bot token (illustrated in Figure 1) is used in the 9 https://github.com/naomiaro/waveform-playlist. 10 https://core.telegram.org/widgets/login.

Programmed Function API Result

GetSongs() Returns all songs from the DB with the parameters: ID, title and collection.

GetSongsByCollection("collectionName") Returns all songs belonging to a specific collection. Same kind as the GetSongs() callback.

GetTracks("songID") Given a song ID (long integer) it returns all tracks included in the song.

GetUserPermission("songID", "userINFO") When a user is logged in, using Telegram widget, it returns whether the user has admin access to the given song or not. The ID is similar to GetTracks() and the userINFO is a JSON object, also used in DeleteTrack().

fileDownload("fileID")

Given a unique file identifier it will send to the client the buffer of the file. This option has been implemented in order to not expose the bot token used at file URL. Currently the any way to access the audio buffer is in the front-end.

fileUpload("chatID", audio, "userINFO")

For a registered user with admin permissions to the song, it uploads a file automatically after drag-and-drop on the input box, or when a new track is recorded using the microphone -access permission must be granted to the web browser. This method internally calls sendAudio(), a Telegram API function which has a limit of 50Mb size for files.

DeleteTrack("trackINFO", "userINFO")

Erases a track from the external DB by passing its ID -by a user with permission. The current Telegram Bot API does not provide an update to receive notifications when a message (e.g. text or audio) is deleted from the chat. Currently, the provided solution is triggered by the edit event on a message, if that edit has a delete caption, then the chatbot removes the track from the DB.

middleware to verify the hash obtained from the widget and it is also possible to locally search for songs or chat groups in the webpage -see Figure 3 for a diagram and two screenshots of the web application.

Tests and Compatibility

In order to provide data regarding the use and support of the proposed software on common platforms, tests were developed. Focusing on the type of audio files and potential errors between the various modules, we used a Telegram application version 7.6.1 on an iPhone 7 running iOS 11.4.1 and the desktop version 2.7.1 on a macOS Mojave version 10.14.6. The multitrack tests were developed on a staging environment, version 0.0.1 11 . Results showed that the .oga file type is the default format used in Telegram applications for the voice recording option with the internal microphone, and for the browser is wav given the MediaRecorder API. The major browsers -Firefox 87.0, Chrome 89.0.4 and Edge 89.0.7 (on a Windows 10 Pro v.1909) -show the capability to present the multitrack editor apart from Safari 13.0.4, detailed in the next table. Regarding audio file types, the files: mp3, ogg, m4a, acc and flac show full compatibility with the upload both from the desktop application as well as through the multitrack editor. Issues show us that the wav type file when uploaded from the Telegram desktop application is recognized but doesn't play in the multitrack as well as aiff and wma that do not play and are not recognized -the main issue is that the library telegraf.js (version 3.38.0) recognizes them as documents instead of audio so they need a proper store in Firebase. As for the multitrack upload of wav files no problem is detected, aiff files are unable to decode using the waveform-playlist and wma is an unsupported file type. Features found in other web-based multitrack editors [START_REF] Buffa | MT5: a HTML5 multitrack player for musicians[END_REF]] can be implemented given the open nature of the libraries used, as well as trying to solve in our system, some of the problems found in decoding files [START_REF] Jillings | Web Audio Evaluation Tool: A framework for subjective assessment of audio[END_REF]]. However, given the functionalities already presented and its cross-platform support, the web application proves to be a functional solution for the proposed chatbot, allowing several people to contribute, interact and make music together [Xambó et al. 2019]. We also underline that for a positive scalability, it will be necessary to develop adaptive processes of rules [see [START_REF] Arandas | Towards large-scale artistic practice with web technologies[END_REF].

Discussion and future work

From the potentialities of the web, we can promote collaboration and interaction not only on a large scale but also ubiquitously [START_REF] Stolfi | Open band: Audience creative participation using web audio synthesis[END_REF]. As an augmented space for creationgiven its network effect [START_REF] Aggarwal | On the network effect in Web 2.0 applications[END_REF] -as well as the current technological advancement of its infrastructure, we developed research directed to a field that unites chatbots, automatic data management and collaborative music applications [START_REF] Roberts | The Web Browser As Synthesizer And Interface[END_REF]].

An architecture designed to allow multiple users to interact together is proposed, taking into account previously proposed theories of ubiquitous music systems [START_REF] Flores | Ubiquitous music : concepts and metaphors[END_REF]]. Given the lack of chatbots applied to the management of audio files, the proposed architecture links a virtual chat room -one of the most crowded places these days [START_REF] Shih | Empirical study on the effects of social network-supported group concept mapping[END_REF]] -with a platform for consumption and manipulation of audio material. This is done from a chatbot, an agent that exists in these same chat rooms and promotes all the structural manipulation of the data that users upload to participate. Taking advantage of the existing quality of the microphones in mobile devices, the quality that chat services put in audio recording, as well as the open APIs in the platforms used, we propose a collaborative and distributed system that can be used around the world, as a collaborative music platform. Users can use it in an open and inclusive way, democratising the system as a music platform through chat rooms.

The various services used for the prototyping and implementation of Beat Byte Bot serve as proof of concept, offering a starting point for future research. However, these should not be taken as the only option, as some of their development comes from the specificities of each platform and API. The architecture should be perceived as modular, extensible and changeable to other cloud platforms that minimally match the desired effect. In order to propose future work, we divide the proposals into two major paths: 1) compare with other platforms -both chats and server providers -that share similar characteristics, where we can raise e.g. quantitative tests in speed; and 2) the development of novel features in the project already developed, such as 2.2.) automatic signal processing in Heroku servers or in the front-end e.g. applying filters on the multitrack; 2.3) applying machine learning for better data clustering in Firebase; 2.4) the possibility of applying labels from the users to the various audio files in the collection they have access to.

Conclusion

This paper presents and discusses research into web audio music systems, chatbot architectures and data management. A review of relevant literature and web services matching the objectives of the explored solutions is made, a web system promoting collaboration and music assisted by chatbots and the cloud is proposed, the process is described and results are presented. It is on the pervasiveness of chatrooms and the possible musical applications to develop from them that the presented research focuses. A new extensible architecture is created and proposed -Beat Byte Bot -that helps to push the boundaries of what is normally thought of as musical collaboration by bridging different platforms in the cloud. Focusing specifically on the Telegram services, the various modules presented were developed with extensibility in mind, as well as the possible integrations with other web services. The proposed system that can be used from anywhere in the world promoting a valid ecosystem for music creation in an area with both scientific and creative potential.

Figure 1 .

 1 Figure 1. Beat Byte Bot architecture. Outlined in grey are the four major parts of the system, in blue are the connection points -via mobile or desktop, using the web app or Telegram itself -and in green the infrastructure.

Figure 2 .

 2 Figure 2. Data structure parsed by the chatbot to distil the message received from Telegram servers.

Figure 3 .

 3 Figure 3. Diagram of the contents of the web application with links to the middleware API and two screenshots, the landing page and the multitrack editor.

Table 1 . Proposed API used to link the middleware with Telegram and the DB.

 1

Table 2 . Compatibilities and issues regarding the platform.

 2

https://audd.io/, https://telegram.me/Tadam_bot.

https://groovy.bot/., https://getjukebot.com/.

Telegram was chosen due to its openness and potential practical applications given the access to chatroom content by bots. It allows us to work with e.g. files, albums and live locations[START_REF] Kozhevnikov | Library development for creating bots on Slack, Telegram and Facebook Messengers[END_REF]].

https://github.com/gilpanal/beatbytebot.

https://telegraf.js.org/.

At this point, there is no instant access to the audio buffer, only data about the post and specificities of the file. Something based on the type of response obtained by Telegram, not defined by our code.

https://www.apollographql.com/.

Collections are presented as a functionality although no spam control structure has been made.

https://bunchofsongs.web.app, https://github.com/gilpanal/beatbytebot_webapp.

Acknowledgements

The research leading to these results was financially supported by the Portuguese Foundation for Science and Technology (FCT), through the individual research grant 2020.07619.BD and by the project "Experimentation in music in Portuguese culture: History, contexts and practices in the 20th and 21st centuries", co-financed by the European Union, through the Operational Programme Competitiveness and Internationalization, in its ERDF component, and by national funds, through the Portuguese Foundation for Science and Technology.