
HAL Id: hal-03398727
https://hal.science/hal-03398727

Submitted on 23 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

MusicTXT: A Text-based Interface for Music Notation
Kelian Li, Wanwan Li

To cite this version:
Kelian Li, Wanwan Li. MusicTXT: A Text-based Interface for Music Notation. Proceedings of the
11th Workshop on Ubiquitous Music (UbiMus 2021), Sep 2021, Matosinhos, Portugal. pp.62-71.
�hal-03398727�

https://hal.science/hal-03398727
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

MusicTXT: A Text-based Interface for Music Notation

Kelian Li1∗, Wanwan Li2∗

1Center for Music Technology
Georgia Institute of Technology

2Department of Computer Science
George Mason University

∗ Joint First Authors

Figura 1. Pipeline of MusicTXT user interface.

Abstract. For most music notation software, due to the complex nature of mo-
dern staff notation, extra mouse interactions and manual efforts are highly de-
manded. According to this observation, we propose MusicTXT, a plain text-
based user interface for music notation that is almost mouse interaction-free.
Based on our easy-to-learn online user interface, users are able to notate music
by typing a paragraph of numbers and alphabets as plain text. We validated the
music notation efficiency of our interface by comparing it with another popular
online software-NoteFlight. According to statistical analysis, we prove there is
a significant improvement in music notation efficiency by using MusicTXT.

1. Introduction

As music production becomes democratized[Galuszka and Brzozowska 2017], more
people, including nonprofessionals, step pace into the music production indus-
try. Typically, music production speed seriously depends on music notation
efficiency[Mauch et al. 2015]. Especially, musicians tend to prefer the software which
can deliver their musical expression with very little time and manual effort. Unfortunately,

62

Figura 2. Comparison among the (a)modern staff notation, (b)numbered musical
notation, and (c) our plain text-based notation.

most of the existing music notation software[Byrd 1994] share the common drawback that
it takes extra manual efforts to notate the music due to the heavy mouse interactions.

Therefore, such inconvenience of those existing music notation software lifts the
learning curve for most music composers as beginners, especially for nonprofessionals.
These high demands of complicated interactions even strangled some of the beginners’
interests in music production. Especially, in music education programs, younger children
cannot be able to start the hands-on practice with those music notation software in a timely
manner[Gudmundsdottir 2010].

Inspired by the numbered musical notation which is firstly invented by
Jean-Jacques Rousseau[Rousseau 2009], people realize that using numbers instead
of using notes increases the efficiency to express the music in reading and
writing[Winangsit and Sinaga 2020]. In China, numbered musical notation, also called
"JianPu", successfully turns down the beginners’ learning curves for playing the Chinese
musical instruments such as Guzheng[Gaywood 1996], Pipa[Myers and Myers 1992],
and Erhu[Stock 1993], and "JianPu"is widely accepted by Chinese musician as a stan-
dard music notation system.

According to this observation, we design MusicTXT, a novel efficient text-based
user interface for music notation that is easy-to-learn and easy-to-input. Our user interface
takes advantage of such numbered musical notations and move a step forward by intro-
ducing a novel plain text-based music notion system. With our music notation interface,
musicians are able to get rid of heavy mouse interaction by simply typing a paragraph of
numbers and alphabets as plain text. The contributions of our work include:

• We design a novel plain text-based music notation system that extends the existing
modern numbered musical notation.

• We devise a computational algorithm to automatically convert the plain text music
notation into the standard music score as a PDF file and playable audio MIDI file
using the LilyPond library[Nienhuys and Nieuwenhuizen 2003].

• We develop an online website-based Graphics User Interface (GUI) for our Mu-
sicTXT platform which can be reached at http://www.musictxt.org/.

• We have validated the music notation efficiency of MusicTXT by comparing it
with another popular web application-NoteFlight[McConville 2012].

2. Numbered Musical Notation

With different cultural backgrounds, musical notation has its different expression forms.
For example, one of the earliest musical notions is found by the Ancient Near East in
about 1400 BC known as Music of Mesopotamia [Duchesne-Guillemin 1984]. Within

63

thousands of years of progression, modern music notation is most widely accep-
ted as Modern Staff Notation (The standard notation)[Rastall 1983]. Modern Staff
Notation[Gerou 1996] employs the staff lines upon which pitches are indicated by pla-
cing oval note heads on or between the staff lines. As another popular form of musical
notation, numbered musical notation, also known as Ziffernsystem[Klassen et al. 1959],
is widely accepted within China or some other countries such as Japan, Indonesia, Aus-
tralia, and Ireland, etc. As a natural way to indicate the pitches using numbers, numbe-
red musical notation gained wide popularity among beginners or none-professional music
composers[Jiang et al. 2006]. Also, text-based notations, such as LATEX[Suyanto 2019],
have been proposed for representing numeric music notation systems. Besides, lots of
existing software provides a convenient GUI for users to type their numbered music score
by dragging and clicking such as JP-Word[Word] enables the user to notate the numbe-
red music score like using a word. However, due to the limitation of numbered music
notation’s nature, most of the exciting software needs lots of unnecessary mouse interac-
tions so that be able to create the correct numbered music score. Those limitations of
the numbered music notation theoretically make it impossible for the user to compose
music without too many mouse interactions. Therefore, we made a further step forward
to adjust the standard numbered musical notation into a novel plain text-based notation
which is similar to the standard one but needs fewer mouse interactions as it contains only
plain text. We provide a user-friendly web page-based GUI (Graphical User Interface)
as an easy-to-use platform for music notation. Our website can be visited through this
link http://www.musictxt.org/, our demo video can be viewed through this link
https://youtu.be/yFTbm7tpLII, more usage details can be found in Section 4
under the subsection of Code Translation.

3. Text-based Musical Notation
Plain text-based music notations are always interesting topics to explore[Read 1987]. As
the basis of our MusicTXT interface, we design a novel plain text-based musical notation
system that takes further improvements upon the standard numbered musical notation. As
shown in Figure 2, the comparisons among the modern staff notation, numbered musical
notation, and our plain text-based notation are listed. Users who are using our tool can
learn such notation and create their own music work with only typing letters and symbols
on the keyboard just like write a paragraph of sentences in a Word document. As our
proposed text-based music notation roughly follows the styles that the numbered musical
notation possesses, it is easy to master for those beginners who have any knowledge of the
stand numbered musical notation which is nowadays widely accepted by both professio-
nals and non-professionals. Given the fact that we hope to reduce the mouse interactions
during the music notation process, as such mouse interactions seriously slow down the
music notating process, we introduce some differences between the traditional numbered
musical notation and our proposed notation. Those differences are listed below:

• Eighth note is represented as the half duration of a quarter note (a single number,
say fa, 4) by appending the number with one back quote (4‘). Similarly, two back
quotes for sixteenth note (4“) and three back quotes for thirty-second note (4“‘).

• Beamed notes are connected with eighth notes that there are no spaces between
numbers. We separate different beats using spaces. All numbers concatenated
without spaces results in one beat. For example, three numbers connected without
spaces represents a triplet.

64

• Octave signs are represented by appending the number with one single quote (’)
or one comma (,) where single quote (’) represents one octave higher and comma
(,) represents one octave lower.

• Common accidentals are represented by symbols appears before a number inclu-
ding b (Flat), # (Sharp) and [] (Natural).

• Beats subdivision are represented by underlines (_) which equally divide one beat
into two half beat (Recursive method) or are represented by dash lines (-) such as
if a note’s duration is prolonged twice it can be followed by a dash line (Iterative
method). More details will be clarified in Section 4.

• Other symbols such as a tie (∧) which indicates that the two notes are joined
together, repeat signs are represented as (|: :|), volta brackets are represented as
([1]... [2]...) and chords are represented by alphabets such as (C, G, Am, ...).

4. MusicTXT Interpreter
As the essential algorithm to convert users’ plain text input into readable mu-
sic score documents such as PDF files, we develop a computer program as the
interpreter[Reynolds 1972] to achieve such a translation process. Our defined high-level
language, as illustrated in Section 3, is transformed into the low-level data structure that
is understandable by machine through this interpreter. Main pipeline of our interpreter
includes: Lexical analyzing, grammar tree parsing, and Lilypond code translating. In this
section, we will explain the details of our algorithm to implement the interpreter.

4.1. Lexical Analyzer
As the first step for an interpreter to work with, lexical analysis[Hanks 2013] is applied
to the plain text input. Like a standard compiler, a lexical analyzer is used to identify
commands, keywords, and special symbols when scanning the input text. In our proposed
user interface of MusicTXT, we define a framework for lexical analysis which includes
recognizing title, composer, key signature, time signature, measures and musical sym-
bols. After the user’s specifying that information at the beginning of a plain text, a couple
of lines of strings are used to specify the notes of the whole music. During lexical analy-
zer’s scanning of the whole content of input text, the user’s information specified through
keywords such as "Title : Composer", "1=C", and "4/4"are analyzed and stored in the
interpreter. Afterward, each line of the string is separated into measures according to
the symbols of vertical bars. Each measure is separated into several beats according to
the symbols of spaces. Each beat will be separated according to two methods: iterative
method or recursive method. After iterating each line in the plain text input, a group of
words is created by the lexical analyzer. Through such words list, it can create a tree data
structure called grammar tree to interpret the input text as music notations.

4.2. Grammar Tree
After the lexical analysis, a list of words is generated. In order to convert those words
into sheet music, a tree data structure is created. In the compiler system, such a tree data
structure is typically called a grammar tree[Kovács and Barabás 2011]. The grammar tree
is efficient to capture and analyze any recursive expressions and is widely used in modern
compiler systems[Grune et al. 2012]. According to an observation that music notation
expression naturally possesses a recursive feature[Armand 1993], we use a grammar tree
to parse the words analyzed through the lexical analyzer into the final sheet music.

65

 | 3 3 4 5 | 5 4 3 2 | 1 1 2 3 | 3. 2` 2 - |

 Bar

 3 3 4 5 5 4 3 2 1 1 2 3 3. 2` 2 –

 Space

5 4 3 2

Figura 3. Grammar Tree.

As shown in Figure 3, a sentence in Ode to Joy
by Beethoven is written in our music notation. After the
lexical analysis, we extract the numbers in plain text.
Then according to the grammar tree that we have built
from such a sentence, we assign the duration for each
number and convert those numbers into meaningful mu-
sic notes. The note duration di calculations are achie-
ved through a recursive mathematical formula di =

di−1

ni−1

where i is the depth of the node in the grammar tree and
ni is the total number of nodes in that depth. For exam-
ple, if the sentence is: | 3 3 4 5 | 5 4 3 2 | 1 1 2 3 | 3. 2‘ 2 - |
and as user-specified that there are 4 beats each measure
and each sentence has 4 measures, therefore, the during
a node at the root level is d0 = 16 beats and number of
nodes at the root level is n0 = 4 measures. According
to the above formula, the during for the nodes in the 1st level is d1 = 16/4 = 4 beats.
Similarly, we can have the nodes in the 2nd level is d2 = 4/4 = 1 beat. This formula is
flexible for analyzing the rhythms including both invariant and variant measures.

 [1_23]_[4.5`]

 Split _

 1_23 4.5`

 Split _ .

Note 1 23 4. 5`

 (a)

 1-234--5

 Length 8

Note 1 2 3 4 5

Beat 2/8 1/8 1/8 3/8 1/8

 (b)

Figura 4. Beat subdivisions. (a) Recursive
method. (b) Iterative method.

With respect to the representation
of beamed notes, we provide two sepa-
rate interpreting methods of how to further
subdivide one single beat into half or less.
One being the recursive method while
another being the iterative method. Accor-
ding to different users’ preferences of rea-
ding the music sheet, the understanding of
beamed notes are typically separated into
two ways: some of the users are trying
to subdivide one beat into two halves or
further subdivide the half-beat while some
other users are trying to subdivide one beat
into many equal minor parts and count
how much of the portions are occupied by
each note. Hereby, we use the recursive method to satisfy the users who are reading the
music in the first way while using the iterative method to attract users who prefer the
second way. More detailed explanations are itemized below:

• The recursive beat subdivision is represented by underlines which equally divide
one beat into two half beat. For example, in a measure noted as 32_4, 32 takes
half-beat together, 4 takes half-beat itself, 3 and 2 take a quarter beat individually.

• The iterative beat subdivision is represented by dash lines. A note’s duration is
prolonged if it is followed by a dashed line. For example, in a measure represented
by 32-4, 2 is prolonged and takes half-beat, 3 and 4 take a quarter beat individually.

Here we demonstrate a more complex example to show how are these two methods
applied to our MusicTXT interpreter. As shown in Figure 4, we have one beat consisting
of five notes which are 1, 2, 3, 4, 5 where 1, 2, and 3 take half-beat while 4 and 5 together

66

Figura 5. Examples: Inputs are the plain text-based notation of four songs and
the outputs are the modern staff notation of the corresponding inputs.

take another half beat. In the recursive beat subdivision method, we use brackets [and] to
specify the priority of subdivision order so that the notes in a bracket will be subdivided
further. The subfigure in (a) is the recursive beat subdivision process while the notes are
texted as [1_23]_[4.5‘] and (b) is the iterative beat subdivision process while the notes are
texted as 1-234–5. These two representations result in the same music score in modern
staff notations. As we can see that the recursive (first) representation is more structurally
resembling the modern staff notation while the iterative (second) representation seems
more convenient for the user to express their music in a straightforward way.

4.3. Code Translation

After the grammar tree has been built from the users’ input as text, we translate it into the
LilyPond[Nienhuys and Nieuwenhuizen 2003] code according to the process and algo-
rithms clarified above. LilyPond, as a part of the GNU project, is a well-known program
to produce sheet music through a programming language, free to use and is widely used
for online music notation applications[Solomon et al. 2014]. By virtue of this convenient
software for music sheet encoding, we achieved the music notation process by transla-
ting our MusicTXT script into the Lilypond script. By invoking those API functions
in Lilypond’s Python libraries, Lilypond’s code translation process is integrated into our
web-based GUI interface. As shown in Figure 1, we develop a web-based GUI for users to
input plain text and run their scripts. After users load the web-page and clean the website
buffer by pressing "Ctrl+Shift+R", user can type their scripts of the music in plain text.
To generate the corresponding sheet music, they can click the "Run"button. During the
music sheet generation process, we first load the input text and apply the lexical analysis,
then we generate the grammar tree data structure as mentioned above. In the end, we
convert the grammar tree into a music sheet by invoking the LilyPond APIs, finish Lily-
pond’s code translation process, and generate the PDF file for display. We also provide
the buttons for downloading the synthesized music in the formats of PDF file, midi file,
and LilyPond script file. As shown in Figure 5, the input is the plain text-based notation
of four songs and the output is the standard modern staff notation of the corresponding in-
puts. Different pieces of music are highlighted in different colors including blue (Twinkle
Twinkle Little Star), green (Fur Elise), yellow (Ode to Joy), and pink (Birthday Song).

67

5. Experiments
To validate the efficiency of using our proposed user interface, we compared MusicTXT
with another well-known music notion software NoteFlightn[Richmond 2015], which is
an online music composing application that lets users create, view, print, and hear pro-
fessional quality music notation through a web browser. NoteFlight is well accepted by
lots of professional music composers as it is install-free, easy-accessible, free-to-use, and
incorporated straightforward mouse-keyboard interactions that are easy-to-learn. There-
fore, we choose such a successful music notation software of NoteFlight as our counter-
part, which is able to prove the efficacy of our MusicTXT if it overperforms NoteFlight.

Participants. We recruited 15 users to compare the efficiency using MusicTXT with the
one using NoteFlight. All of the users have some music background, most of them are
from the music majors. All of them can read and write music score. They have back-
ground in reading music both using standard modern staff notation and the numbered
notations. Some of them have a background in using NoteFlight. Before, the experi-
ments, we give the users enough time to learn how to use NoteFlight and how to use Mu-
sicTXT. From our observations, users who are not familiar with both usually take about
10-20 minutes on average in learning MusicTXT, while takes 20-30 minutes in learning
NoteFlight, most users tend to learn MusicTXT faster than NoteFlight.

Efficiency Test. The efficiency test is used to evaluate how much time needed to finish
typing the same music using different interfaces. When the users are ready to start the
efficiency test, the researcher will ask them to transcribe two pieces of music in the No-
teFlight and MusicTXT respectively where the first task being the Twinkle Twinkle Little
Star and the second task being the Fur Elise. For each task, the researcher will record the
time in the beginning and the end, then the duration can be calculated to measure how
long it takes to finish each task. During the experiments, half of the users are randomly
chosen to use NoteFlight first while the remaining half use MusicTXT first. As we know
that Twinkle Twinkle Little Star is much easier than Fur Elise to read and write, therefore,
we test the interaction efficiency of our interface for both easy songs and difficult songs.
Their efficiency test results will be explained and discussed in Section 6.

6. Results and Discussions
The efficiency test results are shown in Figure 6 where the time (in secs) that the users
have taken to finish writing two songs in two different software are plotted. The numbers
are the seconds that have been taken by the users to finish writing the music score of the
song named Twinkle Twinkle Little Star (Task1) and Fur Elise (Task2) using NoteFlight
(Colored in blue) and MusicTXT (Colored in orange) respectively. According to the
descriptive statistics, for Task1, the average finishing time using NoteFlight and using
MusicTXT are 202.8 sec and 107.6 sec respectively. For Task2, the average finishing
time using NoteFlight and using MusicTXT are 523.2 sec and 377.2 sec respectively.
Furthermore, we analyze whether there is any statistically significant difference among
two different software (NoteFlight and MusicTXT), we applied two factors ANOVA tests
(with replication)[St et al. 1989] to evaluate users’ efficiency on both two tasks. Two
factors null hypothesis includes:

• Among groups: there is no statistically significant difference between the users’
efficiency using NoteFlight and using MusicTXT.

68

(a) Twinkle Twinkle Little Star (b) Fur Elise

Figura 6. The result of efficiency test. The numbers are the seconds that have
been taken by the users to finish notating the music score of the song
named (a) Twinkle Twinkle Little Star and (b) Fur Elise using NoteFlight
(Colored in blue) and MusicTXT (Colored in orange) respectively.

• Among columns: there is no statistically significant difference between users’ ef-
ficiency in finishing Task1 and Task2.

• Interaction: there is no statistically significant interaction between these two fac-
tors, namely, the different software and different tasks.

By setting α = 0.05 (95% confidence interval), we get the ANOVA test result
showing that among different software (NoteFlight and MusicTXT) Pvalue = 3.66E−9 <
0.05, among different columns (Task1 and Task2) Pvalue = 0.005986 < 0.05, and the in-
teraction Pvalue = 0.54 > 0.05. Therefore, with 95% confidence, we reject the null
hypothesis among groups that there is no statistically significant difference between dif-
ferent software. And additionally, with 95% confidence, we reject the null hypothesis
among groups that there is no statistically significant difference between different tasks.
Alternatively speaking, with 95% confidence, we conclude that the users using MusicTXT
are much more efficient than using NoteFlight. At the same time, users finish the Task1
much faster than Task2. This result basically suggests two facts: (1) Compared with No-
teFlight, MusicTXT is easier and faster to use when typing the same music and (2) Task2
(Fur Elise) is harder than Task1 (Twinkle Twinkle Little Star), which seems reasonable.

7. Conclusions

In this paper, we present MusicTXT, an innovative interface for online music notation
using plain text as the input. Our algorithm is designed to converting users’ input of
numbered-notation-like plain text into readable music scores in standard modern staff no-
tation, we develop a computer program as the interpreter to achieve such a translation
process. Where the major steps of our interpreter include: Lexical analysis, grammar tree
parsing, and Lilypond code translation. To validate the efficiency of using our proposed
user interface, we compared MusicTXT with another well-known music notion software-
NoteFlight. Given two different tasks, by measuring how much time needed for users
to finish typing the same music using different software, we statistically calculated the
average finishing time. After applied two factors ANOVA tests, we concluded that Mu-
sicTXT is easier and faster to use than NoteFlight and the second task is harder than the
first task which seems quite obvious given to the first glance.

69

According to these inspiring findings, in the future, we will move along this direc-
tion and propose more interesting music notation interfaces that are based on text. Some
functions are expected to be integrated such as enabling midi input which can be con-
verted into plain text according to our notation rules, handling Fugue, adding lyrics, and
supporting complex rhythms. Also, there can be some other exciting explorations in the
near future. For example, it can be incredible if we can write and send a piece of music on
Wechat just like writing a text message, the user on the other side receives such message
as a standard music score or a playable sound. Also, by taking advantage of AI music
composition technology, when people write their own music like writing text, the system
can automatically suggest the chords beneath the text, this working process looks just like
when someone is using the google doc there is another collaborator writing the comments
at the same time. Rich text can be explored to simplify the current grammar by adding
underlines or bold font to specify particular meanings. Also, given the rich text-based
interface, custom-designed graphic notations can be introduced to help users define their
own notations through graphical symbols designed by themselves. Further more, in the
future our proposed grammar and syntax can be extended to be capable of coding con-
temporary music such as Xenakis and Ferneyhough, etc. Overall, there can be a couple of
more directions to explore given to our interface of MusicTXT, this will cast a light upon
the future as the text-based music notation is easier to use.

8. Acknowledgment

Thanks for the participants in user study and their feedback. Especially, we thank Zihan
Xiong, Wei Xiao, Yihe Wang, and Syu Kevin for their participation.

Referências

Armand, J.-P. (1993). Musical score recognition: a hierarchical and recursive approach. In
Proceedings of 2nd International Conference on Document Analysis and Recognition
(ICDAR’93), pages 906–909. IEEE.

Byrd, D. (1994). Music notation software and intelligence. Computer Music Journal,
18(1):17–20.

Duchesne-Guillemin, M. (1984). A hurrian musical score from ugarit: the discovery of
mesopotamian music. Undena Publ.

Galuszka, P. and Brzozowska, B. (2017). Crowdfunding and the democratization of the
music market. Media, Culture & Society, 39(6):833–849.

Gaywood, H. R. A. (1996). Guqin and Guzheng: the historical and contemporary deve-
lopment of two Chinese musical instruments. PhD thesis, Durham University.

Gerou, T. (1996). Essential dictionary ofmusic notation.

Grune, D., Van Reeuwijk, K., Bal, H. E., Jacobs, C. J., and Langendoen, K. (2012).
Modern compiler design. Springer Science & Business Media.

Gudmundsdottir, H. R. (2010). Advances in music-reading research. Music Education
Research, 12(4):331–338.

Hanks, P. (2013). Lexical analysis: Norms and exploitations. Mit Press.

70

Jiang, Y.-n., Zhang, Y., and Zhang, S.-Y. (2006). Research of numbered musical nota-
tion recognition method. Jisuanji Gongcheng yu Yingyong(Computer Engineering and
Applications), 42(32):204–206.

Klassen, P. J., Bender, E., and Bender, H. (1959). Ziffersystem (numerical musical nota-
tion). Global Anabaptist Mennonite Encyclopedia Online.

Kovács, L. and Barabás, P. (2011). Experiences in building of context-free grammar
tree. In 2011 IEEE 9th International Symposium on Applied Machine Intelligence and
Informatics (SAMI), pages 67–71. IEEE.

Mauch, M., Cannam, C., Bittner, R., Fazekas, G., Salamon, J., Dai, J., Bello, J., and
Dixon, S. (2015). Computer-aided melody note transcription using the tony software:
Accuracy and efficiency.

McConville, B. (2012). Noteflight as a web 2.0 tool for music theory pedagogy. Journal
of Music Theory Pedagogy, 26:265–289.

Myers, J. E. and Myers, J. (1992). The way of the pipa: Structure and imagery in Chinese
lute music. Kent State University Press.

Nienhuys, H.-W. and Nieuwenhuizen, J. (2003). Lilypond, a system for automated music
engraving. In Proceedings of the XIV Colloquium on Musical Informatics (XIV CIM
2003), volume 1, pages 167–171. Citeseer.

Rastall, R. (1983). The Notation of Western Music: An Introduction. London: JM Dent
& Sons.

Read, G. (1987). Source book of proposed music notation reforms. Number 11. Gre-
enwood.

Reynolds, J. C. (1972). Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM annual conference-Volume 2, pages 717–740.

Richmond, K. (2015). Noteflight: The future of music notation. The American Music
Teacher, 64(6):69.

Rousseau, J.-J. (2009). Essay on the origin of languages and writings related to music,
volume 7. UPNE.

Solomon, M., Fober, D., Orlarey, Y., and Letz, S. (2014). Providing music notation
services over internet. In Linux Audio Conference, pages 91–96.

St, L., Wold, S., et al. (1989). Analysis of variance (anova). Chemometrics and intelligent
laboratory systems, 6(4):259–272.

Stock, J. (1993). A historical account of the chinese two-stringed fiddle erhu. The Galpin
Society Journal, pages 83–113.

Suyanto, Y. (2019). The dynamics symbol representation features of numeric music nota-
tion in latex. In 2019 5th International Conference on Science and Technology (ICST),
volume 1, pages 1–6. IEEE.

Winangsit, E. and Sinaga, F. S. S. (2020). Writing music through parnumation 3.0 in the
musical activities learning process. In 1st International Conference on Lifelong Lear-
ning and Education for Sustainability (ICLLES 2019), pages 31–34. Atlantis Press.

Word, J. P. J. Jp-word tutorial. http://www.happyeo.com/intro_jpw.htm.

71

