
HAL Id: hal-03398624
https://hal.science/hal-03398624v1

Submitted on 23 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Suitability of Graph Representation for BGP Anomaly
Detection

Kevin Hoarau, Pierre Ugo Tournoux, Tahiry Razafindralambo

To cite this version:
Kevin Hoarau, Pierre Ugo Tournoux, Tahiry Razafindralambo. Suitability of Graph Representation
for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN), Oct
2021, Edmonton, Canada. pp.305-310, �10.1109/LCN52139.2021.9524941�. �hal-03398624�

https://hal.science/hal-03398624v1
https://hal.archives-ouvertes.fr


Suitability of Graph Representation for BGP
Anomaly Detection

Kevin Hoarau
Université de La Réunion, LIM, France

kevin.hoarau@univ-reunion.fr

Pierre Ugo Tournoux
Université de La Réunion, LIM, France

pierre.tournoux@univ-reunion.fr

Tahiry Razafindralambo
Université de La Réunion, LIM, France
tahiry.razafindralambo@univ-reunion.fr

Abstract—The Border Gateway Protocol (BGP) is in charge of
the route exchange at the Internet scale. Anomalies in BGP can
have several causes (mis-configuration, outage and attacks). These
anomalies are classified into large or small scale anomalies. Ma-
chine learning models are used to analyze and detect anomalies
from the complex data extracted from BGP behavior. Two types
of data representation can be used inside the machine learning
models: a graph representation of the network (graph features)
or a statistical computation on the data (statistical features). In
this paper, we evaluate and compare the accuracy of machine
learning models using graph features and statistical features
on both large and small scale BGP anomalies. We show that
statistical features have better accuracy for large scale anomalies,
and graph features increase the detection accuracy by 15% for
small scale anomalies and are well suited for BGP small scale
anomaly detection.

Index Terms—BGP Anomaly, Machine Learning, Graph.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is the routing protocol
standard on the Internet. A failure of the protocol could impact
any service relying on the Internet. Such failures, namely BGP
anomalies, happen for several reasons ranging from hardware
failures to malicious attacks [1]. BGP anomalies and their
detection are studied using BGP data collection projects such
as [15], [16]. These anomalies can be classified as large scale
and small scale based on the number of route affected and their
consequences on the Internet. At the Internet scale, BGP data
traces are complex and require advanced techniques such as
machine learning to be analyzed in order to detect anomalies.
BGP data traces are processed and transformed into statistical
features (e.g. counting the number of announcements, prefixes)
or into graph features, i.e. metrics derived from the BGP graph.
Machine learning models for BGP anomaly detection can be
fed using graph features or statistical features extracted from
BGP data traces.

Statistical features have long been shown to be effective to
detect large scale BGP anomalies. The effectiveness of graph
features for that purpose has only recently been shown [18].
On one hand, large scale anomalies seem easier to detect
due to their impacts and consequences on the Internet. On
the other hand, small scale anomalies seem more difficult to
detect since they can be localized and their impact may take

This project has received funding from the Région Réunion and the
European Union - European Regional Development Fund (ERDF) as part
of the INTERREG V - 2014-2020 program.

time to propagate on the Internet. However, it is not clear
which feature (graph or statistical) is better than the other in
detecting large scale and small scale anomalies when plugged
into machine learning models.

Results from the literature show two different types of study:
1) anomaly classification of known events and 2) anomaly
detection. We focus on the former one. The authors of [2]
use machine learning models to detect large scale events with
statistical features and show the efficiency of the method.
In [18], the authors study large scale events detection using
graph features plugged into machine learning model and show
that graph features have good performances. In this paper,
we fill the gap in the literature by providing a performance
comparison of machine learning models using graph features
and statistical features for small scale and large scale BGP
anomaly detection.

To detect small scale and large scale BGP anomalies we use
machine learning models such as support-vectors machines,
multi-layer perceptron, naive Bayes, decision tree and k-
nearest neighbors. These anomalies are detected by either
using graph features or statistical features inside the machine
learning model.

In this paper we show that: i) for large scale anomaly events,
statistical features have better performance than graph features
but graph features provide good accuracy rate when used in
machine learning models; ii) the detection accuracy of small
scale events is improved by 15% when using graph features
instead of statistical features. These results are promising since
with a fine tuned machine learning model and a larger training
set, the detection accuracy of small scale BGP anomaly
detection could be further increased.

The reminder of this paper is organized as follows. In
section II we provide a background on BGP, a description of
BGP anomalies and a state of the art summarizing the use of
machine learning in BGP anomaly detection. In section III we
describe the data set used in the paper. Section IV is devoted to
the data analysis while section V is focused on the evaluation
of machine learning models’ accuracy for anomaly detection.
We conclude and discuss the results of the paper in section VI.

II. BACKGROUND AND RELATED WORK

A. BGP in a nutshell

The Internet consists of Autonomous Systems (ASes) inter-
connected by Border Gateway Protocol (BGP). Most of the



ASes are Internet Service Providers (identified by an ASN)
that own IP prefixes [10]. ISPs operate BGP routers that
maintain TCP connections with a set of BGP neighbors to
exchange routing information with other ASes. Traffic is sent
through routes learned by BGP. BGP incrementally updates its
routes. When using BGP, a route to an IP prefix is identified
by the set of ASes (namely the AS-PATH) that participate in
the traffic forwarding which avoids routing loops [20].

B. BGP Anomalies

In this work, we distinguish three types of BGP anomalies.
1) Large scale anomalies: these types of anomalies have

a major impact both on BGP and Internet’s data plan. While
they are easier to address from an anomaly detection perspec-
tive, their impact is such that several works focus on their
detection. These anomalies [4] are mostly due to configuration
errors [14], worm spread [19], power outage [7] or hardware
failure [5].

2) Small scale origin hijacking: this type of anomalies
happens when an AS announce a prefix it does not own [3].
As BGP routers favor shorter paths, other ASes may choose
the illegitimate route if the path to the hijacker is shorter than
the path to the legitimate origin. These events often result in
the apparition of a Multiple Origin AS [21] (MOAS) conflict
which makes them more noticeable. However, MOAS conflict
can also happen due to legitimate practices as multi-homing
and prefix reallocation. Attackers can also announce a sub-
prefix to avoid the apparition of a MOAS conflict. Therefore,
the distinguishing between legitimate and malicious MOAS
requires more advanced approaches.

3) Small scale path hijacking: this type of anomalies occurs
when an AS forges a path for a prefix [3]. A forged path might
be smaller than the legitimate path and results in the traffic
destinated to the origin being directed toward the hijacker.
These anomalies are even more subtle to detect than origin
hijacking as the origin AS stays untouched. If the hijacker AS
does not have a valid route for the prefix the consequence on
the data plane is a traffic black-holing. However, if the hijacker
is able to redirect the traffic to the origin AS, then the hijacker
could observe and modify the traffic without anyone noticing.

C. BGP anomaly detection using Machine Learning

The collection of BGP routing information is the corner-
stone for any analysis of the BGP protocol. RouteViews
[16] and RIPE RIS [15] projects have been collecting and
archiving BGP data from different collectors distributed across
the world since 2000. Each of these collectors receives and
saves BGP updates from all its neighboring routers and updates
its Routing Information Base (RIB) accordingly.

1) Statistical features: The machine learning models for
BGP anomaly detection does not consume raw BGP data
from RouteViews and RIPE RIS. They are transformed in
statistical features which can be classified as i) volume features
such as the number of announcements and withdrawals which
aim to capture changes in the stability of BGP; ii) AS-PATH

features such as average AS-PATH length and the maximum
edit distance aim to capture topological changes.

Various ML algorithms have been used to process these
features e.g. SVM [8], [6], Naive Bayes classifier [8], [6],
decision trees [6], [13] and more recently deep learning [8],
[2], [13], [4]. These works achieved good performance on
the detection of large-scale anomalies such as worms spread,
massive route leaks, large-scale power outage, and submarine
cable cut.

2) Graph features: More recently, some authors chose to
leverage the underlying graph structure of BGP instead of the
statistical features [18], [11]. These dynamic graphs reflect the
evolution of the BGP topology where ASes are the graph’s
nodes and adjacent AS in AS-PATH are the graph’s edges.
In [18], metrics from the graph theory such as centrality
metrics are used as features for an ML model. Plus, the
results provide some evidence that graph metrics such as the
clustering coefficient may be used to detect small-scale events.
In [11], Goyal et al. introduce a graph embedding algorithm
designed to generate stable embeddings of dynamic graphs.
The embedding was applied to BGP data and the result shows
that changes in the embedding seem to be correlated with
anomaly events.

However, as far as we know, there is no fair comparison
of statistical and graph features in the literature. Our goal is
to fill this gap and to identify if machine learning based BGP
anomaly detector can benefit from graph feature instead of the
widely adopted statistical features.

III. DATASET

Our dataset includes 4 large scale anomalies as well as 17
occurrences of origin hijacking and 14 occurrences of path
hijacking. Each of these events includes 2 hours of BGP data
which are sampled every two minutes to generate a total of
60 BGP snapshot per event. From every snapshot, we extract
32 statistical features and 31 graph features. This results in
a dataset suitable for the comparison of statistical and graph
features, containing a total of 2100 time series. The remaining
of this section details the events included in our dataset, the
data collection process and the extracted features.

A. BGP anomaly events

We chose to rely on well documented BGP events including
4 large scale events, 17 small scale origin hijacking events and
14 small scale path hijacking events that were reported in a
blog post [9]. The origin and path hijacking events have been
used in [3] for the purpose of anomaly classification while the
large scale events have been used in [18] for the detection of
BGP anomaly using graph features. These events have been
thoroughly reviewed and can safely be considered as ground
truth.

B. Data collection

For both data collection and features extraction we use
BML [12]. For all the events, we collect data one hour before
and one hour after the estimated start of the event. Therefore,



for each event we use 2 hours of BGP data. The data are
collected from the rrc04 and rrc05 collectors located in
Geneva and Vienna. These collectors were chosen for their
intensive use in previous research [2], [4], [18]. BGP being an
incremental protocol, we need to collect data during a priming
period before the 2 hours time window. Using Ripe RIS
collectors, RIB dumps are available every 8 hours. So we used
a priming period of 10 hours to ensure that at least one RIB
dump is collected which allows us to have a complete view
of the routes available on a collector. The update messages
received between the RIB dump and the observation window
are used to update the routes. Thankfully, all this work is
automatically carried out by BML [12].

C. Features extraction

For all the events in our dataset we used BML to extract 32
BGP statistical features and 31 graph features every 2 minutes
which gives us 60 samples of 63 features per event. The
BGP statistical features which are computed from the update
messages collected within the 2 minutes interval are usually
divided in two categories [1], [2], [4]:

• Volume features: these features are computed on the
volume of the update messages collected. BML allows
to compute 15 volume features, as the number of route
announcements and withdrawals, the number of origin
changes, the average number of announcements per AS
and inter-arrival time of BGP updates.

• AS-path features are computed using the AS-path field of
a route announcement. Examples of these features are the
number of announcements to a shorter or to a longer AS-
path and the AS-path edit-distance. In total, 17 AS-path
features are computed.

For the graph feature extraction, BML first extracts the
topology of the BGP network using the as-path and the routes
available at the beginning of the time windows. Secondly,
the topology is updated every 2 minutes using the collected
update messages. Finally, based on graph theory metrics, 31
graph features are extracted. These metrics are divided into
two categories:

• Node level metrics: these metrics are computed for all
the nodes of the graph and we use the average value as
a feature. This metrics includes centrality metrics which
measure the importance of a node in a graph. Metrics
such as the clustering coefficient, eccentricity and the
degree which measure the connectivity of a node are also
extracted. In total, 16 node level metrics are computed.

• Graph level metrics: are globally defined and give a single
value for an entire graph. These metrics have already been
used to evaluate the structural robustness of a network
[17]. We computed 15 graph level metrics among which
the algebraic connectivity, the weighted spectrum and the
percolation limit.

The computation of these graph metrics can be both processor
and memory consuming, especially on large graphs (BGP
network with approximately 54K nodes for data collected

in 2016). For the purpose of computing these graph metrics
in a reasonable amount of time in our environment setup1,
we choose to reduce the dimension of the BGP network by
extracting the k-core of the graph. In graph theory the k-core
of a graph is a maximal subgraph that contains nodes of degree
k or more. Our motivation was to extract the most connected
portion of the graph as we assume that this portion should
support most of the traffic and therefore being the most critical.
However, as we are aware that this dimension reduction of the
graph induces a significant loss of information, we also extract
a subset of the graph feature from the original BGP network.
This subset is composed of 17 graph features that we were
able to compute in a reasonable amount of time in our setup.
It allows us to evaluate the impact of the k core extraction on
these metrics.

A recurrent issue when working with multiple features is
having features that do not change inside the same range. This
can result in bias in the subsequent data analysis by giving
more weights to some features. To prevent this, we normalized
all the features using z-score normalization which transforms
the features into a zero mean and unit variance distribution.

D. Data labeling

When visualizing data or training a machine learning model
it is useful to have label associated with the data. In our case,
for an event in our dataset consisting of 60 samples, we have
a binary vector of size 60 where a sample is labeled ”1” if
it was extracted during the anomaly time. For each event, we
collected one hour of data before the event and one hour of
data after the start time of the event. We use a simple approach
where we labeled the second half of the event as anomalous
(after the start time of the event). This results in a label vector
of size 60 where the last 30 values are ”1”.

It is important to notice that, for the origin and path
hijacking events, we do not have an exact start time for the
events. Thus, when visualizing the data we may expect a time
shift between the label and the apparition of the anomaly.
Furthermore, this inaccuracy in the labeling process could
affect the training of supervised machine learning models.

IV. DATA ANALYSIS

A. Raw features visualisation

We first visualize the raw features to have some insights
about the impact of an anomaly on the statistical and graph
features. Due to space constraints, we pick one event per
type of anomaly and we keep 5 statistical and graph features.
Both the events and the features were manually selected for
the visibility of the impact. Therefore, they must be seen as
the best case scenario and not necessarily representative of
the other samples in the dataset. Figure 1 shows the selected
statistical and graph features for 3 events. On the large scale
event [18], the anomaly is clearly visible with both statistical
and graph features. However, for the origin and path hijacking

1 During our test case, we used a computer with the following specification:
3.7GHz/8 cores processor with 64Gb of RAM running Ubuntu 18.04



events [9] the anomalies are more visible with graph features
whereas statistical features are more noisy. On the origin
hijacking event, we can see a delay between the start time of
the anomaly and the spikes in the features. This is probably
due to the inaccurate labeling for this type of event.

0 10 20 30 40 50 60
-3.0

-0.3

2.3

5.0

N
o
rm

a
li
z
e
d
 v

a
lu

e

Anomaly

nb. announcement

nb. implicit withdrawal

nb. to shorter

nb. to longer

nb. duplicate announcement

0 10 20 30 40 50 60
-4.5

-2.0

0.5

3.0

Anomaly

betweenness

eigenvector

closeness

pagerank

average shortest path

(a) TTNet event (Large scale)

0 10 20 30 40 50 60
-3.0

0.7

4.3

8.0

N
o
rm

a
li
z
e
d
 v

a
lu

e

Anomaly

0 10 20 30 40 50 60
-7

-3

1

5

Anomaly

(b) Amazon event (Origin hijacking)

0 10 20 30 40 50 60
Time (minutes)

-3.0

0.3

3.7

7.0

N
o
rm

a
li
z
e
d
 v

a
lu

e

Anomaly

0 10 20 30 40 50 60
Time (minutes)

-5.5

-2.3

0.8

4.0

Anomaly

(c) France event (Path hijacking)

Fig. 1. Statistical features (Left) and Graph features (Right)

B. Synthetic visualisation - PCA

We use a principal component analysis (PCA) to reduce the
dimensionality of the data since visualizing and analyzing the
raw features is difficult when their number is high. For each
event in the dataset, the PCA is applied on both statistical
and graph features. By keeping only the first and second
principal component, we obtain 60 samples in 2 dimensions.
Figure 2 shows PCA 2d projection of the statistical features
(left subfigure) and graph features (right subfigure) during an
origin hijacking event. We can see that for the graph features,
the samples extracted before the anomaly (with a ”0” label) are
grouped together and well separated from the data extracted
during the anomaly. The figure also suggests that the statistical
features may not easily distinguish BGP’s behaviour before
and during the event.

To measure the separation between anomalous and non-
anomalous data we used the silhouette coefficient which
is commonly used to evaluate the partition of a clustering
algorithm. For each point in the data, the silhouette coefficient
evaluates how near the point is to the points from the same
cluster and how far it is from the points from other clusters.

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l 
C

o
m

p
o
n
e
n
t

Label

0

1

1st Principal Component

Label

0

1

Fig. 2. 2d projection of statistical (Left) and graph (Right) features during
amazon event (Origin hijacking)

The silhouette coefficient of a point i is then defined as:

S(i) =
b(i)− a(i)

max{a(i), b(i)}
(1)

where a(i) is the mean distance between i and all points from
the same cluster and b(i) is the smallest mean distance of i and
the points in all the other clusters. The silhouette coefficient
for the partition is then computed as the mean value over
all the points. The silhouette coefficient ranges from -1 to 1
where 1 is the best value, 0 is obtained on overlapping clusters
and -1 when data has been assigned to the wrong clusters.
As the clustering coefficient can be computed in the original
feature space, we could have skipped the dimension reduction
step using PCA. However, in our experiments this lead to
lower values of the silhouette coefficient. This is due to some
noisy features whose effects are mitigated by the dimension
reduction. When we compute the silhouette coefficient for the
data showed in figure 2 we obtain a value of 0.52 for the
graph features which looks reasonable as the data is quite
well separated and 0.01 for the statistical feature as the data
overlaps.

The silhouette coefficient gives us a single value to evaluate
how well the data from an event is separated. Therefore, we
can use it as a metric to compare the separability of statistical
and graph features. We computed the silhouette coefficient for
all the events of the dataset for both types of features. Figure
3 shows the distribution of the silhouette coefficient when
the values are grouped by type of events. We can see from
figure 3 that the data is slightly better separated using statistical
features for the large scale events even if the value for graph
feature is still above 0.4. However, for both origin and path
hijacking, the silhouette coefficients for statistical features
are close to 0 meaning that the clusters are overlapping.
Graph features give better results with a mean value around
0.2. These results could probably be improved with a more
accurate labeling of the hijacking events. From these results,
we can expect to achieve slightly better performance using
statistical features instead of graph features for the detection of
large scale events. However, for both origin and path hijacking,
detection should be nearly random using statistical features
while graph features may achieve better results.

V. ML BASED ANOMALY DETECTION

In this section, we compare the benefits of statistical and
graph features for the detection of BGP anomalies. We build



0.0

0.2

0.4

0.6

0.8
Large scale

0.0

0.2

0.4

0.6

0.8
Origin hijacking

Statistical Graph (k-core) Graph

0.0

0.2

0.4

0.6

0.8
Path hijacking

Fig. 3. Silhouette coefficient

a machine learning pipeline to classify a feature sample as
anomalous or non-anomalous.

A. Experiment setup

Our machine learning pipeline is implemented using the
scikit-learn library. The implementations are available online2.

1) ML algorithms: Different machine learning algorithms
can achieve various results on the same classification task, we
evaluate the performance of our pipeline on 5 machine learning
algorithms. We used well-known machine learning algorithms
that have already been used for the detection of BGP anoma-
lies based on both statistical and graph features [2], [6], [18]:
a support-vector machine (SVM) with a radial basis function
kernel, a multi-layer perceptron (MLP) with 3 hidden layers,
a naive Bayes (NB) classifier, a decision tree (DT) and a k-
nearest neighbors (KNN) classifier.

2) Dimensionality reduction: A good practice when train-
ing a ML model is to reduce the dimension of the feature
space. This allows us to filter out the redundant and irrelevant
information. Moreover, this prevents over-fitting and avoids
the curse of dimensionality which could be an issue due to
the limited size of our dataset. We used a principal component
analysis (PCA) to project the features in a 2 dimension space
as described in section IV.

3) Cross validation: To evaluate the performance of our
model we used a cross validation approach with a Leave One
Group Out (LOGO) scheme. For a dataset composed of n
events, the model is trained using the data from n− 1 events
and the remaining sample is used as an independent test set.
In a round-robin fashion, each event is used as a test and
the performance can be averaged across the n iterations. This
approach allows us to use a large portion of the data in the
training set while producing statistically robust results. In our
experiments we used the accuracy to evaluate the performance
of a model:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP , TN , FP and FN come from the confusion
matrix.

4) Hyper-parameters tuning: Having multiple ML algo-
rithms implies to deal with more hyper-parameters. These
hyper-parameters are, for instance, the learning rate of the

2https://github.com/KevinHoarau/BGP stat vs graph

MLP, the maximum depth of the DT or the number of
neighboors for the KNN. To find the best combination of
parameters for each ML algorithm we used the GridSearchCV
function of scikit-learn. This function allows us to define a
grid of hyper-parameters values for each ML algorithm and
searches exhaustively the best combination from this grid. For
each possible combination, a cross-validation is done on the
training set to avoid over-fitting. For this step, we used a 3-
fold group cross validation that divides the events in 3 subsets.
For an iteration, the data from 2 subsets are used for training
and the remaining subset is used for testing.

B. Performance comparison

To evaluate the performance of the models we applied our
ML pipeline separately for each type of anomaly. Figure 4
shows the performance of the 5 models. As expected from
previous sections, the statistical features outperforms the graph
features on the large scale events (95% accuracy using the NB
model) but performs near to a random classifier on origin and
path hijacking events. However, graph features on large scale
event achieved 90% accuracy on large scale event using the k-
core and 85% otherwise. On origin and path hijacking events
the graph features (without k-core) is the best option as 60%
accuracy is obtained using the SVM model. Based on these
results, we used the graph features without k-core as it gives
stable results across the different types of events compared to
the k-core option.

SVM MLP NB DT KNN
0.75

0.8

0.85

0.9

0.95

1.0
Large scale

SVM MLP NB DT KNN
0.4

0.45

0.5

0.55

0.6

0.65
Origin hijacking

Stat Graph (kcore) Graph

SVM MLP NB DT KNN
0.45

0.5

0.55

0.6

0.65

0.7
Path hijacking

Fig. 4. Accuracy (see eq. 2) of ML models

C. Anomaly detection

Figure 5 shows the decision boundary of the SVM model
on an origin and a path hijacking event using graph features.
We only focus on the results from the SVM model since it
provides the best performances. Thanks to the PCA for the
dimensionality reduction the data can be plotted in 2 dimen-
sions. We can see from figure 5 that some blue points are in the
orange section meaning that they are false positives. This can
be the consequence of the inaccurate labelling process of this
data. False positives can also occur due to a misclassification
of the model. To mitigate this issue, we can use multiple data
points and detect an anomaly only if a significant portion
of these points are classified as anomalous. To evaluate the
performance of such anomaly detection scheme, we divide
each event in two subsets: the negative and positive set. The
negative (resp. positive) subset is composed of the 30 points
labelled non-anomalous (resp. anomalous). Then, for each

https://github.com/KevinHoarau/BGP_stat_vs_graph


x

y
Brazil event (Origin hijacking)

Label

0

1

x

y

Petersburg event (Path hijacking)

Label

0

1

Fig. 5. Decision boundary of the SVM model on two hijacking events

5 10 15 20 25
Threshold

0.7

0.8

0.9

1.0

Large scale

5 10 15 20 25
Threshold

0.4

0.5

0.6

0.7

Origin hijacking

Stat Graph

5 10 15 20 25
Threshold

0.4

0.5

0.6

0.7

Path hijacking

Fig. 6. Anomaly detection accuracy (see eq. 2) as a function of the threshold
i.e. the required number of samples to be classifed as anomaly by the SVM.

subset, all the data points are classified by the ML model and
an anomaly is detected only if the number of points classified
as anomalous is above a threshold.

Figure 6 shows the performance of the SVM model for
anomaly detection depending on the threshold. We can see
from this figure that the best performances are achieved from
15 to 20 events as threshold. On one hand, for the large
scale events using statistical features we obtain 100% accuracy
against 88% for the graph features. On the other hand, for the
origin and path hijacking events, the graph features give 68%
accuracy while for the statistical features the performances are
equivalent to a random classifier (around 50%).

VI. CONCLUSION

This paper evaluates and compares the accuracy of machine
learning models for anomaly detection in BGP. Especially, we
use different data representations to describe the behaviour of
BGP : a graph representation (graph features) and a statistical
representation (statistical features). We plug the different data
representations inside a machine learning model and evaluate
the anomaly detection accuracy of the model. This accuracy
is evaluated on large scale and small scale anomaly events.

We show that for large scale anomalies, statistical features
have better detection accuracy than graph features. However,
machine learning models used with graph features provide
a decent accuracy. We also show that while none of the
types of features provides satisfying performances for small
scale events detection, the graph features increase the de-
tection accuracy by 15% compared to statistical features.
These preliminary results on small scale BGP anomalies are
promising as with a fine tuned machine learning model and a
larger training dataset, the detection accuracy may be further
increased resulting in satisfying performances.

REFERENCES

[1] B. Al-Musawi, P. Branch, and G. Armitage, “BGP anomaly detection
techniques: A survey,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 1, pp. 377–396, FebJan 2017. [Online]. Available:
http://dx.doi.org/10.1109/comst.2016.2622240

[2] M. Cheng, Q. Li, J. Lv, W. Liu, and J. Wang, “Multi-scale lstm model for
bgp anomaly classification,” IEEE Transactions on Services Computing,
2018.

[3] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “Bgp hijacking
classification,” in 2019 Network Traffic Measurement and Analysis
Conference (TMA), 2019, pp. 25–32.

[4] M. Cosovic, S. Obradovic, and E. Junuz, “Deep learning for detection
of bgp anomalies,” in International Work-Conference on Time Series
Analysis. Springer, 2017, pp. 95–113.

[5] J. H. Cowie, A. T. Ogielski, B. Premore, E. A. Smith, and T. Underwood,
“Impact of the 2003 blackouts on internet communications,” Preliminary
Report, Renesys Corporation (updated March 1, 2004), 2003.

[6] I. O. de Urbina Cazenave, E. Köşlük, and M. C. Ganiz, “An anomaly
detection framework for bgp,” in 2011 International Symposium on
Innovations in Intelligent Systems and Applications, June 2011, pp. 107–
111.

[7] S. Deshpande, T. Ho, M. Thottan, and B. Sikdar, “An online mecha-
nism for bgp instability detection and analysis,” IEEE Transactions on
Computers, vol. 58, no. 11, pp. 1470–1484, nov 2009.

[8] Q. Ding, Z. Li, P. Batta, and L. Trajković, “Detecting bgp anomalies
using machine learning techniques,” in 2016 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 003 352–
003 355.

[9] Dyn, “Oracle Internet Intelligence Blog.” [Online]. Available: https:
//blogs.oracle.com/internetintelligence/

[10] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745, Dec
2001.

[11] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” arXiv preprint arXiv:1805.11273, 2018.

[12] K. Hoarau, P.-U. Tournoux, and T. Razafindralambo, “BML: an efficient
and versatile tool for BGP dataset collection,” in WS22 IEEE ICC
2021 the 3rd International Workshop on Data Driven Intelligence for
Networks and Systems (WS22 ICC’21 Workshop - DDINS), Montreal,
Canada, Jun. 2021.

[13] Y. Li, H. J. Xing, Q. Hua, X. Z. Wang, P. Batta, S. Haeri, and
L. Trajković, “Classification of bgp anomalies using decision trees and
fuzzy rough sets,” in 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Oct 2014, pp. 1312–1317.

[14] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding bgp
misconfiguration,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 3–16, 2002.

[15] RIPE, “Routing information service (RIS).” [On-
line]. Available: https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/routing-information-service-ris

[16] RouteViews, “Routeviews - university of oregon route views project.”
[Online]. Available: http://www.routeviews.org/routeviews/

[17] D. F. Rueda, E. Calle, and J. L. Marzo, “Robustness comparison of
15 real telecommunication networks: Structural and centrality measure-
ments,” Journal of Network and Systems Management, vol. 25, no. 2,
pp. 269–289, 2017.

[18] O. R. Sanchez, S. Ferlin, C. Pelsser, and R. Bush, “Comparing machine
learning algorithms for bgp anomaly detection using graph features,” in
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine
Learning and Artificial Intelligence for Data Communication Networks,
2019, pp. 35–41.

[19] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F.
Wu, and L. Zhang, “Observation and analysis of bgp behavior under
stress,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, 2002, pp. 183–195.

[20] S. H. Y. Rekhter, T. Li, “A border gateway protocol 4 (bgp-4),”
Network Working Group, IETF, RFC 4271, 2006. [Online]. Available:
https://tools.ietf.org/html/rfc4271

[21] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang, “An analysis of bgp multiple origin as (moas) conflicts,”
in Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, ser. IMW ’01. New York, NY, USA: ACM, 2001, pp.
31–35. [Online]. Available: http://doi.acm.org/10.1145/505202.505207

http://dx.doi.org/10.1109/comst.2016.2622240
https://blogs.oracle.com/internetintelligence/
https://blogs.oracle.com/internetintelligence/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/routing-information-service-ris
http://www.routeviews.org/routeviews/
https://tools.ietf.org/html/rfc4271
http://doi.acm.org/10.1145/505202.505207

	Introduction
	Background and related work
	BGP in a nutshell
	BGP Anomalies
	Large scale anomalies
	Small scale origin hijacking
	Small scale path hijacking

	BGP anomaly detection using Machine Learning
	Statistical features
	Graph features


	Dataset
	BGP anomaly events
	Data collection
	Features extraction
	Data labeling

	Data analysis
	Raw features visualisation
	Synthetic visualisation - PCA

	ML based anomaly detection
	Experiment setup
	ML algorithms
	Dimensionality reduction
	Cross validation
	Hyper-parameters tuning

	Performance comparison
	Anomaly detection

	Conclusion
	References

