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Abstract—Existing electrical networks are going through a 

transition and distributed energy resource, if not managed 

properly, can hinder this transition. Uncontrolled introduction 

of photovoltaics and electric vehicles in distribution networks 

would lead to substantial issues such as commitment 

mismatches, line congestions, voltage deviations, etc.  This paper 

presents the use of a classical approach, mixed integer linear 

programming optimization, and a novel approach, adaptive 

multi-agent system, to solve the highlighted distribution side 

challenges by utilizing electric vehicles’ storage capacity. This 

comparison serves as a great tool to benchmark the 

performance of the under-development adaptive multi-agent 

system methodology.  

Keywords—Multi-Agent Systems, Mixed Integer Linear 
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I. INTRODUCTION 

Electrical networks, at first designed for unidirectional 
power flows, are facing stability and resilience challenges due 
to introduction of modern distributed energy resources 
(DERs) such as photovoltaics (PVs) and electric vehicles 
(EVs). The European Union (EU) 2030 climate and energy 
framework [1] and projections by the International Energy 
Agency (IEA) [2] present a future with appreciable amount of 
such DERs connected to the distribution network. This 
certainly ensures a smoother path towards carbon-free energy 
systems but can also cause disruptions in the existing electrical 
infrastructure by bringing techno-economic challenges.  

On the technical side, congestions in the network, voltage 
deviations as well as a need for energy balancing due to 
imperfect forecasts can occur. The financial responsibility of 
balancing is managed by Balance Responsible Parties (BRPs). 
BRPs submit a daily balance schedule to the Transmission 
System Operator (TSO) and manage energy balance within 
their portfolio called the Balance Perimeter (BP).  This 
schedule is defined on a sub-hourly basis (soon to be 
harmonized to a quarter-hourly basis in Europe), known as the 
imbalance settlement period. If the BRP has consumed less 
energy (i.e., produced more energy) than what was planned, it 
would be compensated by the TSO and vice versa. To mitigate 
the commitment mismatch cost, a BRP may use, through 
an 

aggregator, flexibles entities (e.g., EVs). However, the BRP 
orders must not create local issues on the network, such as 
congestions. Indeed, the problem resides in the interactions 
between different actors managing different roles at different 
levels and having potentially contradictive objectives. Hence, 
with an increasing amount of DERs, it is necessary to mitigate 
these challenges.  

Different solutions have been proposed to ensure an 
efficient coordination while maintaining grid stability. Grid 
reinforcement solutions are somewhat limited due to a 
significant infrastructure cost, therefore making flexibility 
solutions more promising. One such approach is the 
application of Multi-Agent System (MAS) concepts to 
manage networks. Hu et al. [3] have used swarm intelligence 
to model a MAS for controlling a distribution network with 
EVs. Lauri et al. [4] and Huang et al. [5] have designed MASs 
using Markov Decision Process (MDP) and game theory, 
respectively. A thorough study of existing literature suggests 
that most of the proposed MAS architectures can be classified 
as hierarchical, thus not fully decentralized. This property 
makes the system vulnerable to single point of failure (SPOF) 
issues and limits performance as sub-problems of limited size 
only, can be handled when strong real-time constraints are 
considered, which can be quite limiting for large-scale 
problems.   

To overcome these challenges, a system based on a 
particular type of MAS, Adaptive Multi-Agent System 
(AMAS), is being developed. In AMAS, the goal is achieved 
through cooperative interactions of agents i.e., emergence. 
The main characteristics of such a system are autonomy, 
decentralization, sociability, and reactivity. The system is 
called ADaptive Energy Management In Smart Grids 
(ADEMIS) [6] and is capable of handling, by exploiting the 
storage capacity of EVs for ancillary services, basic grid 
stability challenges i.e., line congestions, as well as potential 
antagonist issues such as handling commitment mismatch 
while ensuring desired charging of the EVs.  

It is equally important to keep a check of the obtained 
solutions’ qualities, when developing a new methodology. For 
that purpose, the problem is simplified, modeled, and solved 
using Mixed Integer Linear Programming (MILP) 
optimization, which has already been used for optimal power 



flows in smart grids [7]. This enables to draw a comparison 
between a basic, uncoordinated charging strategy, the classical 
MILP optimization approach and the newly proposed AMAS 
methodology. A good comparison would allow us to better 
understand the position of AMAS solutions among different 
methodologies and quantify the room for improvements. 
Optimization formulation and linear, convex approximations 
for MILP along with AMAS modeling is presented in Section 
II. Following this, case studies are defined for testing in 
Section III and finally the results obtained are discussed in 
Section IV and conclusions are made.  

II. SYSTEM MODELING 

A. Optimization Formulation 

The starting point is the power flow constraints of the 
network, which ensure power flow in the network based on its 
physical constraints. ����� and ����� represent the active and 
reactive powers at bus a at instant t. The power at each bus is 
equal to the sum of power injected or drawn from the bus. ����	,��,���� and ∆���,���� stand for the day-ahead planned 
EV power connected to bus a at instant t, and the change in 
that power, hence a decision variable for optimization, to 
achieve the system’s objective.  

                    ����� =  ����	������	��� − ������	����             �1�                       ����� =  �����,���� + ���,���� − �����,����     �2�
                  − !����	,��,���� + ∆���,����"    
����� =  ����	������	��� − ������	���� �3�               ����� =  �����,���� + ���,���� − �����,����   �4�
                  − !����	,��,���� + ∆���,����"   

 Equation (5) links the power flows in the network to the 
bus voltages and network losses. %� stands for the voltage at 
bus a, while &�'∗  represents the conjugate of the admittance 
matrix. Equations (6) and (7) relate powers at the bus with 
total inflows and outflows. Equations (8) and (9) ensure that 
the power values remain within specified limits.  

��'��� + )��'��� =  %����*%�∗��� − %'∗���+&�'∗  �5�  ∑ ��'��� =  �����'  �6�   ∑ ��'��� =  �����' �7�  ��,��	 ≤ �����  ≤ ��,��1 �8�   ��,��	 ≤ �����  ≤ ��,��1 �9�  

Next comes the constraints on bus voltages and currents. 
These can be classified as Distribution System Operator 
(DSO) constraints.  

%�,��	 ≤ |%����| ≤ %�,��1  �10�  |6�'���| ≤ 6�',��1   �11�  

EV constraints serve the purpose of modeling the 
dynamics of the EVs and also linking it with the network flow 
constraints. The State of Charge (SoC) of an EV is dependent 
on the previous state and charging or discharging power at the 
present interval. The SoC of the EV should be within specified 
limits, and it should be greater than the desired minimum SoC 
at the departure time. Similarly, the State of Health (SoH) of 
an EV, models health of the battery and should never be 
negative. ���,78����	�,� ��� and ���,��978����	�,� ��� is the EV 
charging and discharging power connected to bus a at instant 
t. Term :��� is a binary variable which makes sure that an EV 
is either charging or discharging, and not both, at interval t. 

;<=���� =  ;<=��� − 1� + �>?,@ABCDEFD,B ���∆�
�GBH I78����	�

                        − �>?,JEK@ABCDEFD,B ���∆�
�GBH

L
MJEK@ABCDEFD                  �12�   

;<=��	,� ≤ ;<=���� ≤ ;<=��1,�  �13�  ;<=��	,�*���N���O��,�+ ≤ ;<=�*���N���O��,�+ �14�  ;<P��,���� =  ;<P��,��� − 1�
− !�>?,JEK@ABCDEFD,B ���Q �>?,@ABCDEFD,B ���"∆�

R.T�GBH �15�  

;<P��,����  ≥ 0 �16�  ���,� ��� =  ���,78����	�,���� − ���,��978����	�,����                          =  ����	,��,���� + ∆���,����                        �17�   *:���+���	,��,� ≤ ���,78����	�,���� ≤ ���1,��,�*:���+ �18�  *1 − :���+���	,��,� ≤ ���,��978����	�,����
≤ ���1,��,�*1 − :���+ , :��� ∈ W0,1X �19�  

���,���� =  ���,���� tan ∅ �20�  

 The objective is to minimize the mismatch cost paid by 
the BRP, (21). BRP is charged for a negative mismatch (i.e., 
over-consumption) and vice versa. The negative mismatch 
cost is higher compared to the compensation for a positive 
mismatch. Terms =��9[ �\� , =��9Q �\� , ]��9[ �\�  and ]��9[ �\� 
represent the negative and positive mismatch costs and energy 
values, respectively. �̂ _����  is the real-time power 
consumption in the BRP perimeter, while ����	��� is the day-
ahead planned power defined by (25). PV forecasts are usually 
provided as a one-hour average value for distributed 
generation, while for loads the resolution is smaller i.e., 10 
minutes. The errors in the forecasts are also modeled here.   

                                     `ab∆�>?,B���=^_� =                            �21�
`ab∆�>?,B��� ∑ *=��9[ �\�]��9[ �\� −  =��9Q �\�]��9Q �\�+cdceFJcdL    
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B. MILP Approximations 

To linearize the original non-linear and non-convex 
problem, (6) is approximated, obtained by applying small 
angle approximation ( sin�l� − l'� = l� − l' ), (26)-(27). 
Also, the subtraction of the positive energy mismatch cost (a 
convex function), in the objective function makes the 
curvature of the total objective function non-convex. To retain 
the convexity, the positive mismatch cost has been considered 
as 0 €/MWh, which represents a worst-case.   

��'��� = m�'*%���� − %'���+ + n�'*l���� − l'���+     �26�  ��'��� = n�'*%���� − %'���+ + m�'*l'��� − l����+    �27�                     `ab∆�>?,B���=^_� =                
               `ab∆�>?,B��� ∑ *=��9[ �\�]��9[ �\�+cdceFJcdL              �28�    



C. ADEMIS Modeling 

This work is a continuation of Blanc-Rouchossé et al. [6]. 
The basic architecture of the system is the same as described 
in the previous work. Each physical component of the 
distribution grid is modeled as a cooperative agent, with each 
agent having its own objective, a partial information of the 
environment and a set of actions depending on the situation. 
The AMAS system executes in a loop.  During each iteration, 
an agent calculates its own criticality, between 0 and 1, and 
compare it to the criticalities of the neighbouring agents. 
Subsequently it decides to take an action, either to satisfy its 
own objective or to help the neighbouring agents in achieving 
theirs. In the following paragraphs, the modelling of each type 
of agent is defined.  

1) Line Agent: Line agents communicate criticalities, (29)-
(30), based on the line current values. Term 6�8is the threshold 
value at which line becomes critical and is set to 0.8 times the 
rated line current value 6��1 . =i�,�  is the anticipated 
criticality of the line to ensure dynamics of the system, so that 
the line does not keep on oscillating between highly critical 
and non-critical states. Once a line becomes congested, its 
line agent will keep on communicating the anticipated 
criticality value so EV agents can continue cooperating with 
the line without disturbing the dynamics of the system. 

=i���� =  �o���[ oHA�
�opBq[ oHA� ;  6�8 = 0.86��1 , as 6 ≥ 6�8 �29�  

=i�,���� =  =i�,��� − 1� + t� !=i���� − =i�,��� − 1�" �30�  

2) BRP Agent: BRP agent sends its criticality, (31)-(32), 
based on its instantaneous mismatch value. Terms t�  and t^_�  are tuning parameters with arbitrarily selected values 
0.01 and 100, respectively.  

=î _���� =  |∆����|
�CepBEFEFD,ueCEvJwxyz  �31�  

|∆]���| =  ∑ ��̂ _��a� − ����	�∆���d�KHBCH  �32�  

3) EV Agent: EV agents calculate their respective 
criticalities based on (33). In (33), ���1  is the maximum 
charging or discharging power of each EV, ������	�	�,��N���O��  is the time remaining before departure of 
the EV.  After this calculation, they compare it to the criticality 
signals they have received from the neighbouring agents. 
Based on this, each EV agent makes the decision, either to 
help a line for congestion, or the BRP for commitment 
mismatch or to continue charging, by calculating the updated 
power for that interval. The updated power is calculated using 
(34). =i��1  stands for the maximum criticality received 
while =i��1,T  is the second maximum criticality among 
antagonist (opposite) signals  

=i����� =  �{|}pEF[{|}�����GBH�pBq�CepBEFEFD,JeuBCH~Ce  �33�  

������ =   ����� − 1� �
!=i��1��� − ℎ ∗ =i��1,T���" ���1 �34�  

In the above equation, h is a function which tackles the 
situation when EV agents receives antagonistic requests. For 
example, if line is congested (thus requesting EVs to charge 
less) and BRP commitment mismatch is positive (thus 
creating favourable conditions for EVs to charge more) at a 
given instant simultaneously, then EV agents have to decide 

which request is more critical. Thus, the h function acts like a 
weighting function, given in (35).  

ℎ�=i�,�� =  
⎩⎪
⎨
⎪⎧ 1 + �[L

c�,pEF =i�,�  , as=i�,� � \�,��	   
hg� ! }�B,�wBQwG" , as \�,��	 ≤ =i�,� ≤ \�,��1  

1 − �
L[c�,pBq =i�,� , as=i�,� � \�,��1

 �35�   

   \�,��1  and \�,��	  are thresholds for anticipated line 
criticality. Between two thresholds, the h parameter behaves 
exponentially and linearly otherwise. Terms t�  and t'  are 
two parameters dependent on values of �, �, \�,��1  and \�,��	 . The development of the methodology for ADEMIS 
being at an early stage, it can be observed that a simple 
strategy consisting in reducing the commitment mismatch was 
selected at first, thus not considering the potential reward for 
injecting power when there is an excess of PV production. 
However, the goal of this paper consists in assessing the room 
for improvement with such a usually envisaged strategy 
among BRPs, as well as to check that constraints are satisfied. 

III. CASE STUDY 

A. Distribution Network 

The “IEEE Low Voltage Test Feeder” (IEEE LVTF) [8] is 
selected for this case study. As shown in Fig. 1, it consists of 
3 zones (A, B &C). It is connected to a substation through a 
11 kV/416 V transformer. The network consists of 
55 households. These 55 household buses are also equipped 
with a PV and an EV connection, making the size of total EV 
fleet for this study equals to 55. For a congestion study, line 
117 (highlighted in red) of the network is selected. For 
ADEMIS power flow, the network is simulated in 
DIgSILENT PowerFactory (PF).  

B. Datasets 

This study is carried out for a total time of one hour (4 
imbalance settlement periods of 15 minutes each), from 16:00 
till 17:00. The dataset for load profiles of 55 households is 
provided along with the IEEE LVTF model. The resolution of 
the data is 1 minute.  The irradiance data for PV profiles 
(resolution of 1 second) is obtained from the database of the 
National Renewable Energy Laboratory (NREL) [9]. The 
power generated by a panel is calculated using (36). 6ii��� is 
the irradiance at time instant t, A is the area of the panel, 10 `T here, I��, the efficiency of the panel, is equal to 0.17. The 
error for day-ahead PV forecast is set to 15% during the 
studied hour.   

������ = �I��6ii���  �36� 

 
Fig. 1. Graphical representation of the IEEE low voltage test feeder 



The EV fleet modeled for this system can be classified into 
three distinct types of EVs, 1) EVs arriving at start of period 1 
for charging and departing soon, which would create a 
congestion in the network line 117, 2) EVs arriving during the 
simulation time and departing near the end or after simulation 
time, and 3) EVs connected to the network before the start of 
the simulation and departing afterwards. All EVs present the 
same capacity of 30 kWh and have a maximum charging or 
discharging power of 7 kW. Terms ;�=��	 and ;�=��1  have 
been set to 0.3 and 0.8 respectively, while ;�=��	*���N���O��+ is equal to 0.7.  

Additional data for imbalance costs of the BRP is obtained 
through the French TSO Réseau de Transport d'Électricité 
(RTE) [10]. The data provided by the TSO has a resolution of 
30 minutes, thus a linear resampling of data is done to obtain 
costs values for each 15 minutes period. Negative mismatch 
cost values are 91.26, 108.83, 103.28 and 92.124 €/MWh, 
while positive mismatch values are 82.56, 98.46, 93.44, 89.35 
€/MWh for periods 1, 2, 3 and 4, respectively.  

C. Antagonist Issues 

This study is modeled to incorporate a variety of scenarios 
to make it more realistic and non-trivial. During period 1, PVs 
are over-producing, while under-producing in the remainder. 
BRP mismatch is present in all 4 periods, due to differences in 
the forecasted and real-time values. Also, during period 1 a 
line congestion is expected when uncoordinated charging 
occurs. The rated value for line current is 0.065 kA. The line 
type (number of cores and cross-sectional area) is also given 
with the IEEE LVTF model. The rated current value is 
obtained from the technical sheet [11] for the congested line. 
To provoke a congestion in the network, 8 EVs in zone A and 
4 EVs in zone B are simulated to arrive near the start of the 
simulation. A summary is presented in Fig. 2.  

EVs causing congestion are charging at their maximum 
specified power as their departure time is around 16:12. As the 
EVs load forecast is made by taking the average over 10 
minutes-periods, if  the total load is very high (enough to cause 
congestion) for a portion of 10 minutes and very low for the 
remainder, the average value would be in the middle and 
would not depict congestion for the portion when a very high 
total load is present, which is exactly what happening in this 
scenario. As stated, we have over-production and congestion 
in period 1, which gives rise to an antagonistic scenario, where 
EVs may be incentivized to consume more power but as there 
is a line congestion, line agent would require EVs to draw 
lesser power through the line. 

IV. RESULTS 

In this section, first the results obtained from MILP and 
ADEMIS are discussed individually and then a comparison of 
both along with the basic charging strategy is made.  

 
Fig. 2. Summary of the case study, EVs arriving (↑) and departing (↓) 

A. MILP Results 

To model MILP formulation CVXPY [12], with GUROBI 
solver, is used.  The computing machine is equipped with Intel 
i5-10210U CPU with base speed of 2.11 GHz and 8 GB RAM 
(DDR4). The temporal resolution of the study is 1 minute.  
Fig. 4-b shows that during period 1, when congestion is 
expected to occur with an uncoordinated charging, the total 
EV consumption is lower than the forecasted consumption. 
Power flow from the grid to the congested zones is reduced, 
and the EVs present in both zones, which do not need to depart 
early, started supporting the EVs which are departing soon by 
charging less or discharging. 

To check the impact of the approximations on the quality 
of the solution, the optimized power profiles obtained through 
MILP are simulated in the IEEE LVTF PowerFactory model. 
Active power grid profiles are shown in Fig. 3-a. The 
percentage cosine similarity between both curves is 99.018%. 
This confirms a minor impact of MILP approximations on the 
quality of the solution. To draw a fair comparison, battery 
aging cost has been omitted in the MILP formulation, as it is 
not present in the current version of ADEMIS. This results in 
a significant number of oscillations in the solution profiles.  

B. ADEMIS Results 

Agents’ behaviour is implemented in JAVA. Power flow 
for each iteration is done in PowerFactory. Both platforms 
communicate through a python script. As the agents react to 
the system in real-time, the time step considered for each 
iteration is 1 second. The system consists of 55 EV agents. 

Fig. 4-a confirms that the congestion in the network is also 
avoided for ADEMIS solution as the line current is smaller 
than the rated current value of the line. Present version of 
ADEMIS is configured to reduce the commitment mismatch, 
as explained in (31-32). Further, the EVs present in both 
zones, which do not need to depart soon, are helping the EVs 
departing soon by discharging. 

C. Results Comparison  

Fig. 4-a shows the line currents in line 117. Both ADEMIS 
and MILP solutions are successful in managing the line 
congestion, which should have occurred with a basic charging 
strategy. Further, both for MILP and ADEMIS, the SoC 
criteria (minimum SoC reached before EV departure) of all 
the EVs are satisfied, which cannot be guaranteed for the basic 
charging approach in case a zone(s) gets disconnected from 
the grid side due to congestion or other failures in the network.       

A comparison of energy mismatch for each period is 
presented in Fig. 5. This comparison is between different 
formulations presented earlier, obtained through different 
methodologies to tackle the same set of problems.  Negative 
values indicate positive energy mismatch (over-production), 
whereas positive values mean negative energy mismatch 
(over-consumption).   

 
Fig. 3. MILP and PowerFactory results comparison 



 
Fig. 4. Results comparison: a) Line 117 current b) Total EV powers 

For periods 2,3 and 4, ADEMIS and MILP follow the 
same trend of significantly reducing the expected negative 
energy mismatch, compared to the uncoordinated charging 
strategy. In period 1, the cost of injecting more power and 
battery aging is zero in this preliminary study. Hence, the 
MILP approach proposes one feasible solution among others, 
where a large amount of power is injected in the grid (at no 
cost). However, using the non-convex objective function, this 
injection is rewarded. Under these conditions, the behaviour 
of ADEMIS is counterproductive compared to the basic 
charging, as it reduces the injection of power into the external 
grid. The goal of studying the conditions in period 1 was 
primarily to check that the EVs and DSO constraints were 
satisfied when antagonistic requests were received by the 
agents, knowing that the basic strategy implemented in the 
agents would not be relevant in this particular case. More 
sophisticated BRP functions are considered for future work in 
order to improve the performance of the overall system. 

Finally, the cost comparison for each formulation is done 
by placing the obtained solution values in (21) (for MILP both 
(21) and (28) are used) and then calculating ratios with MILP 
PF results as reference. Again, it can be verified, in Table I., 
that the solution obtained through ADEMIS stands between 
MILP and basic charging strategy. MILP, (28), solution is 
closer to the ADEMIS solution, as in neither of the approaches 
the exploitation of the reward by injecting power is sought. 

V. CONCLUSION 

A comparison of MILP optimization and AMAS has been 
presented to solve the grid stability and commitment 
mismatch problems in the distribution grid. Both approaches 
efficiently handle the given challenges. Compared to the basic 
charging strategy, ADEMIS solution is performing better 
overall, but a substantial gap between ADEMIS and MILP 
solutions indicates that there is large room for improvement. 

 

 
Fig. 5. Total energy mismatch comparison for each period 
 
 
 

TABLE I.  COST COMPARISON (RATIO) OF  STUDIED FORMULATIONS 

Ratio

� �
����� 

Strategy  

Basic  ADEMIS 
MILP  

(28) 

MILP 

(21) 

MILP 

(PF) 

Period 1 0.165 0.063 0 1.006 1 

Period 2 -0.933 0.733 0 0 1 

Period 3 -37 -22 0 0 1 

Period 4 -36 -8 0 0 1 

Total -0.21 -0.02 0 0.95 1 

 
On the flip side, AMAS is more modular and scalable 

compared to the MILP. Anticipative stochastic optimization is 
based on forecasts which can have errors and requires a large 
computing time, being NP-complete. Unlike this approach, an 
AMAS system reacts to the environment in real-time and the 
computing time of each agent is independent of total number 
of agents in the system. This provides motivation for the future 
work, which includes improving the behaviour of the agents 
as well as bus voltage management to study large-scale 
unbalanced networks. This would give a better benchmark to 
compare not only the quality of the solutions but also the time 
complexity to obtain those solutions.  
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