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ABSTRACT 

Unstructured data in electronic health records, represented by clinical texts, are a vast source of healthcare information 

because they describe a patient’s journey, including clinical findings, procedures, and information about the continuity of 

care. The publication of several studies on temporal relation extraction from clinical texts during the last decade and the 

realization of multiple shared tasks highlight the importance of this research theme. Therefore, we propose a review of the 

temporal relation extraction in clinical texts. We analyzed 105 articles and verified that relations between events and 

document creation time, a coarse temporality type, were addressed with traditional machine learning-based models with 

few recent initiatives to push the state-of-the-art with deep learning-based models. For temporal relations between entities 

(event and temporal expressions) in the document, factors such as dataset imbalance because of candidate pair generation 

and task complexity directly affect the system’s performance. The state-of-the-art resides on attention-based models, with 
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contextualized word representations being fine-tuned for temporal relation extraction. However, further experiments and 

advances in the research topic are required until real-time clinical domain applications are released. Furthermore, most of 

the publications mainly reside on the same dataset, hindering the need for new annotation projects that provide datasets for 

different medical specialties, clinical text types, and even languages. 

CCS CONCEPTS 

• Computing methodologies ~ Artificial intelligence ~ Natural language processing ~ Information extraction • Applied 

computing ~ Life and medical sciences ~ Health informatics 

KEYWORDS 

Temporal relation extraction, Natural Language Processing, Clinical Data 

1 INTRODUCTION 
Whenever patients seek medical care data, their information is recorded in the electronic health records (EHRs) and stored 

in either a structured or an unstructured format. Structured data include medication information, laboratory examinations, 

and radiology exams [1]. In contrast, unstructured data are represented by clinical texts, such as discharge summaries and 

pathology reports. Much of the information in EHRs is unstructured, limiting its secondary use in improving medical 

research and developing tools to assist patient care. For instance, [2] observed during a study related to six hospitals that, 

on an average, 75% of all data elements were not available in a structured format or computable database fields. The 

preference for free text relies on the fact that it facilitates communication among the care team and enables health 

professionals to describe more detailed information because they are not restricted to structured fields [3]. 

Natural language processing (NLP) tools enable the secondary use of clinical texts by developing frameworks that 

automatically analyze and transform textual information into structured representations [4]. The application of NLP to 

texts written by healthcare professionals in a healthcare environment is called clinical NLP [5]. It extracts rich and 

contextual information not available elsewhere, and involves rich temporal and background information about current 

status/conditions, even information about a patient’s past (e.g., a treatment that occurred a long time ago) [6, 7]. It can also 

provide information about the future (e.g., foreseen interventions and treatments). 

Temporal relation extraction aims to provide order among mentions over texts, representing medical events or temporal 

expressions. In the clinical domain, events are clinically relevant situations (e.g., treatments, problems, tests), and temporal 

expressions allude to temporal mentions (e.g., duration or date mentions). A temporal expression can be either a time 

mention in the free text or document creation time (DCT). 

Research on temporal relation extraction is opportune because of the longitudinal data present in the EHRs, with several 

clinical texts on the same patient written at different times. Clinical texts that reflect a specific time frame, such as discharge 

summaries which cover the temporal window from patient admission until discharge, are also relevant. 

Noncommunicable diseases (NCDs), such as cardiovascular diseases and cancers, have a longitudinal nature and 

provide extensive and continuous data flows relevant to temporal relation extraction [8]. Research that can improve or 

supplement clinical decision-making related to NCDs is valuable as NCDs are the leading cause of death globally, 

accounting for over 70% of deaths [9]. Another research topic of interest is related to adverse events, since symptoms and 

signs tend to appear over time after the start of a specific treatment (e.g., medication). 

However, there are some challenges related to temporal relation annotation and extraction. Temporal relations can be 

implicit and vague, which is troublesome for both extraction and annotation [10]. In general, text annotation is a 

complicated process, but the annotation of temporal relations is much more complicated. For instance, temporal relation 

extraction in the clinical domain has a lower inter-annotator agreement (IAA) than other clinical annotation tasks, such as 

event and temporal expression annotation tasks [7]. Aspects such as lack of formalism and writing quality may make the 

extraction of temporal relations in the clinical domain more complicated than in the general domain [11]. Furthermore, for 

clinical domain corpora, both annotation and extraction can require specific medical expertise, which can be expensive for 

the annotation process and difficult in the extraction step. 
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Further, clinical texts can exhibit specific characteristics that can directly impact the text preprocessing steps and 

extraction results. There is an extensive use of abbreviations and acronyms, particularly in individual institutions or medical 

specialties. Additionally, domain-specific vocabulary and assumptions are also present [4, 12]. In addition, texts may 

contain flexible formatting and atypical grammatical constructions [13, 14]. Moreover, the need for specific knowledge 

and tools may be a limiting factor, especially in the clinical domain, owing to the lack of resources and available data. 

Sophisticated NLP tools, which can be used for preprocessing and aggregating information, are typically provided by 

language-dependent frameworks, hindering the use of languages other than English. The amount of available data is also 

a limiting factor, and deep learning approaches rely on a large amount of data to address generality. Additionally, access 

to clinical domain data is difficult because of data privacy. 

Many studies on temporal relation extraction are related to datasets that have become available to researchers because 

of shared tasks. Hopefully, several shared tasks have been organized to provide data that the research community can use 

to develop their temporal extraction techniques and compare their extraction performance. The interest in temporal relation 

extraction from clinical narratives began to grow with the Informatics for Integrating Biology and Bedside (i2b2) 2012 

[15], and then with Clinical TempEval in semEval2015 [16], semEval2016 [17], and semEval2017 [18] shared tasks. With 

the intent of discussing the approaches used (both shared task-related or not), highlighting the main aspects, and pointing 

out the best methods in studies, we performed a systematic review that followed the PRISMA statement [19]. 

Although there are two reviews on extracting temporal relationships in clinical texts, some topics still need to be 

covered. [20] highlighted some preliminary studies between 2006–2012, while [21] presented studies between 2006–2018. 

Owing to recent discoveries, the state-of-the-art changed over these two years, which was not covered by [21]. Currently, 

the state-of-the-art for several NLP tasks involves attention-based models and contextualized word representations. Hence, 

we aim to address this gap by considering the most recent approaches and discoveries. Further, a limitation of the review 

presented by [21] was that they only considered free-text written in English, which limits the review power of providing 

insights about research in other countries. Thus, we aim at covering this gap in our review with no language restrictions. 

Additionally, using our publication selection criteria, we analyze a significantly more extensive set of articles contemplated 

by [21], covering the research topic evolution over the years and providing a deeper analysis of the approaches. Further, 

we provide visual representations to improve the understanding of the temporal relation types and their importance, 

highlighting their differences and their applicability in the clinical domain. 

The objective of this study is to present a review of the state-of-the-art temporal relation extractions from clinical texts. 

It aims to answer the following question: “What is the effectiveness of machine learning and rule-based techniques in 

identifying temporal relations in clinical texts?” Our secondary objective is to provide insights into the domain evolution 

over time by leveraging temporal relation extraction objectives and developing frameworks. A reader of this review can 

expect an analysis of temporal relations and investigate the best performing techniques and frameworks for temporal 

relation extraction. 

The remainder of this paper is structured as follows. Section 2 provides an overview of temporal relation extraction, 

including explanations of temporal relation representations, and an example highlighting its importance for the clinical 

domain. In Section 3, the methodological steps are detailed, and global quantitative results and details of the datasets are 

provided. We divided the task of temporal relation extraction into two distinct types: (i) DocTimeRel, a temporal relation 

between an event and the DCT, a temporal expression referring to a date in the document header that indicates when the 

document was created/written; and (ii) TLINK, a temporal relation between mentions that occur over the text, where 

mentions can be events and temporal expressions (do not involve the DCT). We adopted this strategy based on the previous 

temporal relation shared tasks for both clinical and general domains and because each type has different extraction 

characteristics and task complexities. We elaborate on the DocTimeRel-related articles in Section 4 and the TLINK-related 

articles in Section 5. In Section 6, we present an overview of the datasets and relevant approaches for the general domain. 

In Section 7, we present our conclusions. 

2 TEMPORAL RELATION EXTRACTION 
Temporal relation extraction can be summarized in two steps: (i) identifying a relation between pairs of mentions (e.g., 

event and temporal expressions) and (ii) classifying this relation into a temporal relation type among a predefined set. 
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Depending on the application, only the first step is sufficient, but a more detailed representation can only be obtained using 

both steps. 

In subsection 2.1, we explain temporal relation representations and discuss the differences between temporal relation 

sets. In subsection 2.2, we explain the event and temporal expression characteristics in both clinical and general domains 

while providing a concrete example of the importance of temporal relation extraction for the clinical domain. 

2.1 Temporal relation representations 

The interval-based algebra proposed by Allen in 1983 was used as a framework for temporal relation extraction. Several 

studies adopted Allen’s representation [10], which quickly became a temporal modeling pattern [11]. Allen’s representation 

assumes that given two points in time or intervals of time, any relationship between them could be represented by seven 

relations: BEFORE, MEET, OVERLAP, DURING, START, FINISH, and EQUAL [10]. Considering the inverse relations 

(EQUAL does not have an inverse relation), there are 13 possible relations. Allen’s relations are listed in Table 1 (Allen’s 

Algebra column). 

Table 1: Temporal relation types with their respective graphical representation and identification in Allen’s 

representation, TimeML, THYME-TimeML, and i2b2 annotation schemas. Relation types annotated but not used 

for the shared tasks are marked in gray. 

 
Several annotation standards have been developed based on Allen’s representation. Among these, we highlight 

TimeML [22], a reference for temporal annotation for the general domain, and THYME-TimeML [6], an adaptation of 

TimeML for the clinical domain. 
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TimeML is a temporal markup language developed exclusively to annotate events, temporal expressions, and relations 

in the text [22]. Researchers in the NLP community have developed TimeML to move temporal information from a free-

text format to a structured data format [23]. In TimeML, events are situations that occur, and temporal expressions are 

mentions of dates, times (specific time during a day), durations, and sets [24]. The TLINK tag represents a temporal 

relationship between events and temporal expressions. The main difference between Allen’s representation and TimeML 

is that TimeML does not address OVERLAP relations. The relation EQUAL in Allen’s algebra is represented over four 

relations in TimeML: IDENTITY, SIMULTANEOUS, HOLD, and HELD BY [25]. The IDENTITY relation is similar to 

the SIMULTANEOUS relation, but is only used in event co-reference cases [26]. The TimeML relations are displayed in 

Table 1 (TimeML column). 

THYME-TimeML was developed to annotate the temporal history of our medical events (THYME) corpus, which 

comprises clinical notes from patients with cancer and pathology reports. Thus, the event definition involves a clinical 

vocabulary, with mentions such as medical problems (e.g., signs and symptoms), treatments (e.g., medications), and tests 

(e.g., laboratory exams). Additionally, some of these events are particular to oncology. In THYME-TimeML, events are 

mentions relevant to constructing a clinical timeline. The temporal expression definitions are similar to TimeML, with the 

addition of a new category for preoperative, intraoperative, and postoperative mentions [6]. The significant differences 

between TimeML and THYME-TimeML for temporal relation annotation are as follows: (i) THYME-TimeML created 

the DocTimeRel category, while the relations between events and the DCT are considered as common TLINKs in TimeML, 

and (ii) THYME-TimeML introduces the narrative container concept. 

The DocTimeRel relations are considered an event attribute and have the following relation set: BEFORE, AFTER, 

OVERLAP, BEFORE/OVERLAP, and AFTER. The THYME-TimeML DocTimeRel relations are displayed in Table 1 

(THYME-TimeML DocTimeRel column). BEFORE/OVERLAP indicates that the event occurred in the past and still 

occurs in the DCT. For instance, depending on the annotation schema, chronic diseases can be annotated as 

BEFORE/OVERLAP because they exist before the clinical document creation and continue to exist during its writing. 

The narrative container concept is used to annotate the TLINKs. The THYME-TimeML TLINK relation set are 

BEFORE, OVERLAPS, BEGINS_ON, ENDS_ON, and CONTAINS. The THYME-TimeML TLINK relations are 

displayed in Table 1 (THYME-TimeML TLINKs column). The narrative container concept introduced in [27] involves 

the CONTAINS relation. [27] emphasize the importance of an annotation schema that resulted in maximally annotated 

temporal relation information while not relying on models that were too difficult to apply. 

The choice of using narrative containers comes from the difficulty in capturing every possible relation and the rise in 

disagreement that occurs when annotators try to do so [6]. By using this choice of annotation, whenever possible, time 

expressions and events are connected to a narrative container (event or temporal expression anchor) that defines their 

temporal interval. Several events or temporal expressions can be connected to the same anchor, which contains them 

(represented in the CONTAINS row in Table 1). Events and temporal expressions in the same narrative container can be 

related, as a single element, with other containers [28]. The most significant advantage is a reduction in the number of 

required annotations [28]. The narrative container strategy is suitable in the clinical domain because there are central 

mentions of the texts, such as temporal expressions of date and time types, or more comprehensive events such as mentions 

of exams. 

There are different definitions of temporal annotation schemes for clinical and general domains. Even in the clinical 

domain, depending on the clinical text type, medical specialty, and task extraction objective, the definitions are different. 

For instance, if the objective is to extract drug-adverse event (DAE) patterns from clinical texts, the events could be 

restricted to medications and experienced symptoms. Additionally, temporal expressions could be restricted to only precise 

dates, and a reduced temporal relation set could be used. 

Different annotation schemes will have a temporal relation set based on the annotation requirements. For instance, the 

temporal relation OVERLAP is generic, implying that the two mentions somehow overlap. However, specific relations 

such as IDENTITY and SIMULTANEOUS indicate a particular OVERLAP case where both events coincide, having the 

same start and endpoints. There is a trade-off between the amount of information represented by a relation set and the task 

complexity in both the annotation and extraction steps. A more elaborate temporal relation set may enable a more accurate 

representation of the temporal information. However, the annotators may need to distinguish between temporal relation 
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types with slightly different concepts, which may cause disagreements and create a low number of annotations for certain 

relation types. 

Additionally, the information necessary to distinguish between close temporal relation types may not be mentioned in 

the text or need specific knowledge or interpretation. In the clinical domain, we often see that text writing quality and 

size—as certain clinical text types are short and objective—may limit an extended set of relations because of the number 

of disagreements and implicit information. For instance, several temporal relation types were annotated in the THYME 

corpus according to the THYME-TimeML scheme. However, only the CONTAINS relation type was used in Clinical 

TempEval shared tasks because of the low number of annotations for the other relation types. To provide a proper 

visualization of this aspect, we marked all relations annotated but not used during Clinical TempEval shared tasks in gray 

and the used relations in bold. 

The same happened for the i2b2 2012 shared task annotation process, another essential corpus for temporal relation 

extraction in the clinical domain. The corpus was annotated with an extended set of relations (Table 1, column i2b2 2012 

schema): BEFORE, BEFORE/OVERLAP, OVERLAPS, DURING, ENDS_BY, AFTER, BEGINS_BY, and 

SIMULTANEOUS. However, owing to a low IAA and a low number of annotations for specific types, the shared task’s 

relation set was restricted to AFTER, BEFORE, and OVERLAP. To provide a proper visualization of this aspect, we 

marked all relations that were annotated but not used during the i2b2 2012 shared task in gray and the used relations in 

bold. Additional details regarding shared tasks datasets are provided in subsection 3.3. 

Thus, an extended relation set is ideal, but the trade-off between temporal information and task complexity must be 

considered. 

2.2 Temporal relation extraction example 

In this subsection, we provide an example in Figure 1 to justify the benefit of extracting temporality from clinical texts. In 

this example, we show the different temporal extraction levels applied to the same sentences. The sentences were created 

to simulate sentences written during a patient’s clinical consultation with a cardiologist. 
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Figure 1: Example of the benefit of temporal relation extraction levels. 

In this example, the patient had a history of hypertension. Additionally, the patient had a history of myocardial 

infarction. The patient underwent two procedures: myocardial revascularization and transluminal angioplasty. In the patient 

action plan, Selozok, a medication, was prescribed. These specific events are specific to cardiology. Each specialty will 

have its events, such as medical problems, symptoms, treatments, medicaments, and exams, that are not commonly 

mentioned in other medical specialties. 

Using a simple approach of merely connecting every event to its DCT (Figure 1, Simple row), we cannot infer any 

order. Thus, in this scenario, all events coincided with time, which is not valid. Of course, this can provide sufficient 

information for specific temporal relation extraction tasks, especially when dealing with substantial clinical texts in a no-

annotation scenario, using only automatically generated annotations by frameworks such as cTAKES [29] and Metamap 

[30]. 

By adding more information with the annotation of DocTimeRel relations (Figure 1, DocTimeRel row), we can provide 

a coarse ordering. In this example, we use the categories BEFORE, OVERLAP, AFTER, and BEFORE/OVERLAP in 
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THYME-TimeML, for didactical explanations. Unlike before, it is shown that myocardial infarction, myocardial 

revascularization, and transluminal angioplasty are related to the patient’s past medical history because they were annotated 

as BEFORE. Additionally, we can infer hypertension as a condition from the patient’s past that still occurs during the 

DCT, a BEFORE/OVERLAP annotation, demonstrating the characteristics of chronic diseases. Further, it is evidenced 

that the medication, Sezolok, is related to the patient’s future because of the AFTER annotation. 

However, DocTimeRel is too generic for certain temporal relation extraction studies. For instance, BEFORE categories 

are too extensive because they do not refer to a certain point or closed period but to a broader period. DocTimeRel relation 

usage enables some event ordering as not each event or temporal expression has associated TLINKs, but TLINKs provide 

a more detailed representation. 

Adding TLINKs (Figure 1, DocTimeRel + TLINK row) to anchor events to specific periods of time represented by 

temporal expressions improves the timeline representation. For example, it is now evident that both myocardial infarction 

and myocardial revascularization occurred in 2009. However, as indicated, the coronary transluminal angioplasty happened 

only four years later, in 2013. Temporal expressions referring to dates in the patient’s medical history can be 

underspecified, not containing all information required for normalization (year, month, and day information). In this 

example, both 2009 and 2013 are underspecified temporal expressions. 

Additionally, it is evident that the patient had hypertension for 10 years. This period of 10 years is somewhat imprecise 

because it does not reflect a specific period, being only an approximation. Furthermore, the medication is associated with 

its frequency, which is daily. Temporal expressions regarding medication frequency can be tricky and specific to the 

clinical domain. For instance, we could have the same medication with different dosages on different days of the week, or 

expressions such as b.i.d. (twice a day) and q.i.d. (once a day) from Latin, which indicates frequency. 

3 METHODOLOGY 
PubMed Central (MedLine), Science Direct, and ACL Anthology databases were selected for this review. The inclusion 

and exclusion criteria for the title and abstract analysis and the full-text analysis are provided in Table 2. The search 

expression was: (“temporal relation” OR “temporal relations” OR “temporal extraction” OR “temporal information” OR 

“temporal relationship” OR “temporal relationships” OR “timeline”) AND (“clinical text” OR “clinical texts” OR “clinical 

narratives” OR “clinical narrative” OR “clinical reports” OR “clinical report”). 

Table 2: Inclusion and exclusion criteria. 

Criteria Inclusion criteria Exclusion Criteria 

Title and Abstract 
Must mention temporality extraction in the abstract 

Must mention working with clinical free text 

Review or update articles 

Articles not written in English 

Full text 

Must provide information about the method used to 

address temporality extraction 

Must provide at least one quantitative measure to 

evaluate the experiments 

Do not provide information 

about the dataset size and data 

source 

We considered all published articles till October 23, 2020, with no limitations on the publication year. The PRISMA 

flow diagram is shown in Figure 2. With the search expression we retrieved 2,728 articles: 1,232 from PubMed, 917 from 

Science Direct, and 579 from ACL Anthology. We identified 22 additional articles relevant to the review’s scope by 

reading the selected articles and their references. From these 2,750 articles, 171 duplicated articles were excluded. The 

2,579 remaining articles were subjected to a title and abstract analysis, and then a full-text analysis. After analyzing the 

title and abstract, we selected 229 articles, and after the full-text analysis, only 105 remained. All 105 articles were 

analyzed, and the most important ones are summarized in the tables. Important studies were defined as those that could be 

directly compared to infer the most effective strategies. In the tables, we have divided the approaches by dataset, sorted 

them by their performance, and visually emphasized those with the highest performance in bold. 
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Figure 2: Methodological steps used for this systematic review. 

3.1 Global quantitative results 

Figure 3 shows the number of publications by year according to the dataset, differentiating the datasets available to the 

community through shared tasks from others. There were studies before 2013, but an increase in the number of publications 

occurred in 2013 following the i2b2 2012 challenge. Furthermore, in 2015, most of the publications were related to the 

i2b2/UTHealth 2014 challenge dataset, which focused on the extraction of risk factors for cardiovascular diseases with a 

multi-label DocTimeRel extraction task. 
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Figure 3: Number of publications by year, separated by dataset in a chronological order. 

Of the 105 reviewed publications, 70 dealt with shared task datasets. Except for [31] and [32] that additionally used 

another dataset, the other 68 publications only used shared task-related datasets. Hence, most publications were related to 

shared task datasets. Further, 17 were related to the i2b2 2012 dataset, 14 to the 2014 i2b2/Health dataset, and 40 to the 

THYME corpus. 

In 2013 and 2014, there were some preliminary studies on the THYME corpus [6, 33, 34]. However, the number of 

publications related to the THYME corpus has started to grow with the Clinical TempEval challenges. In the Clinical 

TempEval 2015, only two teams participated in the shared task owing to the long authorization process; therefore, only 

two publications were related to the THYME corpus in 2015. Nevertheless, with the Clinical TempEval 2016 and Clinical 

TempEval 2017 challenges, the number of publications related to the THYME corpus increased from 2016 onward. 

Publications on the i2b2 2012 and i2b2/UTHealth 2014 datasets have been around since 2013. However, since 2016 

only [35] and [36] attempted to improve the reported results over these datasets, in contrast to [37] and [38], by focusing 

on specific relation types. The datasets used to push the state-of-the-art are the 2016 and 2017 editions of Clinical 

TempEval, especially the 2016 edition. The 2017 edition was aimed at cross-domain extraction with different training and 

testing data domains. 

Most of the selected publications involved corpora written in English: 94 of the 105 reviewed articles. Publications in 

languages other than English include [39–42] in Chinese, [43, 44] in Korean, [45] in Dutch, [46] in Italian, [47] in Swedish, 

and [48] in Spanish. Additionally, [31] dealt with English and French, extracting temporal relations from both the THYME 

corpus and the MERLOT corpus [49], which are from medical texts in French. One can conclude that there is a room for 

research in languages other than English. 

3.2 Datasets 

In this section, we provide the details of the datasets. Table 3 describes each dataset, providing information about the data 

origin and clinical document type, temporal annotation schema, dimension, and all related studies among the reviewed 

articles. 
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Table 3: Datasets. 

Dataset description 
Temporal Annotation 

(labels/categories) 

Dimension  

(Train: Test) 

Related 

studies 

Reports from Stanford Translational Research 

Integrated Database Environment (STRIDE) 
- - [50–52] 

Reports from Palo Alto Medical Foundation (PAMF) 

dataset 
- - [50] 

Reports from Synthetic Derivative (SD) database - 
2,268 patients 

(1,512:759) 
[53] 

Reports from patients in the Intensive Care Unit 

(ICU) 
- 

1,040 reports 

(5-fold cross-

validation) 

[54] 

Training Reports from Mayo Clinic sick-child 

daycare program; Testing: Reports from Mayo Clinic 

pediatric patients 

- 
237 patients 

(125:112) 
[55] 

Reports from diverse types from the University of 

Pittsburgh Medical Center’s MARS repository 

DocTimeRel (HISTORICAL, 

RECENT, HYPOTHETICAL) 

240 reports 

with 4,654 

annotations 

(2,377:2,277) 

[56] 

General practitioner entries, specialist letters, 

radiology reports, and discharge letters from the 

Erasmus Medical Center (EMC) corpus 

DocTimeRel (HISTORICAL, 

RECENT, HYPHOTETICAL) 

7,500 reports 

(3,750:3,750) 
[45] 

Patients reports from Clinical e-Science Framework 

Services(CLEF-S) project 

DocTimeRel (BEFORE, AFTER, 

IS_INCLUDED) and TLINK 

(BEFORE, AFTER, 

IS_INCLUDED) 

98 reports [57] 

Reports from the Research Patient Data Repository of 

Partners Healthcare (i2b2/UTHealth 2014 shared 

task) 

DocTimeRel(BEFORE, AFTER, 

DURING) multi-label 

1,304 reports 

(790:514) 
[36, 58–70] 

Discharge summaries from the Partners Healthcare 

and the Beth Israel Deaconess 

Medical Center (i2b2 2012 shared task) 

DocTimeRel (BEFORE, 

OVERLAP, AFTER) and TLINK 

(BEFORE, OVERLAP and 

AFTER) 

310 reports 

(190:120) 

[7, 11, 12, 

23, 32, 35, 

37, 38, 

71–76, 127, 

130, 135] 

 

Reports from Stockholm Adverse drug event (ADE) 

Corpus 
DocTimeRel (PAST, FUTURE) 

400 reports 

(320:80) 
[47] 

Reports from diverse types from the University of 

Pittsburgh Medical Center 

DocTimeRel (HISTORICAL, 

RECENT) 
42 reports [78] 

Reports from diverse types of MRSA cases 

DocTimeRel(WAY BEFORE 

ADMISSION, BEFORE 

ADMISSION, ON ADMISSION, 

AFTER ADMISSION, AFTER 

DISCHARGE) 

51 reports 

(10-fold 

cross-

validation) 

[80] 

Reports 

DocTimeRel(WAY BEFORE 

ADMISSION, BEFORE 

ADMISSION, ON ADMISSION, 

1,613 medical 

concepts 

(968:645) 

[81] 
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Dataset description 
Temporal Annotation 

(labels/categories) 

Dimension  

(Train: Test) 

Related 

studies 

AFTER ADMISSION, AFTER 

DISCHARGE) 

Clinical notes and pathology reports from colon 

cancer patients from the Mayo Clinic (THYME 

corpus) 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

78 reports [33, 34, 82] 

Clinical notes and pathology reports from colon 

cancer patients from the Mayo Clinic (THYME 

corpus) 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

and TLINK (CONTAINS, 

OVERLAP, BEFORE, 

BEGINS_ON, ENDS_ON) 

107 reports [6] 

Clinical notes and pathology reports from patients 

with colon cancer from the Mayo Clinic (THYME 

corpus – Clinical TempEval 2015 shared task) 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

and TLINK (CONTAINS) 

440 reports 

(293:147) 
[12, 128] 

Clinical notes and pathology reports from patients 

with colon cancer from the Mayo Clinic (THYME 

corpus – Clinical TempEval 2016 shared task) 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

and TLINK (CONTAINS) 

590 reports 

(440:150) 

[28, 31, 77, 

83–107] 

Clinical notes and pathology reports from patients 

with colon and brain cancer from Mayo Clinic 

(THYME corpus – Clinical TempEval 2017 shared 

task) 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

and TLINK (CONTAINS) 

759 reports 

(621:148) 

[77, 99, 

102, 103, 

108–113] 

Reports from Gastroenterology, Hepatology and 

Nutrition department (MERLOT corpus) 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

and TLINK (CONTAINS) 

500 reports [31] 

Cardiology texts from Molecular Cardiology 

Laboratories of the Istituti Clinici Scientifici Maugeri 

(ICSM) hospital 

DocTimeRel (BEFORE, 

OVERLAP, 

BEFORE/OVERLAP, AFTER) 

75 reports 

(60:15) 
[46] 

Reports 

DocTimeRel (CURRENT, 

HISTORY, FUTURE, 

UNKNOWN) 

1,089 reports [114] 

Discharge summaries, and clinical progress notes 

from the cardiovascular diseases risk factor corpus 

(CVDsRFC) 

DocTimeRel (CONTINUING, 

DURING, BEFORE, AFTER) 

600 reports 

(420:180) 
[40] 

Reports in the Spanish language - 200 reports [48] 

Reports from patients in the ICU from the Royal 

Prince Alfred Hospital 
- 

200 reports 

(10-fold 

cross-

validation) 

[115] 

Reports - 200 patients [116] 

Reports from Mayo Clinic - 20 patients [117] 

Reports from Mayo Clinic - 1507 patients [118] 

Reports from Record Interactive Search (CRIS) 

database 
- 70 reports [119] 
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Dataset description 
Temporal Annotation 

(labels/categories) 

Dimension  

(Train: Test) 

Related 

studies 

Vaccine Adverse Event Reporting System (VAERS) 

reports and US Food and Drug Administration (FDA) 

Adverse Event Reporting System(FAERS) reports 

- 140 reports [32] 

Discharge summaries from the Seoul National 

University Hospital HER 
- 

200 reports 

(170:30) 
[44] 

Reports from Guangdong Provincial Hospital of 

Traditional Chinese Medicine (GPHTCM) 
- 

24,817 reports 

(24,417:400) 
[39] 

Discharge summaries from the University Hospital in 

Korea 
- 150 reports [43] 

Discharge summaries - 354 reports [120] 

Discharge summaries from Columbia University 

Medical Center 
- 20 reports [121] 

Reports from the MMIC-II dataset - 100 reports [122] 

Discharge summaries from the New England Journal 

of Medicine (NEJM) 

TLINK (AFTER, BEFORE, 

INCOMPARABLE) 
60 reports [123, 124] 

Reports from diverse types 
TLINK (AFTER, BEFORE, 

OVERLAP) 

80 reports 

(cross-

validation) 

[125] 

Reports 

TLINK (BEGINS, END, 

SIMULTANEOUS, INCLUDES, 

BEFORE) 

47 reports 

(10-fold 

cross-

validation) 

[79] 

Reports from a hospital in China 
TLINK (SIMULTANOUS, 

BEFORE, AFTER) 

563 reports 

(413:150) 
[41] 

Reports of diverse types from a hospital in China - 100 patients [42] 

We highlight the datasets used in shared tasks in bold. The i2b2 2012 dataset contains 310 discharge summaries, averaging 

86.6 events, 12.4 temporal expressions, and 176 TLINKs per note. There is no distinction between TLINKs and 

DocTimeRel in the annotations, and the shared task evaluation script evaluated them jointly. Thus, it is difficult to evaluate 

each temporal relation category’s contribution in the final result. 

For the Clinical TempEval datasets, there is a clear difference between TLINKs and DocTimeRel, with separate 

annotations and evaluations in the evaluation script. DocTimeRel is considered an event attribute, with one DocTimeRel 

annotation for every event. The Clinical TempEval 2015 dataset contains 440 documents, averaging 136.05 events, 13.43 

temporal expressions, and 37.43 TLINKs per document. The Clinical TempEval 2016 has more annotated data, with a total 

of 591 documents, averaging 133.42 events, 13.30 temporal expressions, and 39.33 TLINKs. The aim shifted toward a 

cross-domain extraction from Clinical TempEval 2017 with different training and testing domains. The Clinical TempEval 

2017 dataset comprises 769 documents, averaging 120.83 events, 12.70 temporal expressions, and 33.28 TLINKs per 

document. 

The i2b2/UTHealth 2014 challenge [126] was related to heart disease mentions, and focused on discovering potential 

risk factors. However, there was no separate evaluation of temporality extraction. 

4 EXTRACTION OF DocTimeRel RELATIONS 
In this section, we analyze the articles that extracted DocTimeRel relations. We consider DocTimeRel relations between 

the event and a DCT, even if the authors only identify a relation between these two arguments, not classifying it into any 

category. We sort the results according to the strategy used to deal with temporality with three categories: rule-based 

systems (see subsection 4.1), machine learning systems (see subsection 4.2), and hybrid systems (see subsection 4.3). As 
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we provide an in-depth overview and evaluation of all selected articles, we compiled a summary (see subsection 4.4) with 

highlights and conclusions. 

4.1 Rule-based systems 

Systems that exclusively extracted DocTimeRel relations with a rule-based approach are listed in Table 4. The table 

contains information about the article’s primary objective, the strategy used to extract temporality, the obtained results, 

and an indicator of a separate evaluation for the temporality extraction with a separated evaluation (SE) column. Further, 

if the article had a separate evaluation for temporality, the obtained results were related to the extraction; otherwise, the 

obtained results were related to the system’s primary objective. 

Table 4: Articles related to DocTimeRel that used full rule-based systems. 

Authors Best Strategy SE Results 

I2b2 2012 dataset 

[71] Rules  Fm 0.5628 

[32] Rules  Match ratio 0.69 (NTC) 

I2b2/UTHealth 2014 dataset 

[70] df + specific rules  Fm 0.915 

[67] Rules  Fm 0.907 

[58] df + context-aware refinement approach  Fm 0.897 

[69] Df  Fm 0.890 

[64] df + specific rules  Fm 0.8776 

[65] Df  Fm 0.875 

Legend: SE, separated evaluation; AUROC, area under the receiver operator curve; DAE, drug-adverse events; DCT, 

document creation time; DDI, drug-drug interaction; Fm, F-measure; ICU, intensive care unit; Regex, regular expression; 

TRE, temporal relation extraction; RFE, risk factor extraction; df, "default value" strategy; NTC, not comparable. 

Rule-based systems can be divided into two types: (i) those that only identify a relationship between the event and the 

DCT by connecting both, and (ii) those that additionally classify the relation into a category. 

The first type is usually associated with systems where the temporal extraction is just a step in the information extraction 

methodology, and no complex temporal information is required. [48, 50–55] used this approach. 

One of the research topics in which this strategy has been widely used is the identification of adverse events with the 

extraction of drug-drug interactions (DDIs) and drug-adverse events. [50] and [51] focused on creating a timeline for each 

patient, using statistics to extract DDIs, and comparing the results with structured data, the standard information source. In 

contrast, [52] created a framework to differentiate DAE mentions from indications by creating pairs of drug diseases. [53] 

also extracted DAE but restricted it to interactions between clopidogrel and mentions of bleeding, using a temporal feature 

based on the difference between the mentions’ DCTs. Another research topic was the identification of occurrence dates for 

a specific condition in patient longitudinal data, for example, pneumonia in [54], and asthma in [55]. 

The second type provides more detailed temporal information, where the task difficulty depends on the number of 

categories; this is because each category needs its own specific rules. All remaining articles mentioned below are from the 

second type. 

We highlight ConText [56], a regular-expression-based tool to extract event attributes. It extracts the experiencer, 

negation, and temporality (DocTimeRel). Experiencers and negation are relevant for extraction because they completely 

change the event’s context. Additionally, there was an adaptation of ConText to Dutch with additional rules, named 

ConTextD [45]. [57] is a preliminary CLEF study on temporal extraction. 

For the i2b2/UTHealth challenge dataset, rules were popular for extracting DocTimeRel as the scope of events was 

limited to specific predefined risk factors, facilitating the creation of rules. For corpora such as the THYME corpus and 

i2b2 2012 corpus, where there is a wide range of events with different characteristics, the creation of rules is more 

challenging and prone to overfitting. 
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A widely used strategy for the i2b2/UTHealth 2014 challenge was to use the most frequent label in the training set for 

each risk favor, the default value strategy. This strategy was used alone or in combination with additional rules to deal with 

specific cases. This strategy was used alone in [65], with superior results in the training set than ConText. Additional rules 

were used in [58, 64, 69, 70]. However, [69] verified that the system’s most significant error source was attribute extraction, 

mainly the DocTimeRel component. [67] used rules but did not rely on the default value strategy, creating rules based on 

observations on the training set and the ConText output. 

For the i2b2 2012 dataset, [32] and [71] used rule-based systems. However, their performance was inferior to machine 

learning-based or hybrid systems. 

There was no separate evaluation of temporal relations in the i2b2/UTHealth 2014 challenge script. However, we 

believe that a well-constructed machine learning-based system or hybrid system outperforms rule-based systems. 

Additionally, rule-based systems are not robust enough to deal with datasets where event annotations involve several 

different aspects (treatments, symptoms, medical problems, and exams), and ensure generalization. 

4.2 Machine learning 

This section analyzes the articles that used machine learning-based systems for DocTimeRel (summarized in Table 5). 

Table 5: Articles related to DocTimeRel that used machine learning systems. 

Authors Best strategy SE Results 

I2b2 2012 dataset 

[72] SVM clf  Fm 0.6954 

[12] 2 SVM clfs  Fm 0.695 

[11] 2 SVM clfs  Fm 0.6932 

[73] CRF clf  Fm 0.693 

[127] 2 SVM clfs  Fm 0.6849 

I2b2/UTHealth 2014 dataset 

[59] label-powerset strategy + SVM clfs  Fm 0.9268 

[68] 21 RIPPER clfs + voting  Fm 0.9185 

[36] BI-LSTM  Fm 0.9081 

[62] OneRule clfs  Fm 0.857 

Clinical TempEval 2015 dataset 

[12] SVM clf  Fm 0.807 

[128] CRF clf  Fm 0.791 

Clinical TempEval 2016 dataset 

[103] BERT + MTL  Fm 0.86 (NTC) 

[31] SVM clf  Fm 0.87 

[97] Structured perceptron + ILP  Fm 0.846 

[28] CRF clf  Fm 0.844 

[94] SVM clf  Fm 0.835 

[86] LR clfs  Fm 0.815 

[106] RF clf  Fm 0.807 

[98] CNN + MLP  Fm 0.788 

[85] CRF clf  Fm 0.714 

[84] CRF clf  Fm 0.712 

[91] CRF clf  Fm 0.687 

Clinical TempEval 2017 dataset 

[113] SVM clf  Fm 0.519 UDA, 0.591 SDA 

[109] Structured perceptron + ILP  Fm 0.49 UDA, 0.56 SDA 
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Authors Best strategy SE Results 

[112] CRF clf  Fm 0.45 UDA, 0.52 SDA 

[111] CRF clf  Fm 0.40 UDA, 0.50 SDA 

[108] SVM clf  Fm 0.49 SDA 

[110] RNNs  Fm 0.32 SDA 

Legend: SE, separated evaluation; DAE, drug-adverse events; IE, information extraction; RF, random forest; clf, classifier; 

Fm, f-measure; ML, machine learning; CRF, conditional random fields; AD, after discharge; BA, before admission; OA, 

on admission; WBA, way before admission; AA, after admission; TRE, temporal relation extraction; SVM, support vector 

machine; GRU, gated recurrent unit; ATT, attention; CNN, convolutional neural network; RFE, risk factor extraction; 

LSTM, long short-term memory; MTL, multi-task learning; ILP, integer linear programming; LR, logistic regression; 

MLP, multilayer perceptron; UDA, unsupervised domain adaptation; SDA, supervised domain adaptation; RNN, recurrent 

neural network; NTC, not comparable. 

Unlike the previous section, all machine learning-based approaches identified the relation and classified it into a specific 

category. Besides DocTimeRel, [47] also extracted attributes such as negation and speculation. Differently, [82] only used 

DocTimeRel as a feature for DAE identification, with the temporal feature improving the classification results. The 

DocTimeRel relation was also used as a feature in [81] for co-reference resolution. The DocTimeRel system was developed 

in [80], based on a CRF classifier. 

There was a preference for support vector machines (SVMs) and conditional random fields (CRFs) among the 

traditional machine learning classifiers. However, other machine learning classifiers were also used in the reviewed 

publications: random forest (RF) classifiers by [47] and [106], RIPPER classifiers by [68] and [78], OneRule classifiers 

by [62], and logistic regression (LR) classifiers by [86]. 

The use of CRF classifiers is widespread in shared task-related and regular datasets. One of the advantages of CRF is 

the possibility of extracting the entities and classifying the relation simultaneously in a sequence labeling task with a single 

classifier. A single CRF classifier for DocTimeRel extraction was used in regular datasets by [80] and [81]. For the i2b2 

2012 dataset, [73] used a single CRF classifier, even in a scenario with two DCTs (admission and discharge dates). For the 

Clinical TempEval shared tasks, a single CRF classifier was used by [28, 84, 85, 91, 111, 112, 128]. 

When considering the number of publications here and the hybrid systems subsections, SVM was the most used 

machine learning algorithm. For shared task-related datasets, the SVMs held or maintained the best performance. In regular 

datasets, a single SVM classifier was used by [46] and [82]. For the i2b2/UTHealth 2014 dataset, several publications used 

SVM classifiers, but most of them combined it with rules or the default value strategy. The exception was [59], which used 

a label-powerset strategy to transform the multi-label classification into several binary classification tasks addressed with 

SVM classifiers. 

For the i2b2 2012 dataset, [72] used a single SVM classifier, while [11], [12], and [127] involved two SVM classifiers, 

one for each DCT. Additionally, [127] also used two SVM classifiers for relations between temporal expressions and the 

DCT, which most authors ignored. 

For preliminary THYME corpus studies and Clinical TempEval-related articles, a single SVM was used by [6, 12, 31, 

94, 108, 113]. Among these, we highlight [12] and [31]. The first developed a system with features that were fully extracted 

by cTAKES and experimented with both i2b2 2012 and Clinical TempEval 2015 datasets. The second experiment was 

conducted in a multilingual setting, extracting DocTimeRel from MERLOT (French corpus) and THYME corpus. 

The classifiers that achieved the best performance used features to better understand the context and the event. The 

features generally associated with the best performing systems are listed in Table 6. 

Table 6: Features used by the machine learning systems. 

Feature Explanation 

Nearby tokens Nearby tokens around the mention over a token window (e.g., 2 or 3 tokens) 

Tense Tense of the verbs in the same sentence of the mention 

Nearby events Surrounding events with their respective attributes 
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Feature Explanation 

Nearby temporal expressions Surrounding temporal expressions and their respective attributes 

Nearby part-of-speech tags Nearby POS around the mention over a token window (e.g., 2 or 3 tokens) 

Event information Event tokens, part-of-speech tags, and attributes (e.g., category and polarity) 

Event position 
Event position in the document, generally associated with the section header (e.g., 

medical history) 

Lexicon searching 
Semantic features based on search for event terms in crafted lexicons or the Unified 

Medical Language System (UMLS) 

Owing to the clinical text characteristics, specialized tools to preprocess the text and generate features are widely used. 

For instance, cTAKES provides several components, such as a sentence boundary detector, tokenizer, and part-of-speech 

tagger. Further, semantic features can be obtained by cTAKES, named entity recognition (NER) components, or by 

mapping tools such as Metamap. A more detailed analysis of the specialized tools commonly used in the clinical domain 

can be found in [21]. 

Over the years, approaches based on deep learning have emerged. For the Clinical TempEval 2016 dataset, [98] used a 

convolutional neural network (CNN) with a multilayer perceptron (MLP). For the 2017 edition dataset, [110] used a 

recurrent neural network (RNN) classifier for each relation type. For the i2b2/UTHealth 2014 dataset, [36] jointly extracted 

the entities and DocTimeRel with a bidirectional long short-term memory (Bi-LSTM)-based architecture. In addition to 

Bi-LSTM, they tested standard RNNs, CNNs, and LSTMs, achieving superior results with BI-LSTM. However, the results 

were still not comparable with those of traditional machine learning algorithms. For regular datasets, [40] extracted risk 

factors for cardiovascular diseases, similar to the i2b2/UTHealth 2014 shared task objective, using a CNN-based model. 

All approaches mentioned above dealt only with the DocTimeRel task. However, some authors developed frameworks 

that jointly predicted DocTimeRel with another NLP task. For instance, [114] proposed a framework based on GRU, deep 

residual networks, and attention to jointly predict DocTimeRel and presence attributes. Furthermore, [97] and [109] 

focused on structured machine learning, jointly predicting DocTimeRel and TLINKs using a structured perceptron model 

and integer linear programming (ILP) and achieving consistent results over Clinical TempEval 2016 and 2017 datasets. 

Recently, [103] has developed a one-pass model based on bidirectional encoder representations from transformers (BERT) 

[129] that leverages global embeddings to jointly predict TLINKs and DocTimeRel. As the system was developed at the 

entity level, considering both events and temporal expressions as inputs, the model had to classify the entity into the 

BEFORE, OVERLAP, BEFORE/OVERLAP, AFTER, and TIMEX3 categories, where the first four events are 

DocTimeRel categories and the last is a label only for time-related entities. 

4.3 Hybrid systems 

This section analyzes the articles that used hybrid systems for DocTimeRel (summarized in Table 7). 

Table 7: Articles related to DocTimeRel that used hybrid systems. 

Authors Best strategy SE Results 

I2b2 2012 dataset 

[7] SVM clf + rules  Fm 0.63 

[130] SVM clf + rules  Fm 0.5594 

I2b2/UTHealth 2014 dataset 

[66] 
3 SVM clfs + df + rules + ann 

refinement 
 

Fm 0.9277 

[60] CART DT + df  Fm 0.917 

[61] Markov networks + rules  Fm 0.9098 

[63] NB clf + rules  Fm 0.8302 

Clinical TempEval 2016 dataset 

[88] LR clf + rules  Fm 0.743 
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Legend: SE, separated evaluation; TRE, temporal relation extraction; SVM, support vector machine; clf, classifier; RFE, 

risk factor extraction; df, default value strategy; ann, annotation; DT, decision tree; NB, naïve Bayes; LR, logistic 

regression. 

There were fewer hybrid systems than rule-based and machine learning-based systems. Considering the i2b2 2012 

dataset, [7] and [130] used an SVM classifier with crafted rules. Further, [88] used an LR classifier with craft rules for the 

Clinical TempEval 2016 dataset. However, systems relying only on machine learning achieved superior results for these 

datasets. 

The i2b2/UTHealth 2014 dataset had predefined risk factor categories with specific patterns over the training set. Hence, 

the authors widely used both the default value strategy and manually crafted rules. Manually crafted rules were also used 

by [61] and [63] to complement machine learning classifiers. The default value strategy was used by [60] to complement 

machine-learning classifiers. Additionally, [66] used manually crafted rules, default value strategy, and SVM classifiers, 

but improved the performance by annotating the training set, providing a grainer set of annotations. 

Thus, there is no evidence that hybrid systems are superior to systems that rely only on machine learning, especially in 

a scenario with no predefined categories and predominant labels over the training set. 

4.4 DocTimeRel conclusions 

Connecting an event to its corresponding DCT can provide sufficient temporal information for specific extraction tasks. 

However, a more detailed representation that additionally classifies the relation into specific categories provides additional 

temporal information at the cost of increasing task difficulty. For instance, the DocTimeRel categories in [47] were PAST 

and FUTURE, while the THYME corpus categories were BEFORE, AFTER, OVERLAP, and BEFORE/OVERLAP. 

Besides having more categories to classify events, differentiating between them can become complicated because they 

depend on textual tips and clinical knowledge. For instance, to label BEFORE/OVERLAP, the event’s continuity until the 

DCT must be ensured. 

Rule-based systems or hybrid systems were adequate for the i2b2/UTHealth 2014 dataset. However, for datasets such 

as the i2b2 2012 and THYME corpus, the rule coverage would be low because of different patterns and event diversity 

over the text. SVM and CRF classifiers are widely used for traditional machine learning, with SVM providing slightly 

superior results for the analyzed datasets. DocTimeRel is a classification problem with well-defined categories, and a 

feature set that leverages information about the entity and context and does not require an extensive set of features can 

achieve excellent performance. Among the best performing systems, we noted a preference for the specialized tool such 

as cTAKES, which provides several components, such as a sentence boundary detector, a tokenizer, and a part-of-speech 

tagger. We highlight the SVM-based approaches of [12] and [31]. [12] developed a system with features that were fully 

extracted by cTAKES while conducting experiments on two datasets, and [31] conducted experiments in a multilingual 

setting, developing systems for French and English languages. 

Recent publications have experimented with CNN, LSTM, BI-LSTM, and attention-based models. However, the 

volume of research over the last few years is far from TLINK extraction, and most of the approaches are not directly 

comparable to previous studies because of different evaluation settings. In addition to SVM, we highlight multi-task 

learning (MTL) approaches of [97], [109], and [103] that jointly predict DocTimeRel and TLINK relations. The first two 

developed a system based on the structured perceptron model and ILP, while the third developed a one-pass model based 

on BERT. Because TLINK and DocTimeRel extraction are dependent tasks, joint learning can improve results. For 

instance, if one event has a DocTimeRel annotation of BEFORE and the another one has AFTER, no TLINK should be 

marked between them when we consider the THYME annotation guidelines. 

5 EXTRACTION OF TLINK RELATIONS 
In this section, we analyze the articles that extracted TLINK relations. We sort the results according to the strategy used to 

deal with temporality with three categories: rule-based systems (see subsection 5.1), machine learning systems (see 

subsection 5.2), and hybrid systems (see subsection 5.3). As we provide an in-depth overview and evaluation of all selected 

articles, we compiled a summary (see subsection 5.4) with highlights and conclusions. 
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5.1 Rule-based systems 

In rule-based systems, the creation of candidate pairs to feed the classifiers is not needed; therefore, the aspects of creating 

rules for entities that are on a single sentence or abroad sentences are underspecified. 

A strategy used by [48, 57, 116–119] was to create rules to connect events to dates, a specific type of temporal 

expression that reflects calendar times [131]. Additionally, [57] classified the relation into a specific type, which is an 

additional step in connecting the event to its respective date. In [119], rules jointly connected symptoms to dates and 

normalized the date mentions. 

Developing strategies to deal with low-quality and noisy texts, which are common characteristics of clinical texts, has 

been addressed by [32] and [115]. [32] aimed at extracting temporal information from low-quality texts, such as medical 

product safety surveillance reports, connecting dates, and time intervals to events. Further, [115] focused on developing a 

question answering system based on noisy texts. 

The studies from [43] and [44] focused on creating temporal snippets of texts. [44] aimed at extracting temporal 

segments, where temporal segments were text segments containing topics with the same temporal or topical content. 

Further, [43] extracted clinical semantic units (CSU), which are segments of text based on temporal expression position 

with rules. These segments contain events based on their position in the text. The CSUs were then classified into problem-

action relations. 

There are other relevant studies, such as [39, 120–122]. [39] created triples of events, temporal expressions, and 

descriptions, where descriptions were elaborations or outcomes. [120] adapted the TARSQI Toolkit, built for newswire 

texts, to clinical texts, predicting whether the patients were in statins when they were admitted. [121] evaluated the 

performance of a system developed to enable question answering from discharge summaries. [122] tested a temporal query 

system to identify acute kidney injuries of patients in intensive care units. 

5.2 Machine learning systems 

This section analyzes the articles that used machine learning-based systems for TLINKs (summarized in Table 8). Most 

articles in the TLINK extraction section were machine learning or hybrid systems. 

Table 8: Articles related to TLINK that used machine learning systems. 

Authors Best strategy 
Candidate pair 

selection 
WS CS NS SE Results 

I2b2 2012 dataset 

[127] 
WS: 3 SVM clfs; CS: 3 SVM 

clfs 
WS: APP, CS: rules     Fm 0.6849 

[35] WS: NB clf; CS: NB clf WS: rules, CS: rules     Fm 0.671 

[130] 2 SVM clfs Rules     Fm 0.5594 

[37] BI-LSTM; TS expansion -     
Fm 0.6217 

(NTC) 

Clinical TempEval 2015 dataset 

[12] 2 SVM clfs. CSL; TS expansion WS: APP     Fm 0.321 

Clinical TempEval 2016 dataset 

[103] BERT; 3 class; MTL APP over TK     Fm 0.686 

[102] BERT; TS expansion; 3-class APP over TK     Fm 0.684 

[107] 

Context segmentation; 

Associated ATT; Position 

weights 

APP over TK     Fm 0.643 

[89] WS: tree-based BI-LSTM-RNN WS: APP     Fm 0.633 
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Authors Best strategy 
Candidate pair 

selection 
WS CS NS SE Results 

[99] 
BI-LSTM; TS expansion; 3-

class; XML markup 
WS: APP     Fm 0.630 

[90] Tree-based BI-LSTM-RNN WS: APP     Fm 0.629 

[95] LSTM; MTL APP over TK     Fm 0.628 

[101] SVM clf + CNN; XML markup WS: APP     Fm 0.621 

[105] 
WS: BI-LSTM; CS: BI-LSTM; 

3-class 
WS: APP, CS: rules     Fm 0.613 

[87] 2 CNNs; 3-class; XML markup WS: APP     

Fm 0.515 event-

event, 0.700 

event-time 

(NTC) 

[77] RNN; ATT; Piece representation WS: APP     
Fm 0.729 

(NTC) 

[104] 
GRU + ATT; 3-class; XML 

markup 
WS: APP     

Fm 0.690 

(NTC) 

[97] Structured perceptron; ILP; MTL APP over TK + rules     Fm 0.608 

[93] Classifier ensemble; ILP -     Fm 0.595 

[100] 2 SVM clfs; TS expansion WS: APP     Fm 0.594 

[94] 
WS: 2 SVM clfs; CS: 4 SVM 

clfs; CSL 

WS: APP + pair 

filtering, CS: rules 
    Fm 0.573 

[96] 2 SVM clfs 

WS: APP + 

restrictions, CS: 

rules 

    Fm 0.551 

[31] SVM clf. 3-class WS: APP     Fm 0.53 

[28] 
WS: 2 SVM clfs; CS: 2 SVM 

clfs 
WS: APP, CS: rules     Fm 0.511 

[86] LR clf WS: APP     Fm 0.506 

[84] 2 CRF clfs WS: APP     Fm 0.453 

[85] CRF clf -     Fm 0.313 

[83] 4 CRF clfs WS: APP, CS: rules     Fm 0.264 

[92] List-Net [132] -     
MSE 0.072 

(NTC) 

Clinical TempEval 2017 dataset 

[103] BERT; 3 class; MTL APP over TK     Fm 0.582 UDA 

[102] BERT; TS expansion; 3-class APP over TK     Fm 0.565 UDA 

[99] 
BI-LSTM; TS expansion; 3-

class; XML markup 
WS: APP     Fm 0.547 UDA 

[77] 
RNN; Attention; Piece 

representation 
WS: APP     Fm 0.63 (NTC) 

[111] XGBoost clf WS: APP     
Fm 0.34 UDA,  

0.25 SDA 

[113] 
WS: BI-LSTM; CS: BI-LTM; 3-

class 
WS: APP, CS: rules     

Fm 0.328 UDA, 

0.316 SDA 

[109] Structured perceptron; ILP; MTL APP over TK     
Fm 0.32 UDA, 

0.28 SDA 

[108] 2 SVM clfs WS: APP     Fm 0.26 (SDA) 
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Authors Best strategy 
Candidate pair 

selection 
WS CS NS SE Results 

[112] 
WS: 2 clf ensembles; CS: 2 clf 

ensembles; CSL 

WS: APP, CS: rules. 

Pair filtering; rules 
    

Fm 0.23 UDA, 

0.15 SDA 

Legend: WS, within-sentence; CS, cross-sentence; NS, not specified; SE, separated evaluation; TO, temporal ordering; 

ILP, integer linear programming; ME, maximum entropy; clf, classifier; Fm, f-measure; SVM, support vector machine; 

TRE, temporal relation extraction; APP, all possible pairs; LSTM, long short-term memory; CNN, convolutional neural 

network; NTC, not comparable; NB, naïve Bayes; TS, training set; CTE, Clinical TempEval; CSL, cost-sensitive learning; 

3-class, transforming into a 3-class classification task; MSE, mean squared error; MTL, multi-task learning; TK, token 

window; ATT, attention; RNN, recurrent neural network; GRU, gated recurrent unit; LR, logistic regression; CRF, 

conditional random fields; UDA, unsupervised domain adaptation; SDA, supervised domain adaptation. 

Most articles here and in the next subsection (hybrid systems) are related to shared task datasets. The datasets were not 

shared task-related in [41, 42, 79, 123–125]. In [123] and [124], the focus was on ordering with temporal segments. [79] 

and [125] focused on ordering events by considering the relations between event mentions only. [79] tested both pairwise 

classification and event ranking, and achieved better ranking results. [41] focused on temporal indexing, predicting 

TLINKs between events and temporal expressions while keeping the most relevant pair for each event. [42] focused on 

extracting several entities and relations from clinical texts using a BERT model. 

The remaining articles are detailed according to the candidate pair selection strategy and the approaches used to extract 

the relations. The task of training classifiers to extract relations consists of generating training samples. Positive samples 

are provided through annotations, but negative samples need to be generated by developers. For instance, a strategy for 

generating instances can be creating all possible pairs among the entities within a document. However, this approach would 

generate a much higher ratio of negative samples than positive samples, especially for datasets such as the THYME corpus 

and i2b2 2012 with diverse types of events and temporal expression annotations. There were close to 133 events and 13 

temporal expression annotations per document in the Clinical TempEval 2016 dataset. Creating all possible pairs would 

be unrealistic, especially when considering the relations between events. Thus, the premise of temporal relation extraction 

is that it is not possible to cover all positive samples without creating too many negative samples. Hence, there is a trade-

off between the number of positive samples covered and the number of negative samples generated. 

A widely used strategy was to restrict within-sentence relations by considering all possible pairs within the same 

sentence. This strategy was used in [6, 12, 31, 33, 34, 77, 84, 86, 87, 89, 90, 99–101, 104, 108, 111]. Most of these studies 

are related to the THYME corpus, either initial publications about the THYME corpus or publications dealing with Clinical 

TempEval datasets. For the Clinical TempEval 2016 dataset, approximately 74% of the TLINKs in the training set were 

related to within-sentence relations. Hence, if the testing set follows the same pattern as the training set, approximately 

26% of the positive instances would be false negatives because the frameworks would not predict these relations. 

Some publications considered all possible pairs within a sentence and added specific heuristics to cover cross-sentence 

relations. This strategy was used in [28, 83, 94, 96, 105, 112, 113, 127]. [83] and [127] considered pairs between entities 

in neighbor sentences, restricting them to a one-sentence window. [105] and [113] also considered pairs between entities 

in neighbor sentences, but increased the range to a three-sentence window. [28] also defined heuristics based on a sentence 

window and considered entity position, such as considering only the first and last event mentions in the sentence. The 

strategy used in [112] was based on the previous studies of [28] and [94]. [96] added a restriction that considers all possible 

pairs in a sentence or line. 

The approach of [94] created all possible pairs within a sentence but added restrictions to exclude those unlikely to have 

a relation. The filtering rules involved section information and event attributes. The same strategy was used to create pairs 

within a two-sentence window, but for pairs with greater sentence window values, additional rules were created to create 

fewer pairs. 

A widespread strategy in the latest publications, being recurrent over the current state-of-the-art approaches, restricts 

candidate pairs based on token windows. Thus, there are no criteria based on the same or different sentences; they are 

based only on the token distance. This strategy was used in [95, 97, 102, 103, 107, 109]. A token window of 30 was used 

in [95], [97], and [109], with [97] and [109] restricting it to entities in the same paragraph. A token window of 60 was used 

in [102] and 100 in [107]. Further, [103] tested token windows of 60, 70, and 100. 
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Overall, traditional machine learning approaches restricted to within-sentence pairs achieved the best results. However, 

[96] and [97] achieved competitive results with the token window strategy. Previous deep-learning-based state-of-the-art 

approaches restricted candidate pairs to within-sentence pairs, but the latest considered all possible pairs over a certain 

token window. 

In addition to the candidate pair selection strategy, another important topic is the strategy used to extract TLINKs. We 

summarize the approaches in traditional machine learning and deep learning, aiming to provide an overview of the 

evolution of approaches over time. 

For traditional machine learning, most approaches use SVM classifiers. SVM classifiers were used in [6, 12, 28, 31, 

33, 34, 94, 96, 100, 108, 127, 130]. Furthermore, CRF classifiers were used in [83–85]. Additionally, [111] used an 

XGboost classifier, and [35] used naïve Bayes classifiers. 

SVM classifiers outperformed the previously mentioned traditional machine learning classifiers, with separated 

classifiers for TLINKs between events (event-event) and between events and temporal expressions (event-time). Event-

event relations are more complicated because of lower annotation quality and because they suffer more from imbalance 

with a higher number of negative samples when training the classifiers [100]. Additionally, event-event and event-time 

TLINKs have different characteristics because they occur in different contexts. Thus, creating separate classifiers with 

different sets of features is effective. 

Separated SVM classifiers for within-sentence event-event and event-time TLINKs were used in [6, 12, 28, 94, 96, 100, 

108, 127]. This approach was also valid for articles dealing with cross-sentence relations. [28], [94], and [127] used an 

SVM classifier for event-event and another SVM classifier for event-time relations. Additionally, [94] used two more SVM 

classifiers to deal with event-event and event-time pairs across more than two sentences. 

Cost-sensitive learning was used in [12], [94], and [112] to mitigate the class imbalance by adding different costs for 

each class misclassification. 

The feature set for traditional machine learning classifiers is similar to the features detailed in subsection 4.2, with 

additional features representing the relation between entities. These features generally rely on extracting information about 

the dependency path, conjunctions, number of words, and words between entities. For event-event TLINKs, the presence 

of overlapped heads is generally used to detect co-references. 

A combination of different classifiers was used in [93] and [112]. This strategy was beneficial in [93], with comparable 

results to the state-of-the-art SVM-based models for the Clinical TempEval 2016 dataset. [93] combined classifiers from 

different publications with ILP. The classifiers were obtained from [28, 86, 91, 94, 96]. 

Approaches based on MTL have also been effective in [97] and [109]. These approaches are already detailed in 

subsection 4.2, as they jointly predict DocTimeRel and TLINKs. Furthermore, Leeuwenberg and Moens [96, 97] had the 

best performance for both Clinical TempEval 2016 and 2017 datasets when deep learning-based systems were not 

considered. 

However, machine learning systems do not perform as well as deep learning-based systems. In addition to the 

algorithms, some strategies have improved the results for deep learning-based systems. 

One widely used strategy for the THYME corpus was developed in [106] and consisted of transforming the two-class 

classification task (CONTAINS and NO RELATION) into a three-class classification task (CONTAINS, NO RELATION, 

and IS CONTAINED). All pairs from left to right were considered, and the label was changed to IS CONTAINED when 

necessary. Further, not considering all possible permutations by only considering pairs that occur from left to right reduces 

the number of candidate pairs to half, mitigating the class imbalance problem. This strategy was used in [20, 31, 34, 87, 

99, 102, 103, 113]. 

Another popular strategy is to expand the training set with additional examples. This strategy is helpful for both machine 

learning and deep learning systems. [12] and [100] developed a training set expansion technique based on the UMLS, 

looking at the UMLS entities that overlapped with the annotated event spans. Further, [37] proposed creating additional 

artificial training data using a transformer model with language generation. In addition, [99] and [102] used unlabeled 

THYME corpus additional data to generate additional training instances with self-training, using cTAKES to generate 

events and temporal expressions over the unlabeled data. However, self-training was based on a BI-LSTM model in [99], 

while a strategy based on fine-tuning the BERT was used in [102]. 
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The encoding of relation arguments by XML tags was first introduced in [87]. It was modified in [101] to represent the 

temporal expressions with a single pseudo-token. This modified version was used in [99, 101, 104]. 

Among the architectures used, we differentiate between publications that addressed only within-sentence relations and 

those that addressed cross-sentence relations. The conclusions are based on the complete TLINKs set, but the comparison 

is fairer this way. 

Among publications that addressed only within-sentence relations, [89] and [90] used tree-based BI-LSTM-RNNs, [99] 

used BI-LSTM with self-training, [87] used CNNs, [101] used a hybrid approach based on a CNN and an SVM model, 

[104] used GRUs and attention, and [77] used RNNs, attention, and piecewise representation. Based on these results, we 

highlight [89] and [99]. [89] adapted the tree-based BI-LSTM-RNN model in [133], making new sentence-level 

annotations to adapt the input, relying on the dependency structure between the pair and the output. [99] combined several 

factors that were successful in the previous approaches. The approach used a BI-LSTM model, additionally encoding 

relations with XML tags, transforming into a 3-class classification task, and adding training samples with self-training. 

Among publications that addressed within-sentence and cross-sentence relations, [95] combined LSTM and MTL, [105] 

and [113] used BI-LSTM models, [107] used context segmentation and associate attention, [102] fine-tuned BERT and 

used self-training, and [103] fine-tuned BERT with MTL. Based on the results, we highlight [102] and [103]. [102] 

combined the fine-tuning of BioBERT [134], a pre-trained model on biomedical texts, self-training and transforming into 

a 3-class classification problem. [103] used a one-pass BERT model that leverages global embeddings and MLT to jointly 

predict TLINKs and DocTimeRel. 

5.3 Hybrid systems 

This section analyzes the articles that used hybrid systems for TLINKs (summarized in Table 9). 

Table 9: Articles related to TLINK that used hybrid systems. 

Authors Best strategy 
Candidate pair 

selection 
WS CS NS SE Results 

I2b2 2012 dataset 

[74] [11] + rules + additional features WS: rules, CS: rules     Fm 0.702 

[72] 
WS: 2 ME clfs; CS: 1 ME clf + 

rules 
WS: APP, CS: rules     Fm 0.6954 

[12] 
WS: 2 SVM clfs; CS: 2 SVM clfs 

+ rules; CSL; TS expansion 
WS: APP, CS: rules     Fm 0.695 

[11] 
WS: 2 SVM clfs; CS: 2 SVM 

clfs; Rules 
WS: rules, CS: rules     Fm 0.6932 

[73] [11] + rules + additional features WS: rules, CS: rules     Fm 0.693 

[7] 
WS: 2 SVM clfs + temporal 

graph; CS: rules 
WS: APP     Fm 0.63 

[76] 9 clfs + rules Cross-product     Fm 0.6231 

[71] 2 ME clfs + rules Rules     Fm 0.5628 

[135] SVM clf + rules WS: APP, CS: rules     Fm 0.537 

[23] 
WS: ME clf + conflict resolution, 

CS: rules 
WS: rules     Fm 0.43 

[75] [73, 74] [73, 74]     
Fm 0.341 

(NTC) 

[38] SVM clfs + rules + CSL WS: APP     
Fm 0.6377 

(NTC) 

Clinical TempEval 2015 dataset 

[128] CRF clf + rules Rules     Fm 0.181 
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Authors Best strategy 
Candidate pair 

selection 
WS CS NS SE Results 

Clinical TempEval 2016 dataset 

[106] 
WS: SVM clf; CS: SVM clf; 

Rules; 3-class 
WS: APP, CS: rules     Fm 0.538 

Legend: WS, within-sentence; CS, cross-sentence; NS, not specified; SE, separated evaluation; Fm, f-measure; ME, 

maximum entropy; clf, classifier; APP, all possible pairs; CSL, cost-sensitive learning; TS, training set; CTE, Clinical 

TempEval; CRF, conditional random fields; 3-class, transforming to a 3-class classification. 

Most articles in this section are related to the i2b2 2012 dataset, where specific TLINKs, especially cross-sentence 

TLINKs, were extracted with rules. In this subsection, we analyze the candidate pair selection strategy, and the approach 

used to extract the TLINKs. 

For candidate pair selection, the most successful approaches have developed different strategies to generate pairs for 

within-sentence and cross-sentence TLINKs. 

To create pairs for within-sentence relations, a common strategy is to create all possible pairs within a sentence. This 

strategy was used in [7, 12, 38, 72, 106, 135]. [11] considered all consecutive pairs in a sentence or pairs with a dependency 

relation. [73] and [74] used the strategy proposed in [11]. Both strategies were successful, with [11] being more restrictive 

in terms of the number of created pairs. 

To create pairs for cross-sentence relations, the typical strategies were to restrict the pairs to all possible pairs in a 

sentence range or develop strategies focused on creating pairs for specific cases, such as co-references. The first strategy 

was used in [12] and [106], with a restriction for consecutive sentences in [12] and a restriction of a three-sentence window 

in [106]. For the second strategy, both [11] and [72] focused on co-referencing event-event pairs, creating pairs of events 

with matching attributes. Additionally, [11] added a criterion to consider only events with the same head noun. [11] also 

focused on the main events, considering pairs involving all first and last events in two consecutive sentences. [73] and [74] 

also used this strategy in [11]. 

The approaches used to extract the TLINKs were SVM classifiers in [7, 11, 12, 38, 73–75, 106, 135], CRF classifiers 

in [128], and ME classifiers in [72]. All these approaches also used rules to infer TLINKs or solve conflicts between 

classifier predictions. Strategies that were effective in the previous subsection, such as cost-sensitive learning and training 

set expansion, were used in [12] (further details in subsection 5.2). 

For within-sentence relations, as in the previous subsection, the most successful approach was to create separated 

classifiers for event-event and event-time TLINKs. This strategy was used in [7, 11, 12, 72–74]. 

We highlight some approaches for cross-sentence relations. [77] used a classifier for event-event and another for event-

time. [11] and [72] used a classifier to detect co-references, but [11] used an additional classifier to detect the main events. 

[73] and [74] also used the strategy proposed in [11]. 

Regarding the rules created by the publications, we highlight [11, 12, 72–74]. [11] developed a rule-based result 

merging module. [12] focused on creating rules for detecting co-references in different sentences. [72] also developed rules 

for inferring cross-sentence relations. The framework proposed by [73] and [74] initially attempted prediction with rules, 

and then relied on the machine learning-based models if no rule was applicable. 

We highlight [11, 12, 72–74] according to their performance over the i2b2 2012 dataset. Further, the state-of-the-art 

for i2b2 2012 belongs to [74]. [74] developed a hybrid system based on [11], with a preference for inferring TLINKs with 

rules and a more elaborate feature set. They employed discourse-based features along with domain-independent and 

domain-dependent semantics. 

5.4 TLINK conclusions 

Most publications on TLINK extraction were based on datasets made available by shared tasks. The datasets were the 

THYME corpus, which is related to the Clinical TempEval shared tasks and the i2b2 2012 corpus. However, the most 

recent searches were related to the THYME corpus. For instance, the state-of-the-art for the i2b2 2012 corpus belongs to 

an approach developed in 2014, evidencing that this dataset is not as widely used for TLINK extraction as the THYME 

corpus. 
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However, a downside is that few recent studies have addressed different datasets from the clinical domain in their 

evaluations; primarily, they have extracted TLINKs from different THYME corpus portions (Clinical TempEval 2016, 

2017 editions corpora). This is unlike the NER-related publications, which generally provide evaluations for multiple 

datasets, such as the evaluations for BioBERT or ClinicalBERT [136] pre-trained models. Thus, there is a need for more 

annotated datasets for TLINK extraction, especially for different medical specialties and clinical text types. This way, the 

approaches can be evaluated over different scenarios, and a more solid evaluation can be obtained. 

Two factors were relevant when defining approaches to extract TLINK: a strategy to generate candidate pairs and a 

strategy to extract TLINKs. Recently, the most common approach has been to delimit within-sentence pairs or operate over 

a token window. Current state-of-the-art approaches restrict pairs based on a token window ranging from 60–100 tokens. 

However, there was no further analysis of these strategies’ effects over the patient timeline, such as when evaluating any 

essential positive pair about the patient condition that was entirely ignored by the candidate pair generation technique. 

There has been an evident evolution of TLINK extraction techniques over the years, from completely rule-based 

systems to traditional machine learning-based systems with different heuristics and several specialized classifiers, and then 

to deep learning-based systems. First, models based on CNN, LSTM, and BI-LSTM were developed, but attention-based 

models started achieving superior results. 

Regarding the embeddings, besides word embeddings, we noticed character embeddings in [105] and contextualized 

embeddings in [102] and [103]. Some authors pre-trained word embeddings based on medical and biomedical corpora. A 

comparison between the concatenation of word embeddings is provided in [99], with the best results involving combining 

word embeddings from concatenated general and clinical domains, with the clinical word embeddings being pre-trained 

on the MIMIC-III corpus [137] and unbalanced THYME corpus notes. For contextualized embeddings, [103] used the 

BERTbase model, while [102] conducted experiments with BERTbase, BioBERT, and a pre-trained BERT model in 

MIMIC-III clinical notes. BioBERT achieved slightly superior results for the Clinical TempEval 2016 datasets when 

compared to the BERTbase. 

The state-of-the-art now resides on BERT pre-trained models by creating candidate pairs over token windows and 

transforming the classification task into a three-class classification task (detailed in subsection 5.2). This approach was 

used in [102] and [103]. Each publication has its own strategies. [102] focused on generating additional self-training 

instances, while [103] jointly predicted TLINKs and DocTimeRel using an MTL-based approach. 

These results show the power of language models pre-trained using transformers, such as BERT, which can replace 

word embeddings; this is because the embeddings are contextualized. They can be fine-tuned to several NLP tasks using 

an additional output layer [138]. 

6 TEMPORAL RELATION EXTRACTION IN THE GENERAL 

DOMAIN 
This section provides an overview of the datasets and publications relevant to the general domain. The TempEval-3 (TE-

3) corpus was related to the TempEval 2013 shared task and was based on the AQUAINT and TimeBank [139] corpora. 

According to [140], the annotators only labeled relations key to understanding the document during the TimeBank 

annotation process, which resulted in sparse annotations. Therefore, they annotated the TimeBank-Dense, which increased 

the number of annotations; considered additional relation categories; simplified the relation types; and added a VAGUE 

relation type. 

Regarding the TE-3 corpus, we highlight the ClearTK-TimeML system, which is generally used as a baseline for the 

TE-3 corpus and has been applied to the clinical domain in [6] (see subsection 5.2). For TimeBank-Dense, we highlight 

the CAEVO system [141], which is generally used as a baseline for TimeBank-Dense, a sieve-based approach that uses 

smaller specialized classifiers while leveraging rules. 

Among recent publications, we have highlighted [142–144]. All of them used contextualized word embedding as an 

input in their systems. [142] used ELMo [145] contextual embeddings and attention mechanisms to jointly predict event 

duration and temporal relations with MLP. [143] used BERT and POS embeddings as inputs for a model based on BI-

LSTM and structured SVM, and verified the performance improvement with contextualized embeddings. [144] combined 
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contextualized word embeddings, Siamese networks, and ILP, and verified that both BERT and ELMo improved the 

results. Hence, the contextual representations were only used as embeddings but improved the results. 

7 CONCLUSIONS 
This article reviews existing temporal relation extraction approaches in clinical texts, dividing temporal relations into 

DocTimeRel and TLINKs. The DocTimeRel relation extraction is less complicated than TLINK extraction, as evidenced 

by the performance over the datasets. The DCT is a temporal expression of the date type, which is completed by having 

explicit information about the year, month, and day. Additionally, depending on the annotation scheme, an event always 

has a temporal relation with the DCT, with no need to create candidate pairs connecting the events to diverse temporal 

expressions over the document. Hence, DocTimeRel relations do not suffer from the same imbalance that TLINKs suffer. 

This is because, for TLINKs, most of the created pairs have no relation, being negative examples to the classifiers. In 

contrast to TLINK extraction, which is actively researched to push the state-of-the-art, DocTimeRel is a secondary research 

topic. For DocTimeRel, most of the articles relied on traditional machine learning approaches, especially SVMs. However, 

recent architectures based on MTL have started achieving positive results. TLINKs have been an active field of research 

over the past years, with the current state-of-the-art based on contextual embeddings and approaches based on BERT. In 

recent publications, training set expansion and MTL have positively impacted the results. 

Most publications on TLINKs are based on a single dataset, limiting the evaluation of the approaches in different 

medical specialties, clinical text types, and languages. Research on this topic would improve if additional datasets with 

different medical specialties, clinical text types, and languages were made available to the research community. For 

instance, in a survey for primary care consultation, it was discovered that in 18 countries, the average consultation time 

was five minutes or less [146]. It would be interesting to analyze how well a system would perform for this short and highly 

structured clinical text type. 

Additionally, the TLINK extraction performance for clinical texts is relatively low compared to other NLP tasks, such 

as event and temporal expression extraction. For the dataset available in the Clinical TempEval 2016, the primary research 

target, the state-of-the-art approaches, achieved an f-measure close to 0.7, with only one relation type being considered 

(CONTAINS). This result would not be suitable for an actual application in the clinical domain, where every 

misclassification can negatively impact clinical decision-making. Hence, studies on performance improvement are 

necessary. For instance, simplifying the event annotation guideline to be less extensive could lower task complexity by 

reducing the number of events and candidate pairs. Furthermore, providing additional annotated data could also improve 

the results. 

Furthermore, in TLINK extraction evaluation, event and temporal expression inputs are generally gold-standard 

annotations. This would directly impact the performance in an end-to-end system scenario by adding noise to the TLINK 

extraction system. Thus, considering the current state of the research field, creating a real-time use in a clinical 

configuration is still a long way ahead. 

Based on our analysis, we identified directions for future searches over temporal relation extraction from clinical texts. 

One research topic involves fine-tuning pre-trained models with clinical texts, such as ClinicalBERT, which could improve 

the ability of the model to understand the clinical context. Furthermore, contextual representations such as BERT and its 

variants (e.g., distilBERT [147] and RoBERTa [148]) or representations such as XLNet [149] could be used for relation 

extraction. Additionally, several studies have demonstrated the positive effect of extending the training set. Therefore, 

studying and evaluating data augmentation techniques could benefit future research. One research direction that could be 

beneficial not only to relation extraction but also to several other NLP tasks would be to develop models pre-trained on 

biomedical and medical texts, especially for languages other than English. 

Although we achieved our review purposes, we did not discuss which areas within the clinical domain are directly 

affected by temporal relation extraction and how improving the temporal relation extraction framework results could 

benefit them in the future. 
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