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ABSTRACT

During the Quaternary period, the eastern Sahara's hydroclimate oscillated between wet and dry in-
tervals. These oscillations caused drastic changes in precipitation rates, often associated with ancient
human migrations. In particular, significant migration of riparian populations from the Nile Valley to the
west and northwestward of the Sahara occurred during the African Humid Period (AHP), an episode of
increased monsoons, which characterized North Africa in response to increasing insolation. Several fossil
rivers, now preserved as ridges throughout southern Egypt due to their floodplains' deflation, contain
archeological artifacts and thus represent a potentially important record of fluvial activity during this
episode of past human dynamics and environmental change. Here we present %C and Optically Stim-
ulated Luminescence (OSL) ages of sediments preserved in these palaeorivers, which cluster within the
AHP and are thus consistent with increased fluvial activity during this distinct humid period. Palae-
ohydraulic reconstructions based on grain size, channel geometry, and drainage area suggest typical
precipitation intensities of 55—80 mm/h during sediment transport events. Given previous annual
rainfall estimates, these hydrologic conditions may have lasted, or occurred, during the AHP up to 3—4
times more frequently than before and after this period. Such intense fluvial activity is consistent with
monsoon intensification and may have rendered the area inhospitable for human settlements, congruent
with population migration out of the Nile Valley during the AHP. These findings highlight links between
past human ecodynamics and environmental signals, providing a concrete narrative of human popula-
tion response to warming with potential echo in the current situation.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

estimates of the Nile River, cave speleothems, dust fluxes, pollen
records, groundwater-fed deposits, ancient watercourses, archeo-

Late Quaternary climate oscillations in the eastern Sahara region logical evidence, and abrupt fluctuations of lake levels and lacus-
have been identified, based on palaeo-discharge and sediment-load trine deposits (Fig. 1A; Foucault and Stanley, 1989; Hoelzmann

et al, 2000; Schuster et al., 2005; Hamdan and Brook, 2015;
Hoffmann et al., 2016; Drake et al., 2011; Williams et al., 2015;
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2016; Palchan and Torfstien, 2019; Manning and Timpson, 2014;
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Fig. 1. (A) The distribution of climatic proxies that indicate humid phases over the past ~70 ka, particularly the African Humid Period (AHP): pollen records (Ritchie and Haynes,

1987; Haynes et al., 1989), human occupation in the eastern Sahara (Kuper and Kropelin,

2006), lacustrine deposits (Hoelzmann et al.,, 2000; Schuster et al., 2005; Ritchie and

Haynes, 1987; Haynes et al., 1989, Damnati, 2000; Kropelin et al., 2008), groundwater-fed deposits (Hamdan and Brook, 2015; Hamdan and Lucarini, 2013; Abotalib et al.,
2016), cave speleothems (Hoffmann et al., 2016; Fleitmann et al., 2011; Bar-Matthews et al., 2003), sediment cores (Palchan and Torfstien, 2019; Martrat et al., 2004; Wagner

et al,, 2019), and fluvial records (Macklin et al., 2015; Williams et al., 2015; Abotalib et al.,

2019). (B) Digitally rendered mosaic of Landsat 8 image relief map showing the loca-

tion of the study area and the distribution of the ancient rivers in southern Egypt. (C) Portion derived from Esri World Imagery shows Gabal Hamam I palaeo-river standing as ridges

in the modern landscape.

Pausata et al., 2020). These proxies suggest that at least four humid
periods may have punctuated the past ca. 65 ka. The last and most
significant wet period, based on the interpretation of archeological
sites associated with palaeo-zoological proxies and pollen records
(Ritchie and Haynes, 1987; Haynes et al., 1989; Kuper and Kropelin,
2006; deMenocal et al., 2000), persisted from early to mid-
Holocene time, and was termed the “African Humid Period”
(AHP; ca.14.8 - ca.5.5 ka BP, deMenocal et al.,, 2000). Although a
number of uncertainties remain on the regional extent of this wet
period across North Africa, as well as on its timing and magnitude
(see Williams, 2019a, 2019b, pp. 105—106; Woodward et al., 2015),
notably because of evidence of low lake and river discharge levels

during this period (Gasse et al., 2008; and review in Williams,
2019a, 2019b, pp. 107—126), multiple palaeo-climatic proxies
nevertheless broadly converge toward estimates of annual precip-
itation rates of 300—920 mm/yr in the eastern Sahara (Ritchie and
Haynes, 1987; Hoelzmann et al., 2000; Tierney et al., 2017). This
humidity favored the growth of vegetation, the multiplication of
active rivers and the development of perennial lakes, turning the
arid Sahara into a savannah-like environment, and may have made
the Nile Valley into a marshy and hazardous place, which is hy-
pothesized to have triggered the migration of its riparian pop-
ulations toward the deep Sahara across several hundreds of
kilometers (Kuper and Kropelin, 2006). To further test how



A.S. Zaki, G.E. King, N. Haghipour et al.

plausible the hypothesis is that environmental perturbations dur-
ing the AHP drove human migration away from the Nile Valley, this
work aims to estimate the palaeo-rainfall intensities involved in
transforming the Nile Valley into an inhospitable region.

To do this, we reconstruct palaeo-rainfall rates from a spectac-
ular set of six fossil river deposits (now expressed as sinuous ridges
of fluvial sediments in the modern landscapes in response to dif-
ferential erosion, Zaki et al., 2021) in the eastern Sahara (Fig. 1B and
C). The presence of these palaeo-rivers implies prior wetter con-
ditions across a broad swath of the present-day desert of southern
Egypt and thus is a witness of the transition from past humid
conditions to the current hyper-arid environment. The archeo-
logical content of these fossil river deposits (lithic artifacts and
pottery shards, Zaki and Giegengack, 2016; Giegengack and Zaki,
2017; Zaki et al., 2018) suggests that the rivers were active during
Mid-Pleistocene to Holocene time. Here we present the first
inferred geochronological constraints on these river systems. When
coupled with estimates of precipitation from palaeo-hydraulic re-
constructions and calculated sedimentation rates, our study en-
ables a quantitative assessment of rainfall perturbations during
late-Quaternary climate oscillations in the Sahara, particularly
during the AHP. Our results have major implications for human
occupation patterns in the region during the Holocene and provide
a perspective from the past relevant to modern environmental
change.

2. Materials and methods

The six studied palaeo-rivers form sinuous, single-thread
channel-fill planforms, expressed as sinuous ridges in the
present-day landscape, and are distributed across ~38,000 km? of
southern Egypt and northern Sudan (Fig. 1 B—C; Zaki and
Giegengack, 2016; Giegengack and Zaki, 2017). We used satellite
imagery to trace and map the source to the sink of those palaeo-
rivers. A few sinks are now submerged beneath the water of Lake
Nasser. We, therefore, used the CORONA satellite images that were
captured before the complete filling of Lake Nasser.

Inverted channels’ geometry could be measured from the field
or aerial and satellite images, as they stand as hills rather than
troughs (Williams et al.,, 2009). Here we measured the palaeo-
channel geometries of the six rivers from the field to avoid signif-
icant uncertainty—the obtained channel widths from the field
range from 30.5 to 65.5 m (Table S1). To constrain the palae-
ochannel height, we measured the thickness of the preserved
material in the palaeochannel fill. The preserved material consists
of highly cemented sandy gravels. Due to possible original channel-
fill incomplete preservation, we used 35% as uncertainty, as it has
been previously suggested (Paola and Borgman, 1991) that the
preserved thickness compared to the actual mean depth is around
60—70%. In this study, the measured channel thickness of the six
rivers ranges from 0.75 to 1.2 m (Table S1). To determine the me-
dian grain size distribution (D5p) of these palaeo-channels, we
measured the b-axes of between 100 and 127 clasts (>2 mm),
which were randomly selected from an area of 1 m? based on
established methods (Table S1; Wolman, 1954; Chen et al., 2018;
Duller et al., 2012).

The discovery of palaeolithic and pottery sherds in the sedi-
mentary fill of a palaesochannel indicates that these palaeo-rivers
were active during the Middle Pleistocene and Holocene epochs
(Zaki and Giegengack, 2016; Giegengack and Zaki, 2017). We,
therefore, collected nine samples for OSL dating from sandy/gravel
beds of three palaeo-rivers, where forcing a plastic tube into a
cleaned outcrop surface was possible (Table S 1). Six samples of
fluvial sediments were collected for 'C dating from the other three
palaeo-rivers that were characterized by highly cemented gravels,
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with insufficient fine material for OSL (Table S 1).

Samples for OSL dating were prepared using standard methods
under subdued red light at the University of Lausanne, Switzerland.
Following removal of material that may have been exposed to light
during sampling, samples were extracted from the sampling tubes
and treated with HCl and H,0- to remove carbonates and organic
material, respectively. The samples were then sieved to extract the
180—212 pm fraction before being treated with heavy liquids to
isolate the K-feldspar rich (<2.58 g cm™>) and quartz-rich
(2.58—2.65 g cm>) components. The quartz-rich fraction was
then treated with concentrated HF to remove contaminating feld-
spars and also the alpha irradiated exterior of the grains. An un-
treated part of the bulk sample was also dried to determine the
sample water content, and a fraction of this material was prepared
for ICP-MS analysis to determine the U, Th, and K concentrations for
environmental dose rate determination.

Environmental dose rates were calculated using DRAC (v.1.2;
Durcan et al., 2015) with the conversion factors of (Guerin et al.,
2011) and using the grain size attenuation factors of (Mejdahl,
1979; Bell, 1980). For feldspar grains, the internal K-content was
assumed to be 12.5 + 0.5% after (Huntley and Brail, 1997), and an a-
value of 0.15 + 0.05 was used after (Balescu et al., 2003). The cosmic
dose rate was calculated following (Prescott and Hutton, 1994). The
calculated environmental dose rates are summarised in Table S2.
All luminescence measurements were made at the University of
Lausanne. The protocol used in the age measurements and un-
certainties has been used in detail in the Supplementary Materials
(Tables S2—S3).

Radiocarbon dating was performed on total organic carbon
(TOC) extracted from sediment samples collected from 3 palaeo-
rivers. The samples were fumigated in silver capsules (Elementar)
with HCl (37%) to remove carbonate (Komada et al., 2008) and
neutralized for 48 h at 65 °C using solid NaOH to remove residual
acid. The samples were wrapped in a tinfoil boat (Elementar) and
pressed prior to analysis. Fumigated samples were measured as gas
targets using MICADAS system at ETH-Zurich (Table S4). Samples
were normalized using oxalic acid II (NISTSRM4990C), and they
were corrected for constant contamination introduced during
fumigation and capsules contribution. The radiocarbon dates were
calibrated with the calibration curve IntCal13 (Reimer et al., 2013)
using the OxCal v. 4.2 software (Bronk Ramsey, 2009).

For palaeo-hydraulic reconstructions, we used the palaeo-slope
equation (Trampush et al., 2014):

logS = ag + aqlogDsg + ay IOgHbf (1)

where S is river slope, Dsg is median grain size, (Hps) is channel
depth, and a0, a1, and a2 are empirical coefficients with values
of —2.08 + 0.0015, 0.254 + 0.0007, and —1.09 + 0.0019 respectively.
We combined (Eq. (1)) with Manning's equation (Eq. (2)) to
calculate palaeo-flow velocity (U):

U= 1/n (R2/351/2) (2)

where (U) is flow velocity (m/s), (n) is Manning's coefficient
(n=0.03 + 0.005), and (R) is the hydraulic radius, approximated by
channel height. Flow velocity is then multiplied by channel depth
and width to obtain volumetric water discharge Q (m3/s).

To estimate each river's palaeodrainage area (A), we used the
current topography and drainage area above each sampling site
(flow routing algorithm on 25m resolution PALSAR DEM data),
assuming the modern topography has remained mostly unchanged
through late Quaternary arid climate and low erosion rates. We
cross-validated those estimates using Hack's law of drainage area
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and length (L) for individual drainage networks (Hack, 1957;
Sassolas-Serrayet et al., 2018):

L =14A%6 (6)

Although the absolute volume of rainfall cannot be estimated
from fossil river deposits because the duration of channel-forming
events is beyond dating resolution, an assessment of the rate of
precipitation can be provided by dividing volumetric discharge by
drainage area (constrained empirically and from DEMs). The rain-
fall rate is then expressed in millimeters per hour for the sake of
comparison with modern rainfall rates. Hourly rates represent a
close approximation of the intermittent nature of precipitation
(Trenberth et al., 2017). In addition, a 1-h persistence of rainfall is
considered representative of the typical duration of a storm that
causes flood events over fast-responding (small) catchment areas
(Brookes and Stensrud, 2000). In order to calculate the return
period of estimated rainfall intensities before, during, and after the
AHP, we compiled ~70 ka rainfall data derived from modeling in
Tibesti and Coastal Libya (Blanchet et al., 2021), Lake Ohrid (Wagner
et al,, 2019), and pollen and palaeolake records in the eastern
Sahara (Hoelzmann et al., 2000; Ritchie and Haynes, 1987; Haynes
et al., 1989).

Clausius-Clapeyron (CC) scaling shows the relationship between
precipitation and temperature change, supported by hourly, daily,
and yearly data on rainfall globally (Trenberth et al., 2003;
Lenderink and Meijgaard, 2008; Berg et al., 2013). The scale prin-
cipally describes that an increase in temperature of one degree
enhances the atmosphere's water-holding capacity at a rate of 7%
(Trenberth et al., 2003). During the AHP, there was an increase of
7.5 °C in sea surface temperature in the Alboran Sea due to the
transition from glacial to an interglacial period (Martrat et al.,
2004). Factoring for the 7.5 °C temperature increase of the AHP
would enhance the holding-water capacity by ~66%. So-called
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“super” Clausius-Clapeyron have been invoked to describe
temperature-driven increase in rainfall in excess of “normal” CC:
above threshold temperature of 12 °C, the atmosphere's water-
holding capacity increases by 14% for each additional degree.

3. Results

The six palaeo-rivers, now expressed as resistant ridges (posi-
tive relief) in the modern landscape, consist of gravels accumulated
in palaeo-channels, which do not exceed 1.2 m in height and
display a maximum width of 65.5 m (Figs. 2 and 3; Table S1). We
reconstructed the trajectory of these six palaeo-rivers (based on
tributary structure) and found that five of them drained into the
Nile River. Only one (Gabal El-Sadd palaeo-river) debouched into a
vast plain, forming a fluvial fan that is now submerged by the water
of Lake Nasser (Fig. 4). The gravel deposits are poorly sorted; clasts
are angular to rounded in shape, with a median grain size (Dsg)
ranging from 26 + 2 mm to 60 + 3 mm; the sediment is mainly
cemented by iron oxide. The deposits are massive, but pebble im-
brications and a few cross-stratifications suggest conditions of
unidirectional flow and bedload transport during channel-filling
events.

New age constraints obtained via OSL and '*C on channel-fill
material indicate that the six palaeo-river systems in the south-
ern Egyptian Sahara were active throughout the last ca. 53 ka
(Fig. 5; 6A). Ages span from ca. 53 + 7 ka BP to ca. 1.1 + 0.25 ka BP.
The oldest OSL ages are obtained at Gabal El-Sadd and Gabal
Hamam II (Fig. 5), with ages of 53 + 7 BP and ca. 35 + 4 ka BP,
respectively. At Gabal Hamam II, the 35 ka sediments are overlain
by deposits that yield OSL ages of 16 + 3 and 15.1 + 4 ka BP.
Although physical evidence of a stratigraphic break is not apparent,
the abrupt superposition of ages in this section shows a probable
period of erosion and/or non-deposition.

o L X

Gabal El Sadd
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Fig. 2. Satellite images (ESRI World Imagery) and drawing of the reconstructed fluvial systems with an indication of each sampling site (red dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. Field photographs of ridges preserving a former rivers; (A) Gabal Hamam, (B) Arqgin I, (C) Gabal Hamam I, (D) Gabal Masmas, and (E) Gabal El Sadd. The ridges typically
comprise two stratigraphic units; the upper unit is gravel deposited during the Late Quaternary, and the lower unit consists of sandstone accumulated during the Upper Cretaceous

epoch.

Palaeoriver deposits at Gabal Masmas, Arqin I, Arqin II, and
Gabal El-Sadd yielded seven fluvial sediment OSL ages clustered
between 13 + 0.1 ka BP and 5.2 + 1 ka BP (Fig. 5; Fig. 6A). This
suggests a distinct episode of enhanced fluvial activity that trans-
ported and deposited sediments within the palaeo-river systems
during this time interval, which corresponds to the AHP. Lack of
fluvial sediment ages after 5 ka suggests that termination of the
AHP likely occurred at ca. 5 ka before the present. However, two
depositional ages in the Gabal El Sadd and Gabal Hamam I palaeo-
rivers at 3.9 + 0.7 BP ka and 1 + 0.25 ka BP suggest that the past 5 ka
were locally interrupted by fluvial activity. Further sampling in the
upper part of our sections would be needed to confirm this
hypothesis.

The measured channel heights range from 0.75 + 0.26 m to
1.2 + 0.42 m. We considered an average of 35% underestimation of
channel depth to account for incomplete preservation of the orig-
inal channel height (Paola and Borgman, 1991), and we evaluated
uncertainties and dispersion using Gaussian error propagation. By
coupling channel depth with grain-size distribution (Dsp), we find
that reconstructed fluvial palaeoslopes range from 0.003 + 0.0012
to 0.0048 + 0.0018, with a mean of 0.0037 + 0.0014. Equilibrium
flow velocities on such slopes obtained using (Eq. (2)), combined
with channel heights and widths, indicate volumetric water
discharge of 43 + 16 to 138 + 53 m>s~ 1. Estimated drainage areas of
these palaeo-rivers are in the range of ca. 2.2 — ca.11.6 km? (Fig. S1).
Given the estimated discharge, such drainage areas imply mean
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LAKE NASSER

)

Fig. 4. Satellite images and line drawings of palaeo-rivers studied in this work; (A) Gabal Hamam I, Gabal Hamam II, and Gabal Masmas, (B) Gabal El Sadd, and (C) Arqin I, and Arqin
II. These rivers were draining into the Nile River except for the Gabal El Sadd palaeo-river that debouched into a plain, forming a fan-shaped deposit. The fan is now submerged
beneath the water of Lake Nasser. The rivers were mapped from Esri World Imagery, Google Earth imagery, CORONA images.

hourly rainfall rates in the range of 55—80 + 26 mm/h; these in-
tensities classify as heavy rainfall (American Meteorological
Society, 2012). The small drainage areas (modern rivers with
similar bankfull discharges usually have larger drainage areas,
ranging from 80 to 900 km?; Church and Rood, 1983; Trampush
et al.,, 2014; Fig. S2), coupled with the discharge estimates, also

reflect the high intensity of surface-runoff conditions that prevailed
during the rainfall events.

Preserved age-thickness relationships indicate faster sedimen-
tation rates during the early to mid-Holocene pluvial period than
during other pluvial periods (Fig. 5). The Gabal Masmas, Arqin I, and
Arqin II palaeo-rivers indicate 0.15 m—0.35 m of sedimentation in
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Fig. 5. Location map and field photographs of the studied sites with channel geometries (width and height), and datations points (OSL in red, and BP calibrated 'C in blue).
Channels do not exceed 1.2 m in height and 65.5 m in width, and consist of poorly sorted pebbles. The ages of fluvial activity cluster between 13 and 5.2 ka BP, which corresponds to
the African Humid Period (AHP). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

ca. 1.2 and ca. 4.6 ka, respectively, during early to mid-Holocene
time. In contrast, the Gabal ElI-Sadd and Gabal Hamam II palaeo-
rivers record 0.4 m and 0.35 m of fluvial deposition in ca. 48 ka
and ca. 20 ka, respectively (Fig. 5).

4. Discussion

Southern Egypt's fossilized rivers provide a unique archive of
fluvial activity throughout the late Pleistocene and Holocene during
the transition from past Saharan humid intervals to the present
hyperarid conditions. Our data reveal six phases of sediment
transport and deposition (Fig. 6A), which coincide with humid,
cold, and arid conditions (e.g., Hoelzmann et al., 2000; Hamdan and
Brook, 2015; Kleindienst et al., 2016; Ritchie and Haynes, 1987;
deMenocal et al., 2000; Collins et al., 2013; Nicoll, 2004). Fluvial
activity at 53 ka BP, 35 ka BP, and 13—5.2 ka BP took place in pre-
dominantly humid environments (Fig. 6A). Conversely, fluvial ac-
tivity recorded at 15 ka BP, 4 ka BP, and 1 ka BP is likely associated
with a cooler climate during Heinrich Stadial 1 (HS1; ca. 15 ka) and
to the arid-hyperarid conditions of the past 4.5 ka (Collins et al,,
2013; Nicoll, 2004). Nevertheless, the most significant cluster of
ages obtained between 13 + 0.1 ka BP and 5.2 + 1 ka BP suggests a
major episode of fluvial activity during the AHP, which represents
an important constraint on current knowledge of environmental
conditions during the AHP (Fig. 6A). This significantly more humid
period is commonly explained by an astronomically driven increase
of insolation that led to higher temperatures, increased rainfall, and
lower dust fluxes, altogether enhancing vegetation diversification
and human occupation of a more habitable deep Sahara (Fig. 6B and
C; Palchan and Torfstien, 2019; Drake et al., 2011; Berger and
Loutre, 1991; deMenocal et al., 2000; Martrat et al., 2004). This

period ended between middle to late Holocene time when the re-
gion became more arid at ca. 5 ka; that aridity gradually intensified
due to weaker insolation parameters (deMenocal et al., 2000;
Nicoll, 2004). Mid-late Holocene aridification after the AHP was
interrupted by briefly wetter conditions documented in north-
eastern Sudan at ca. 2 ka BP (Mawson and Williams, 1984) and
supported by the two fluvial activity episodes recorded here at 4 ka
BP and 1 ka BP. However, more recently, Macklin et al. (2013, 2015)
reported two major episodes of channel contraction due to
decreased Nile flows in northern Sudan between ca. 4—3 ka BP and
after 3 ka BP (Fig. 6C). This suggests that these brief wet conditions
may not have lasted for a prolonged period since significant
channel contractions have been recorded in north Sudan (Macklin
et al, 2013, 2015).

Before the AHP, modeled mean annual precipitation (MAP) rates
range between less than ~50—~250 mm/yr (Fig. 6B). In contrast,
during the AHP, palynological, geological, and biological proxies all
suggest a much higher MAP range of ~300—920 mm)/yr, consistent
with the documented presence of savannah and desert grassland in
the eastern Sahara (e.g., Hoelzmann et al, 2000; Ritchie and
Haynes, 1987; Kuper and Kropelin, 2006). After the AHP, during
the Mid-Late Holocene aridification, rainfall diminished to less than
50 mm/yr (Nicoll, 2004; Kropelin et al., 2008), and today this region
receives less than 2 mmy/yr. Given these yearly rainfall estimates,
the hourly rainfall intensities reported here of 55—80 mm/h during
episodes of fluvial activity would represent total rainfall delivery
periods of 1—4 h before the AHP, 4—14 h during the AHP, and less
than 1 h after the AHP. Although we cannot assess the duration of
individual rainfall events, this nevertheless suggests that precipi-
tation during the AHP either took place 3—4 times more frequently
(if the events' duration did not change) or in events of 3—4 times
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Fig. 6. Compilation of environmental proxies from the Sahara. (A) The number of ages reported from the fossil rivers studied here. The ages of the palaeorivers indicate six distinct
phases during the past 53 ka. White dots represent calibrated “C dates, and gray dots indicate OSL ages. The distribution of the ages suggests an intense period of fluvial activity
during the AHP. (B) Average of modeled and reconstructed mean annual precipitation over the past 70 ka. The modeled precipitation reported from Lake Ohrid (Wagner et al., 2019),
and Tibesti and Coastal Libya (Blanchet et al., 2021). Reconstructed precipitation based on palaeolakes and pollen records has been plotted based on information reported from West
Nubia Palaeolake Basin (Hoelzmann et al., 2000), Selima (Haynes et al., 1989), Bir Atrun and Oyo (Ritchie and Haynes, 1987), and Lake Yoa (Kropelin et al., 2008). Present-day rainfall
has been extracted from (https://weather-and-climate.com). (C) Reconstructed phases of high Nile floods over the past 70 ka (Williams et al., 2015), and the cumulative probability
density function plots of the dated Holocene fluvial sediments from the Nile's catchment and delta (Macklin et al., 2015). Three wet periods (III, II, I) shaded by (light gray) were
recorded by speleothems in Susah Cave, Libya (Hoffmann et al., 2016). The AHP is in a dark gray area (deMenocal et al., 2000).

longer duration. Insolation increase during the AHP is thought to
have promoted higher temperature by up to 7.5 °C (deMenocal
et al, 2000; Martrat et al, 2004). According to the Clausius-
Clapeyron relation (Trenberth et al., 2003), such warming would
enhance the atmosphere's water-holding capacity and MAP by 66%,
much lower than our calculated factor of 3—4. Our results are thus
more consistent with a “super” Clausius-Clapeyron (Lenderink and
Meijgaard, 2008) scaling between temperature and precipitation,
which would yield a ~2.7 fold increase in rainfall for the AHP
warming of 7.5 °C. This excessive increase in rainfall during the AHP
could have been linked to intense tropical summer monsoonal
rainfall, sourced from the Mediterranean Sea, the Atlantic Ocean,
and Indian Ocean (Hoelzmann et al., 2000; Kuper and Kropelin,
2006; deMenocal et al., 2000; Shanahan et al., 2015). During the
summer, the Saharan land surface may have been heated more
efficiently than the adjacent Atlantic Ocean and the Mediterranean

Sea, driving low pressure over the Sahara (deMenocal et al., 2000).
This intense low pressure over the Sahara could have brought a
significant inflow of moisture by wind, leading to intense seasonal
rainfall during the summer (Hoelzmann et al., 2000; deMenocal
et al., 2000).

Human occupation of the margins of the Nile in southern Egypt
and northern Sudan began before ca. 25 ka BP and was associated
with hyperarid conditions, which forced the limit of the Sahara
desert ~400 km farther south than its current position; no settle-
ments are documented in the deep Sahara (Kuper and Kropelin,
2006; Vermeersch, 2002; Wendorf, 1968; Leplongeon, 2021,
Fig. 7A; Movie S1). During the AHP, previous work has proposed
that the climate perturbation drove settlements to disperse into the
deep Sahara (Fig. 7 B; Kuper and Kropelin, 2006) because of both
enhanced monsoon rains, which favored milder savannah-like
environments in the Sahara and hazardous and possibly marshy
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Fig. 7. Distribution of human settlements in the eastern Sahara over the Holocene epoch plotted from (Kuper and Kropelin, 2006; Vermeersch, 2002; Vermeersch et al., 2015;
Leplongeon, 2021). The curve represents the average of modeled and reconstructed precipitation rates, simplified from (Fig. 6 B). (A) The human settlements were concentrated
along the Nile River Valley in southern Egypt and northern Sudan before ca. 10.5 ka BP because of Sahara's arid conditions as recorded by mean annual precipitation. This is
consistent with the dearth of ages recorded by our study. (B) During the peak of AHP (ca. 10.5 — ca.7.3 ka BP), the mean annual precipitation had risen to the peak levels (up to 3—4
times more than before), transferring the hyper-arid conditions to savannah-like environments, reflecting hospitable regions in the deep Sahara for human settlements. This in-
crease of mean annual precipitation and our estimates of intensity likely turned the Nile Valley into a hazardous place due to flood-related risks, driving people to migrate mainly to
the west and northwestwards for roughly 3 ka. (C) Once the mean annual precipitation started to decline at ca. 7 ka BP, the populations reoccupied the Nile Valley because of the
Sahara's arid conditions. Our reconstructions suggest fewer dates during the past 5 ka, reflecting the dramatic, strong, and drastic diminishing of humid conditions.

conditions along the Nile Valley in southern Egypt and northern
Sudan due to increased fluvial activity (Kuper and Kropelin, 2006;
Movie S1). Our results demonstrate that rainfall activity magnified
by a factor of 3—4 during the AHP (10.5—7.3 ka BP), are consistent
with these observations and bring a quantitative estimate of the
increase in flood-related risks for riparian populations. These flood-
related risks might have turned some parts of southern Egypt and
northern Sudan into hazardous places that resulted in settlement
abandonment for nearly 3200 years. Flood-induced human
migration likely occurred when increased precipitation and
discharge raised the rivers' avulsion rates, driving large-scale
flooding to partly or wholly immerse the Nile's marginal areas
and floodplains. This scenario is, for instance, consistent with the
recent catastrophic floods that cause millions of population dis-
placements globally every year (Kakinuma et al., 2020). The link
between environmental challenges and the dynamics of human
populations is also consistent with the observation that the popu-
lation returned along the Nile Valley corridor when it became more
hospitable than the Sahara in response to the termination of the
AHP and correlative aridification of the Sahara (Fig. 7 C; Kuper and
Kropelin, 2006; Nicoll, 2004; Macklin et al., 2015; Movie S1).
Despite existing more hospitable places along the Nile Valley after
the end of the AHP, Macklin et al. (2013) reported two phases of
decreased Nile flows recorded by channel contractions in northern
Sudan between ca. 4—3 ka BP and after 3 ka BP that were hazard-
ous, causing settlements abandonment. Our chronologic data show

that at least two palaeorivers were active after the AHP (ca. 5.2, 3.9,
1.1 ka BP); however, we could not notice any changes in human
occupation. But catastrophic storms were mentioned in a broken
stele in Karnak temple (~250 km north of the study area),
describing the destruction of the Thebes region ca. 3.5 ka ago
(Vandersleyen, 1967), reflecting that the floods after the AHP were
hazardous, but to some extent, were manageable.

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.quascirev.2021.107200.

Global climate simulations and observations suggest that cur-
rent global warming leads to greater evaporation rates and higher
magnitude and frequency of floods and droughts (Coumou and
Rahmstorf, 2012; Westra et al., 2013). Our results tell a narrative
of a similar situation in the human past, a multimillennial experi-
ment in human ecodynamics, which provides a pre-historical
perspective on the current situation. Despite the challenges natu-
rally inherent to estimating past climatic conditions, such palae-
ohydraulic reconstructions from the sedimentary record may
represent essential tools for calibrating past and forward climate
predictions.

Despite the uncertainties of reconstructing original river ge-
ometry (water depth and channel width) and grain size from pre-
served sediments (Paola and Borgman, 1991), several recent works
demonstrate the potential of fossil rivers as archives of ancient
precipitation rates, for instance, during the Palaeocene-Eocene
Thermal Maximum (Chen et al., 2018; Shields et al., 2021) and
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late Quaternary climatic oscillations (Litty et al., 2016). Our results,
therefore, add to the growing recognition of the importance of
sedimentary records of fossil rivers as a promising quantitative tool
to assess past palaeohydraulics perturbations in deserts.

5. Conclusions

Based on the analysis of preserved fossil river channels, this
work brings a new chronological and environmental context for the
eastern Sahara desert and its human occupation and provides
quantitative information about palaeo-rainfall intensity during the
past pluvial periods of the Quaternary in this hyperarid part of
Earth. Our palaeo-precipitation estimates associated with the new
ages suggest that heavy rainfall events were characteristically in
the range of 55—80 mm/h during phases of sediment transport over
the past 53 ka BP. When paired with previous annual rainfall esti-
mates, we find that such rainfall intensities likely occurred 3—4
times more frequently during the AHP. The ensuing climatic
perturbation may have turned some parts of the Nile River Valley in
southern Egypt and northern Sudan into a hazardous and inhos-
pitable place for human occupation between 10.2 and 7.2 ka BP
because of the increased risk of flooding. Our reconstructions,
alongside the archeological data, exemplify climatic challenges to
populations, highlighting the interactions between global warm-
ing, aberrations in heavy rainfall events, and their impact on
humans.
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