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Spreads and Packings of PG(3,2), Formally!

Nicolas Magaud[0000−0002−9477−4394]

Lab. ICube UMR 7357 CNRS Université de Strasbourg, France

Abstract. We study how to formalize in the Coq proof assistant the
smallest projective space PG(3,2). We then describe formally the spreads
and packings of PG(3,2), as well as some of their properties. The formal-
ization is rather straightforward, however as the number of objects at
stake increases rapidly, we need to exploit some symmetry arguments
as well as smart proof techniques to make proof search and verification
faster and thus tractable using the Coq proof assistant. This work can
be viewed as a first step towards formalizing projective spaces of higher
dimension, e.g. PG(4,2), or larger order, e.g. PG(3,3).

Keywords: projective geometry · spreads · packings · finite models ·
Coq.

1 Introduction

Projective incidence geometry [8, 5] is one of the simplest description of geometry,
where only points and lines as well as their incidence properties are considered.
In addition, in such a setting, we assume that two coplanar lines always meet.
There exist some finite and infinite models of projective incidence geometry. Fi-
nite projective spaces have been studied extensively from a mathematical point
of view (see e.g [12]). Recently [3], we started studying small finite projective
planes/spaces from a computer science perspective. We formalized usual projec-
tive planes such as PG(2,2), PG(2,3) or PG(2,5) as well as the smallest projective
space PG(3,2) using the Coq proof assistant [7, 1]. We especially focused on prov-
ing the synthetic axioms for projective geometry hold in these models. In this
paper, we study some of the characteristic subsets of PG(3,2), such as spreads
of lines and packings of spreads.

In a three-dimensional setting, the number of points and lines increase rapidly
with the order, as shown in Fig. 1. Thus we need to design extremely efficient
proof techniques for PG(3,2) if we want our approach to be scalable to projec-
tive spaces of higher dimension or larger order. The whole Coq formalization is
available online and can be retrieved at : https://github.com/magaud/PG3q.
Pointers to specific parts of the development are given throughout the paper.

This paper is organized as follows. In Sect. 2, we show how to formally
describe PG(3,2) in Coq using plain inductive types. In Sect. 3, we compute
all the spreads and packings of PG(3,2) and prove some of their properties.
In Sect. 4, we present some of the proof optimization techniques we set up in
order to achieve the proofs. Finally, in Sect. 5, we outline how this work can be
extended to projective spaces of higher dimension or higher order.
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# points # lines # points per line
PG(2, 2) 7 7 3

PG(2, 3) 13 13 4

PG(2, 5) 31 31 6

PG(2, n) n2 + n + 1 n2 + n + 1 n + 1

PG(3, 2) 15 35 3

PG(3, 3) 40 130 4

PG(3, 4) 85 357 5

PG(3, q) (q2 + 1)(q + 1) (q2 + q + 1)(q2 + 1) q + 1

Fig. 1. Numbers of points, lines and points per line depending on the dimension and
the order of projective planes and spaces

2 Inductive specification of PG(3,2) in Coq

2.1 Definitions and operations

We choose to use two simple inductive types to represent points and lines of
PG(3,2). Points are represented by an inductive datatype of 15 constructors
without arguments. Lines are represented in the same way using 35 constructors.
As there are three points per line, the incidence relation can be represented in a
compact way using the match ... with construct of Coq specification language.

Inductive Point :=

| P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9

| P10 | P11 | P12 | P13 | P14 .

Inductive Line :=

| L0 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9

| L10 | L11 | L12 | L13 | L14 | L15 | L16 | L17 | L18 | L19

| L20 | L21 | L22 | L23 | L24 | L25 | L26 | L27 | L28 | L29

| L30 | L31 | L32 | L33 | L34 .

Definition incid_lp (p:Point) (l:Line) : bool :=

match l with

| L0 => match p with P0 | P1 | P2 => true | _ => false end

| L1 => match p with P0 | P3 | P4 => true | _ => false end

| L2 => match p with P0 | P5 | P6 => true | _ => false end

| L3 => match p with P0 | P7 | P8 => true | _ => false end

| L4 => match p with P0 | P10 | P9 => true | _ => false end

| [...]

end.

In order to avoid writing too much code in Coq, we choose to build a generator
(a simple C program) which takes as input the number of points, the number of
lines as well as the incidence relation as a plain file (pg32.txt1) which contains

1 https://github.com/magaud/PG3q/blob/master/pg32/pg32.txt
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Parameter Point, Line : Type.

Parameter eqP : Point -> Point -> bool.

Parameter eqL : Line -> Line -> bool.

Parameter incid_lp : Point -> Line -> bool.

Definition Intersect_In (l1 l2 :Line) (P:Point) :=

incid_lp P l1 && incid_lp P l2.

Definition dist_3p (A B C :Point) : bool :=

(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP B C)).

Definition dist_4p (A B C D:Point) : bool :=

(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP A D))

&& (negb (eqP B C)) && (negb (eqP B D)) && (negb (eqP C D)).

Definition dist_3l (A B C :Line) : bool :=

(negb (eqL A B)) && (negb (eqL A C)) && (negb (eqL B C)).

Axiom a1_exists : forall A B : Point,

{l : Line| incid_lp A l && incid_lp B l}.

Axiom uniqueness : forall (A B :Point)(l1 l2:Line),

incid_lp A l1 -> incid_lp B l1 ->

incid_lp A l2 -> incid_lp B l2 -> A = B l1 = l2.

Axiom a3_1 : forall l:Line,

{A:Point & {B:Point & {C:Point |

(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.

Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line,

dist_4p A B C D ->

incid_lp A lAB && incid_lp B lAB ->

incid_lp C lCD && incid_lp D lCD ->

incid_lp A lAC && incid_lp C lAC ->

incid_lp B lBD && incid_lp D lBD ->

(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->

exists J:Point, incid_lp J lAC && incid_lp J lBD.

Axiom a3_2 : exists l1:Line, exists l2:Line,

forall p:Point, ~(incid_lp p l1 && incid_lp p l2).

Axiom a3_3 : forall l1 l2 l3:Line,

dist_3l l1 l2 l3 ->

exists l4 :Line, exists J1:Point, exists J2:Point, exists J3:Point,

Intersect_In l1 l4 J1 && Intersect_In l2 l4 J2 && Intersect_In l3 l4 J3.

Fig. 2. Projective spaces of dimension 3: definitions and properties (pg3x spec.v)
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for each line of the projective space, the list of the points which are incident
to it. Given these three elements, the system automatically builds the inductive
data-type for points and lines, the incidence relation. It also defines an artificial
order on points and lines based on the index of corresponding points and lines,
i.e. P0 < P1 < P2 < . . . < P14. The specification generator also builds some
auxiliary functions, which will be useful to prove existential statements of the
form ∀l1 l2 : Line, exists P : Point, . . ..

Using plain inductive data-types may seem naive. An alternative approach
to specify points and lines of PG(3,2) could be to use finite types ′In of ssreflect
and the mathematical components library [10, 14]. However the main drawback
is that ssreflect is designed for formal reasoning rather than computing. Thus
checking the incidence between a point and a line is a highly expensive operation,
which prevents us from carrying out proofs efficently. Using plain inductive types
is much more efficient both to check incidence properties and to perform case
analysis. The only drawback is that inductive data-types and functions are huge
to write, but this is not that important as we manage to generate these specifi-
cations automatically. Overall, our choice is to use the main features of ssreflect,
especially the small-scale reflection pattern, but with our own datatypes.

2.2 Proofs

Once the projective space PG(3,2) is described, we check whether all the ax-
ioms for projective space geometry hold for this model. This requires prov-
ing all axioms of the module defined in https://github.com/magaud/PG3q/

blob/master/generic/pg3x_spec.v and presented in Figure 2. This is pretty
straightforward and we try and make it as generic and efficient as possible so
that it can be reused for other models of projective space such as PG(3,3).

3 Spreads and Packings of PG(3,2)

3.1 Definitions

A spread of PG(3,q) is a set of q2 + 1 lines which are pairwise disjoint and thus
partition the set of points. In PG(3,2), it corresponds to some sets of 5 lines.
A packing of PG(3,q) is a set of q2 + q + 1 spreads which are pairwise disjoint
and thus partition the set of lines. In PG(3,2), it corresponds to some sets of 7
spreads. As recalled in [2, 6, 13], it is well known that there is only one spread
(up to isomorphism) in PG(3,2) and two packings (up to isomorphism).

3.2 Generating all Spreads and Packings of PG(3,2)

Using our external program, we automatically generate all sets of lines of PG(3,2)
which are disjoint and cover all the points. As lines contains exactly 3 points,
they need to be sets of exactly 5 lines so that all the points of PG(3,2) are
accounted for. We obtain 56 distinct spreads (modulo permutations of the order
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of the lines involved). We also generate all sets of spreads which are disjoint and
cover all the lines. As before, these sets of spreads must have 7 elements, as the
number of spreads multiplied by the number of lines in each spread equals the
number of lines (35) of PG(3,2). As expected, see Theorem 17.5.6 in [12], we
find 240 packings, upto isomorphism. Spreads and packings are grouped in lists.
The list of spreads contain 56 spreads, each of them being a list of 5 lines. The
list of packings contain 240 packings, each of them being a list of 7 spreads.

Definition S0 := [ L0; L19; L24; L28; L33 ].

Definition S1 := [ L0; L19; L26; L29; L32 ].

[...]

Definition spreads := [ S0 ; S1 ; S2 ; ... ; S54; S55 ].

3.3 Properties

In Coq, we easily check that the computed spreads and packings verify the
properties of spreads and packings.

Spreads can be specified using the following definitions is partition and
is spread5. The function forall Point is a finite universal quantification, and
forall Point (fun t => X t) stands for X P0 && X P1 && X P2 . . . && X P14.

Definition is_partition (p q r s t: list Point) :bool :=

(forall_Point

(fun x => inb x p || inb x q || inb x r || inb x s || inb x t))

&&

(forall_Point

(fun x => negb (inb x p && inb x q && inb x r &&

inb x s && inb x t))).

Definition is_spread5 (l1 l2 l3 l4 l5:Line) : bool :=

disj_5l l1 l2 l3 l4 l5 &&

is_partition (all_points_of_line l1) (all_points_of_line l2)

(all_points_of_line l3) (all_points_of_line l4)

(all_points_of_line l5).

Once these definitions are set, we can prove that the spreads of PG(3,2) are
exactly the ones automatically generated by our external program.

Lemma is_spread_descr : forall l1 l2 l3 l4 l5,

(is_spread5 l1 l2 l3 l4 l5) <-> In [l1;l2;l3;l4;l5] spreads.

In addition, we can prove that all 56 spreads of PG(3,2) are isomorphic. It can
be expressed by stating that there exists a collineation, i.e. an automorphism of
PG(3,2) which respects incidence, between any two spreads of PG(3,2).

Lemma all_isomorphic_lemma : forall t1 t2 : list Line,

In t1 spreads -> In t2 spreads -> are_isomorphic t1 t2.
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To prove this statement, we show it is equivalent to simply proving that there
exists a collineation (we actually build it) from the n-th element of the list to
the (n + 1 mod 56)-th element of the list2.

It is more challenging to check that there are (up to isomorphism) only two
packings.

4 Proof Engineering Techniques

4.1 Using bool instead of Prop

As we work with finite types, equality and the other relations that we use are
decidable. We can directly implement such relations as operations producing
elements of the boolean datatype bool. This is more convenient than defining
them as operations producing elements of type Prop together with a decidability
property: ∀ x y, {x = y} + {¬x = y}. This practical approach is inspired by the
ssreflect [9] and the mathematical components [14] libraries.

In this setting, logical reasoning (eliminating conjunctions or disjunctions) is
a bit more technical. However this makes most proofs much easier to complete
by simply computing a boolean value and checking that it is equal to true.

4.2 Without Loss of Generality

Most proofs are highly branching. For instance, performing case analysis on all
three lines to prove the lemma a3 3 leads to 353 = 42875 cases. In order to make
the proof more tractable, we use a tactic named wlog3, which implements the
without loss of generality principle, as it is described in [11].

This allows to reduce the number of cases to solve explicitly. To use it, we
build a virtual order on the points and lines, simply mapping point Pi (resp. line
Li) to the value i of its index and extends our statement of the form ∀l1, l2 :
Line, . . . to ∀l1, l2 : Line, l1 < l2 → . . . .

Surprisingly, using the without loss of generality tactic forces us to generalize
our statement for Pasch’s axiom to accommodate all cases, depending on the
order in which we consider points A, B, C, and D, as shown in Fig. 3.

The usual conclusion of Pasch’s axiom

(exists I:Point, incid lp I lAB && incid lp I lCD) ->

exists J:Point, incid lp J lAC && incid lp J lBD.

is transformed into a conjunction of two existential properties

2 https://github.com/magaud/PG3q/blob/master/pg32/pg32\_spreads_

collineations.v
3 https://github.com/magaud/PG3q/blob/master/generic/wlog.v
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Fig. 3. An illustration of the new form of Pasch’s axiom used to deal with symmetries

...

(exists I:Point, incid lp I lAB && incid lp I lCD) ->

(exists J:Point, (incid lp J lAC && incid lp J lBD)) /\
(exists K:Point, (incid lp K lAD && incid lp K lBC)).

The tactic wlog was also extremely useful when dealing with spreads and
trying to determine inside Coq which sets of lines are actual spreads.

4.3 Producing Witnesses for Existential Proofs

In the specification generator, we use a form of skolemisation to write functions
which compute the existential variable from the other arguments. For instance,
to achieve the proof of lemma a3 3, we automatically build a Coq function
f a3 3 which, given three lines l1, l2 and l3 computes a line l4 as well as its three
intersection points to lines l1, l2 and l3.

f_a3_3

: Line -> Line -> Line -> Line * (Point * Point * Point)

4.4 Optimizing proofs

We design some optimization techniques for generating and checking proof terms.
We focus on the current goal, applying some sort of locality principle which
means we try to prove a (sub-)goal the very first time we face it. This means
sequences of tactics such as
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intros a; case a; intros H;

try (exact (degen_bool )_ H).

solve_goal.

must be replaced by more efficient sequences like

intros a; case a; intros H;

solve [(exact (degen_bool )_ H |solve_goal].

In this simplified example, we try to apply the tactic (exact (degen_bool )_ H)

for a subgoal and then we switch to the next subgoal. Eventually we solve the
remaining subgoals using the solve_goal tactic. The idea here is to solve the
goal the first time we encounter it. It is achieved by having several possibilities of
tactic applications to solve the goal (this corresponds to the solve [t1|t2|t3]

syntax. The order of the tactics t1, t2 and t3 can be highly significant as well:
we should always call the tactic which is the most successful one on such subgoals
first.

As we face a huge number of cases, we need to design extremely efficient
prototype tactics on some specific subgoals and apply them automatically to all
the subgoals at stake. Fine tuning the tactics rapidly is the key to making the
proofs faster to complete.

Finally, Coq provides some sort of task parallelism in the form of the par

tactical. It was very useful to deal with all the sub-goals of a proof, once we
figure out how to prove the first one. The generic tactic proving the first goal,
say mytactic can be easily applied to all sub-goals in parallel (in some cases, we
have 35x35=1225 or more goals to deal with) by simply writing par: mytactic.

5 Conclusion

In this work, we manage to formalize in Coq the concepts of spreads and pack-
ings. In the context of PG(3,2), we build automatically all the spreads and
packings. We can easily verify that these generated sets of lines (resp. spreads)
are actual spreads (resp. packings). However it remains challenging to verify
that they are the only ones. For spreads of PG(3,2), we face a regression issue
with Coq4 which prevents our proof from being accepted at the Qed step in the
current version of Coq.

During this study, we faced case analysis with a huge number of cases as
well as debugging proof script with thousands of sub-goals. We propose some
proof engineering techniques to make Coq process the files more easily, e.g . by
directly providing witnesses for example or by pruning the proof tree by using a
without loss of generality principle.

So far, we only address properties and transformations which remain in the
same (projective) space. We are currently working on generating specifications of
projective spaces automatically in order to easily have a formal description of two
different projective spaces and thus to be able to formally describe constructions

4 https://github.com/coq/coq/issues/13834
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as the Bruck-Bose construction which allows to build translation planes from
projective planes [4].
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