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Abstract. In this paper, an original approach, for the generation of
locally coherent spatio-temporal graphs embeddding frequent inexact
patterns, is presented. This approach is based on a work carried out
previously, in which a configurable generator for spatio-temporal graphs
has been implemented. These graphs contain spatial and spatio-temporal
edges that are labelled with the RCC8 topological relations. The objec-
tive being to check the consistency of these relations during the con-
struction of the graph, the path-consistency method, based on the com-
position of weak relation, has been implemented in the graph generator.
The approach is precisely described and some experiences are detailed.
Our final objective is to build a generator allowing to generate test bases
that can be used to highlight the advantages and disadvantages of graph
extraction methods.

Keywords: Spatio-temporal graph · RCC8 · consistency · graph gener-
ation.

1 Introduction

The regular improvement of data collection tools and techniques leads more and
more often to model and analyze data that have a spatial but also a temporal
dimension. A natural way to model such data is to use spatio-temporal graphs
(ST graphs), which can be used to represent different phenomena such as events
in videos [19], movement of dunes on the seaside [9], or brain activity [12], etc..

In order to analyze the collected data, e.g. for extracting recurrent phenom-
ena in time and/or space, it is necessary to develop algorithms to search for fre-
quent patterns/subgraphs in ST graphs. However, to develop such algorithms,
it is essential to have a test base of annotated ST graphs. Unfortunately, the
annotation of such data is a very tedious task and even impossible to perform
precisely given the amount of data we handle. The only solution to obtain a
test base is therefore to develop a spatio-temporal graph generator in which we
master the frequent patterns present in these ST graphs.

The generation of such graphs has been described in [11]. In this paper, we
are interested in how to manage the coherence of graphs for the considered set
of relations, namely, the qualitative spatial relations of RCC8 theory [15]. These
relations make it possible to model the evolution of land use on a territory. Fig.
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1, for example, represents the evolution of a set of neighboring plots (modeled
by polygons) over time.

Fig. 1: Evolution of land use in a territory

This article is organized as follows. Section 2 describes the theoretical ele-
ments on which our approach is based, namely the spatio-temporal graph model,
the RCC8 relations and then the qualitative constraint networks. Sections 3 and
4 present the generation algorithm and the experiments carried out. Finally, a
conclusion closes the article.

2 Preliminaries

2.1 Graphs simulation

Graph generation is an important issue in many fields, to simulate real graphs,
to test algorithms or to analyze, visualize or transform data [3]. In most cases,
the goal is to generate realistic graphs. Many models have been presented in
this sense for the generation of complex graphs adapted to the representation of
natural or human systems (semantic web, social networks). Most approaches are
based on statistical distributions of graph properties (number of vertices, number
of edges, degree of vertices, etc.). Barabási-Albert model [5, 4] is one of the best
known. In the Chung-Lu model [1] the probability of an edge is proportional to
the product of the degrees of its two vertices. The Recursive MATrix method
(R-MAT) [6] and Park and Kim model [13] are recursive models to generate
synthetic graphs. The RDyn approach was recently designed [17] for generating
temporal graphs representing the dynamics of network communities. In a context
closer to ours, Kuramochi and Karypis [10] proposed an algorithm to generate
random general graphs including known patterns to create synthetic datasets.
Nevertheless, the consistency issue in the generated graph is not addressed, as
edges have no semantics in these approaches.

In [11], we have developed an approach to generate, in a random way, semantic-
temporal graphs, where the edges are endowed with semantics. We introduce be-



Random generation of a locally consistent spatio-temporal graph 3

low the model of such a graph, inspired by [9]. This is a spatio-temporal graph,
defined as the union of three sub-graphs:

– The graph of spatial relations, that spatially characterizes the interac-
tions between entities at a given time. It is composed of nodes (disks), and
edges (in green) on Fig. 2.

– The graph of spatio-temporal relations, which is based on the same
characteristics as the graph of spatial relations, but considering entities at
different times. It is composed of nodes (disks), and edges (in red) on Fig. 2.

– The graph of filiation relations, defines the concept of identity. It allows
to characterize the transmission of the identity through time. It is composed
of nodes (disks), and edges (in blue) on Fig. 2.

Fig. 2: ST graph modeling the evolution of the territory of Fig. 1

Formally, a ST graph is defined as follows. Let T = {t1, t2, ...tn}, a time
domain, where ti represents a time instance of a given granularity and ti < ti+1

for all i ∈ [1, n]. Let ∆ a set of entities, {e1, e2, ..., em}. Let also Σ, a set of
spatial relations, and Φ, a set of filiation relations.

A spatio-temporal graph G is a tuple (U,EΣ , EΦ), where U is the set of ver-
tices (el, ti) ∈ ∆×T , EΣ is the set of tuples ((ei, ti)T (ej , tj)) where (ei, ti), (ej , tj)
∈ U , ti ≤ tj ≤ ti+1, and T ∈ Σ, and EΦ is the set of tuples ((ei, ti)ρ(ej , ti+1))
where (ei, ti), (ej , ti+1) ∈ U , and ρ ∈ Φ.

This graph model was initially introduced to represent the evolution of ge-
ographical entities [9]. Other filiation relations are studied in [8]. Besides, an
algorithm has been proposed to check the consistency of this representation
with regards to the specifications of a spatio-temporal database.

2.2 RCC8 relations

The spatial and spatio-temporal relations we use are the base relations B of the
RCC8 theory [15] on the spatial domain ∆. These relations define the position
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of two regions : DC(x, y) regions x and y are disconnected ; EC(x, y) they are
externally connected ; PO(x, y) they partially overlap ; TPP (x, y) x is a tangen-
tial proper part of y; TPPi(x, y) y is a tangential proper part of x; NTPP (x, y)
x is a non-tangential proper part of y; NTPPi(x, y) y is non-tangential proper
part of x ; EQ(x, y) x and y are equal (see Figure 3).

Fig. 3: The 8 base relations of RCC8 theory

Set 2B represents the set of relations constructed from the base relations.
It is provided with the usual set operations, union and intersection, the inverse
operation and the weak composition. A relation of 2B is therefore written as
a union of basic relations, for example R = {DC,EC} and is interpreted as a
disjunction. The opposite (denoted ^) of a relation is the union of the inverses
of its base relations. The weak composition is noted � and defined as follows:
Let R and S two relations of 2B, R � S = {b ∈ B|b ∩ (R ◦ S) 6= ∅} where
R ◦ S = {(x, z) ∈ ∆2|∃y ∈ ∆, (x, y) ∈ R et(y, z) ∈ S}. The weak composition of
the basic relations is represented in a composition table [14], as shown in Fig.
7. For example, suppose that three regions x, y, z are such as TPP (x, y) and
EC(y, z) holds, then {DC,EC}(x, z) holds (see Fig. 4).

Fig. 4: Two possible configurations for x and z knowing TPP (x, y) and EC(y, z)

2.3 Consistency

The notion of consistency of a set of spatial or temporal relations between regions
has been studied in the framework of qualitative constraint networks [7]. A
network of qualitative constraints is a couple N = (V,C) where V is a set of
variables on a continuous domain D and C an application that associates to
each pair of variables (Vi, Vj) a set Cij of base relations {r1, ..., rl} taken from
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an algebra of relations. This set represents the disjunction of possible relations
between the two entities represented by the variables Vi and Vj . A consistent
instantiation of N is one where each variable Vi takes a value ei ∈ D such that for
any pair (Vi, Vj) the atomic relation verified by the variables Vi and Vj belongs
to Cij .

Checking the consistency of a network is an NP-complete problem in the
general case [20]. Local methods have been proposed to check weaker forms of
consistency, including path-consistency: a qualitative constraint network N is
said to be path-consistent if for all variables Vi, Vj , Vk ∈ V , Cij ⊆ Cik ◦ Ckj [7].

The path-consistency method consists in performing the triangulation oper-
ation : Cij = Cij ∩ (Cik ◦ Ckj) for any triplet until a fixed point is obtained.
The final network is path-consistent and equivalent to the initial network. In
the framework of RCC8, where we can’t use the composition, but the weak
composition �, we will speak about algebraic closure [16].

Various algorithms have been proposed to check the path-consistency. Their
computation time is related to the number of accesses to the composition table
and thus to the size of the relation set 2B [2]. The authors of [18] present an
algorithm for incrementally checking the consistency of a qualitative constraint
network, which grows by adding spatial or temporal entities. The algorithm
exploits a triangulated graph: when an entity is added at step t, it is linked to
all the entities present at step t−1 (triangulation). The path-consistency method
is then applied to the graph.

Our approach is different as our aim is to generate a graph where each relation
is atomic, and where the issue is to assign to the current edge a relation which
is consistent with the existing ones, as we detail below.

3 Generation of locally consistent ST graphs

We present here an approach for generating locally consistent spatio-temporal
graphs including frequent inexact patterns (subgraphs). We rely on the method
presented in [11], which allows to generate such graphs, including patterns, but
without dealing with the issue of consistency.

We briefly describe here the algorithm for generating spatio-temporal graphs
and their embedded patterns, and then detail and justify the algorithm for check-
ing the local consistency of the generated spatial and spatio-temporal relations.
Let us note that these two types of relations are derived from the set 2B (see
Sect. 2.2).

The algorithm described in [11] simulates spatio-temporal graphs containing
patterns drown in a uniform stochastic generation of nodes and edges. It is a
fully parameterizable algorithm, exploiting Poisson’s law, in which it is possible
to choose the size of the generated graph, the number of spatial, temporal and
filiation relations per node, as well as the size of the source-patterns to be em-
bedded and the number of their transformations. In this paper, we consider a
modified algorithm to control the proportion of patterns, in number of nodes, in
the total graph. The other parameters are listed in Table 1.
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Parameter Description

λn expectation of the zero-truncated Poisson distribution for
the total number of nodes in the graph

λr expectation of the zero-truncated Poisson distribution for
the number of nodes per time instant

Λe Triplet of Poisson law expectations for the number of
spatial/spatio-temporal/filiation relations per node

labelsn List of available labels for nodes

labelse Size 3 table of available label lists for each type of relation

patterns A list of tuples where each tuple is composed of a time in-
stant number and the pattern to insert at this time instant

Table 1: Parameters for the generation of spatio-temporal graphs

This algorithm has three main steps. It first calculates the total number of
nodes (parameter λn, Tab. 1) of the graph to be generated.

– Step 1: generation and transformation of source-patterns, according to spe-
cific parameters (see below); each pattern is assigned to a time instant of the
graph, this information is stored in the parameter patterns.

– Step 2: random generation of nodes for each time instant in the graph
(parameters λr and labelsn). The number of nodes is adjusted according to
the number of nodes in the patterns assigned to the current time instant.

– Step 3: random generation of relations between nodes (parameters Λe and
labelse). The nodes of the current time instant are connected to each other
and to the nodes of the previous time instant. The number of edges is ad-
justed for the nodes of the patterns (if they already have any). Each edge is
labeled with an atomic relation.

In the first step, the pattern generation is based on the following parameters
(Tab. 2): the number of inserted patterns depends on a proportion p (as a per-
centage of the number of nodes) that these patterns should represent in the total
graph. The number of nodes in a source-pattern is randomly drawn in a range
(pnodes). Parameters λr and λe have the same role as for the complete graph.
Each source-pattern is repeated according to a value (support) randomly drawn
in the interval support . Finally, each repetition gives rise to transformations
(parameter λt) in order to introduce variations based on each source pattern.

The average theoretical complexity of this algorithm is O(λn×λr), each node
of the graph being potentially linked to all nodes of the same time instant and of
the preceeding time instant. In the worst case, when the number of time instants
decreases, the complexity tends to O(λ2n) [11].

The objective of the work presented here is to generate a locally consistent
graph based on the consistency model presented in Sect. 2.3. More precisely, it
consists in generating spatial and spatio-temporal relations while making sure
that they form spatial or temporal consistent triangles with the existing edges
in the graph.
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Parameter Description

p Proportion of nodes in the patterns / number in the graph

pnodes Interval for the number of nodes in a source pattern

λr expectation of the zero-truncated Poisson distribution for
the number of nodes per time instant

Λe Triplet of Poisson law expectations for the number of
spatial/spatial-temporal/filiation relations per node

support Interval for the number of repetitions of a source-pattern

λt expectation of the Poisson law for the number of transfor-
mations to be performed on a source-pattern

Table 2: Parameters for pattern generation

Definition 1. A consistent triangle is a clique of 3 vertices in which the three
relations modeled by edges are consistent with each other, that is, ei, ej , ek being
the vertices of such a triangle, Rik ⊆ Rij �Rjk and Rij ⊆ Rik �Rkj.

Definition 2. A subgraph consisting of three nodes that belong to the same time
instant will be called a spatial triangle. The composition schemes of the 4
possible cases, depending on the direction of the edges xy and yz, are shown in
Fig. 5a.

Definition 3. A subgraph consisting of three nodes that belong to two successive
time instants will be called a temporal triangle. Composition schemes of the 4
possible cases, depending on the direction of the edges xy and yz, are presented
in Fig. 5b.

(a) Spatial case

(b) Spatio-temporal case

Fig. 5: Different configurations for the composition of edges connecting the nodes
x and y on the one hand, and y and z on the other hand, in a triangle
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Choosing to limit our approach to a local coherence (3-coherence) is linked to
practical aspects: on the one hand, the embedded patterns are small (3-4 nodes
per time instant, 2 or 3 time instants at most); on the other hand, the number
of relations per node is generally low (even if experiments have been conducted
with high densities, see Sect. 4). Finally, we seek to limit the complexity of ST
graph generation.

Algorithm 1 describes this method. An initialization phase is necessary (l.
1). It allows to initialize a list L with all the relations of B. To determine a
relation between nodes x and z, we search all the nodes y, that have a relation
with both x and z (l. 2). The different configurations (Fig. 5) are considered.
For each node, the list is updated by keeping only the possible relations among
those already present in L (l. 4, 6, 8, 10). Finally, the relation between x and z
is randomly assigned among the possible relations (present in L) (l. 14). In case
the list is empty, no relation is assigned.

The theoretical complexity of algorithm 1 is O(λr) since, given a pair (x, z),
it examines at most all nodes in the current and preceding time instants. In con-
trast, since all relations are atomic relations, only one access to the composition
table is needed for processing a triangle.

Algorithm 1 Generation of a relation between two nodes with local consistency
check
Input: nodes x, z
Output: relation between x and z
1: L = B
2: for each node y such that (x,y) and (y,z) ∈ EΣ do
3: if R(x, y) and S(y, z) then
4: L← L ∩R � S
5: else if R(x, y) and S(z, y) then
6: L← L ∩R � S^
7: else if R(y, x) and S(z, y) then
8: L← L ∩R^ � S^
9: else

10: L← L ∩R^ � S
11: end if
12: end for
13: if L 6= ∅ then
14: return random relation in L
15: else
16: return no relation
17: end if

An example of an obtained graph is presented in Fig. 6: pattern nodes are des-
ignated by the letter P, while generic nodes have only a number. Nodes with the
same number have the same label. On this example, at time t4, P2 is connected
to P1 by a spatial edge NTPP , P2 is connected to P3 (t5) by a spatio-temporal
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1 2PO

P2

deriv

P3

deriv

PO

P4

EQ
cont

P2

cont

cont

cont

P1

NTPP

P1cont

P6cont

NTPP

P3

DC
cont

TPPi

cont

deriv

cont P5

DC
deriv

PO

TPPi
cont

P1

deriv

EC

cont

P5TPPi

DC deriv

3

NTPP

TPPi

DC

P4

TPP

DC

4

Fig. 6: A coherent spatio-temporal graph including patterns: spatial edges are
represented in black, spatio-temporal edges in color, filiation edges in dashed
lines

edge DC, P1 and P3 are connected to P6 (t5) respectively by edges having labels
PO and EC. To connect P1 and P3, the algorithm must successively examine
triangles (P1,P2,P3) and (P1,P6,P3):

– For (P1,P2,P3), we have NTPP^ �DC = NTTPi �DC = {DC,EC,PO,
TPPi, NTPPi}, as shown in the blue box of the composition table (Fig. 7).

– For (P1,P6,P3), we have PO � EC^ = PO � EC = {DC,EC,PO, TPPi,
NTPPi}, as shown in the yellow box of the composition table (Fig. 7).

Finally the relation between P1 and P3 must be chosen in the set {DC,EC,PO,
TPPi, NTPPi}, here TPPi has been selected.

4 Experimentations

In this experimental phase we studied the performance, in terms of computation
time, of the generation algorithm by varying the different parameters (see Tab. 1
and 2).

This set of tests was performed on an Ubuntu machine 18.04.4 LTS, 32 Go
of RAM and 32 cores. However our algorithm only used one of these cores.

In order to observe the influence of the different parameters on the com-
plexity of the generation of consistent spatio-temporal graphs, we varied these
parameters one by one.
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� DC EC PO TPP NTPP TPPi NTPPi EQ

DC DC, EC,
PO,
TPP ,
NTPP ,
TPPi,
NTPPi,
EQ

DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP

DC DC DC

EC DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPP ,
TPPi,
EQ

DC, EC,
PO,
TPP ,
NTPP

EC, PO,
TPP ,
NTPP

PO,
TPP ,
NTPP

DC, EC DC EC

PO DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPP ,
NTPP ,
TPPi,
NTPPi,
EQ

PO,
TPP ,
NTPP

PO,
TPP ,
NTPP

DC, EC,
PO,
TPPi,
NTPPi

DC, EC,
PO,
TPPi,
NTPPi

PO

TPP DC DC, EC DC, EC,
PO,
TPP ,
NTPP

TPP ,
NTPP

NTPP DC, EC,
PO,
TPP ,
TPPi,
EQ

DC, EC,
PO,
TPPi,
NTPPi

TPP

NTPP DC DC DC, EC,
PO,
TPP ,
NTPP

NTPP NTPP DC, EC,
PO,
TPP ,
NTPP

DC, EC,
PO,
TPP ,
NTPP ,
TPPi,
NTPPi,
EQ

NTPP

TPPi DC, EC,
PO,
TPPi,
NTPPi

EC, PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

EQ, PO,
TPP ,
TPPi

PO,
TPP ,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC, EC,
PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPP ,
NTPP ,
EQ,
TPPi,
NTPPi

NTPPi NTPPi NTPPi

EQ DC EC PO PO NTPP TPPi NTPPi EQ

Fig. 7: Composition table for the base relations of RCC8 theory

4.1 Variation of the node number

In this first experiment, only the parameter λn varies, which determines the
total number of nodes in the graph. Parameter λr is fixed so that the number
of time instant does not change (the number of nodes per time instant varies
proportionally to the total number of nodes, see Tab. 8 (a)). Figure 8 (b) shows
that the generation time of the graphs grows exponentially with the total num-
ber of nodes and thus with the number of nodes per time instant. In fact, for
each node created, the algorithm has to go through the nodes of the same time
instance and of the previous one to establish the relations: as λr is the average
number of nodes per time instant, so on average there are at most 2λr×λn ≈ λ2n
operations.
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Parameter Value

graph generation

λn varies from 10000 to 106

λr λn / 100
Λe [5,5,2]

Patterns generation

p 30
pnodes [5,15]
λr 2
Λe [5,5,2]

support [10,20]
λt average pattern size / 2

(a)
(b)

Fig. 8: Graph generation time as a function of the total number of nodes (a)
Parameters (b) Resulting curve

In a second step, in order to examine the influence of the number of nodes
per time, we fixed the total number of nodes and varied the number of nodes per
time instance. This experiment shows that there is a linear relation between the
generation time of the graphs and the number of nodes per time (see Fig. 9 (b)),
for a fixed total number of nodes. Everything being fixed, the only variation is
due to the number of nodes to be visited to establish the relations in the current
time instance and with the previous one. As above, the number of operations is
on average 2λn×λr. Parameter λn being fixed, the calculation time is therefore
proportional to λr.

4.2 Variation of the edge number

We are interested here in the influence of the generation of edges on the gener-
ation time of graphs. We varied therefore the number of relations per node. In
this experiment, the total number of nodes and nodes per time instant are fixed.
Figure 10 illustrates this experience. There is a linear relationship between the
number of relations per node and the generation time of the complete graph until
we reach a plateau with around 100 relations per node. The linear part can be
explained in this way: for each node we have on average λe = Λe[1]+Λe[2]+Λe[3]
creation of edges and Λe[1]+Λe[2] constraint checkings to be performed. For the
whole graph, there are λn × λe operations, this value growing linearly with λe,
λn being fixed. The constant part is due to the saturation of the graph, i.e. each
node has reached its maximum number of edges. Indeed, in this experiment, a
time instance contains an average of 100 nodes, each of which has at most one
relation of each type with a node of the same or previous time instance. Note
that the computational time associated with the consistency checking of rela-
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Parameter Value

Graph generation

λn 10000
λr varies from 100 to 2000
Λe [5,5,2]

Patterns generation

p 30
pnodes [5,15]
λr 2
Λe [5,5,2]

support [10,20]
λt average pattern size / 2

(a)
(b)

Fig. 9: Generation time of a graph as a function of the number of nodes per time
instant (a) Parameters (b) Resulting curve

tions is only related to the number of triplets to examine, since each edge carries
only an atomic relation.

4.3 Variation of the pattern number

In this last experiment, we vary the number of patterns inserted in the graphs (or
more exactly the proportion of nodes coming from patterns, set by the parameter
p, Fig. 11 (a)), the graph size being constant. Figure 11 (b) shows that by
increasing this proportion, the generation time of the graphs increases linearly.
This can be explained as follows: the generation and transformation time of
the source patterns is constant (parameters pnodes, λr, Λe, support and λt are
fixed), the size of the patterns is constant (parameter pnodes), only the number
of source-patterns to be generated to reach a given proportion of nodes wrt the
total number of nodes in the graph varies.

5 Conclusion

This paper presents a method to generate spatio-temporal graphs which spatial
and spatio-temporal edges are locally consistent. To do so, we rely on an existing
algorithm for generating random spatio-temporal graphs [11]. This algorithm
has been modified in the sense that at each addition of an edge (spatial or
spatio-temporal) between two nodes, the consistency of this edge with the pre-
existing edges connecting these two nodes to the same nodes is checked. The
path-consistency method is used for this purpose, in the framework of the RCC8
theory.
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Parameter Value

Graph generation

λn 10000
λr 100
Λe varies from [0,0,0] to [200,200,200]

Patterns generation

p 30
pnodes [5,15]
λr 2
Λe [5,5,2]

support [10, 20]
λt average pattern size / 2

(a)
(b)

Fig. 10: Graph generation time as a function of the number of relations per node
(a) Parameters (b) Resulting curve

The particularity of the algorithm is to insert in the generated graph frequent
inexact patterns. These patterns are generated and transformed, also including
the local consistency checking.

In addition, complexity tests were performed in order to highlight the most
costly steps in the generation of spatio-temporal graphs. These tests have con-
firmed that the added consistency checking step does not change the general
complexity of the original algorithm.

Our general aim is to generate ’realistic’ graphs, with respect to an appli-
cation domain, here the evolution of farming territories. Generated graphs are
’realistic’ if they are similar to graphs representing real spatio-temporal data.
Spatial consistency is a characteristic of these real graphs. Other characteristics
(e.g., node degree for the various relation types) will also be studied.

In the future, a more extensive path-consistency could be developed, following
the work of [18]. Furthermore, graphs generated by this approach will be used
to test various frequent pattern mining methods in a spatio-temporal graph.
Qualitative experiments will then be conducted to evaluate the quality of the
frequent patterns that will be mined on the generated spatio-temporal graphs.
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terns (a) Parameters (b) Resulting curve
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