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Abstract 26 

Background. Radiological preoperative assessment of endometrial cancer (EC) is in some 27 

cases not precise enough and its performances improvement could lead to a clinical benefit. 28 

Radiomics is a recent field of application of artificial intelligence (AI) in radiology.  29 

Aims. To investigate the contribution of radiomics on the radiological preoperative 30 

assessment of patients with EC; and to establish a simple and reproducible AI Quality Score 31 

applicable to Machine Learning and Deep Learning studies. 32 

Methods. We conducted a systematic review of current literature including original articles 33 

that studied EC through imaging-based AI techniques. Then, we developed a novel Simplified 34 

and Reproducible AI Quality score (SRQS) based on 10 items which ranged to 0 to 20 points 35 

in total which focused on clinical relevance, data collection, model design and statistical 36 

analysis. SRQS cut-off was defined at 10/20. 37 

Results. We included 17 articles which studied different radiological parameters such as 38 

deep myometrial invasion, lympho-vascular space invasion, lymph nodes involvement, etc. 39 

One article was prospective, and the others were retrospective. The predominant technique 40 

was magnetic resonance imaging. Two studies developed Deep Learning models, while the 41 

others machine learning ones. We evaluated each article with SRQS by 2 independent 42 

readers. Finally, we kept only 7 high-quality articles with clinical impact. SRQS was highly 43 

reproducible (Kappa = 0.95 IC 95% [0.907-0.988]).  44 

Conclusion. There is currently insufficient evidence on the benefit of radiomics in EC. 45 

Nevertheless, this field is promising for future clinical practice. Quality should be a priority 46 

when developing these new technologies.  47 

Keywords: endometrial carcinoma, imaging, radiomics, machine learning, deep learning, 48 

artificial intelligence.  49 



Introduction 50 

Endometrial cancer (EC) is the first diagnosed gynecological cancer in the United 51 

States, accounting approximately 61,880 new cases and 12,160 deaths in 2019 [1]. Incidence 52 

appears to be increasing due to the population aging and the rise in obesity rates, two main 53 

risk factors of EC [1]. The radiological preoperative assessment (pelvic magnetic resonance 54 

imaging and endometrial biopsy) aims to stage the disease and evaluate the risk of 55 

recurrence, and therefore to determine the appropriate therapeutic management, in 56 

particular for lymph node staging during initial surgery.  57 

However, this preoperative radiological assessment is not precise enough. 58 

Radiological staging may underestimate disease extension and provide inaccurate 59 

assessment of lymph node status. Moreover, most of the prognostic elements of the 60 

International Federation of Gynecology and Obstetrics (FIGO) classification can only be 61 

obtained after final histological examination of surgical specimens.  62 

 Therefore, surgery remains a key element in the management of endometrial cancer. 63 

Its two main objectives are on one hand to perform ablation of the primitive tumor, and on 64 

the other to precisely stage the disease and evaluate its prognosis factors. While the first 65 

objective may be obtained with a “simple” hysterectomy, the latter requires much more 66 

extensive intervention, including a complete omentectomy, pelvic lymphadenectomy and 67 

lumbo-aortic lymphadenectomy [2, 3], whose therapeutic benefit remains controversial. 68 

Patients with endometrial carcinoma are fragile and performing aggressive surgery may lead 69 

to severe complications of critical concern in obese, older and fragile patients. There is 70 

therefore a need of maximizing pre-operative diagnostic performances. A better selection of 71 

patients undergoing surgery would result in reducing overtreatment risk, morbidity and 72 

mortality through personalized care.  73 



Radiological assessment may benefit from a tumor characterization using radiomics. 74 

They are reproducible and quantitative image features allowing the non-invasive 75 

characterization of the tumor heterogeneity [4]. Artificial intelligence in radiology is a recent 76 

discipline allowing high-throughput extraction of digital medical imaging data to obtain 77 

predictive and/or prognostic information about patients and their pathologies by describing 78 

tumor heterogeneity and indirectly molecular and genetic characteristics of the tumor. It 79 

could allow prediction of diagnosis, treatment response and prognosis. This new field of 80 

research is gaining momentum in oncology as its applications are wide and promising, 81 

especially for clinical decision-making and personalized treatment [5]. There is a strong 82 

correlation between radiomic data and clinical outcomes. This concept has already proven 83 

its effectiveness in the preoperative prediction of different solid tumors [6], including lung, 84 

breast and colorectal cancers [7, 8].  85 

The approach of AI differs from the conventional radiological method as it is an 86 

automatic, reproducible and quantitative analysis of images that can go beyond the human 87 

eye. AI algorithms can be trained to analyze either pre-determined parameters (i.e., machine 88 

learning), such as tumor size, tumor shape, lymph nodes, etc., or without human supervision 89 

(i.e., deep learning) with a free analysis chain that may not be clearly explainable for human 90 

intelligence. An example of free analysis chain is the artificial neural network, which is 91 

basically circuits of functions that take images as input and produce analysis on the output. 92 

Neural network can be more or less complex, according to the objective and the input type. 93 

A neural network is called “deep” when it is formed of “hidden layers” in which the 94 

information flows. The more hidden layers are present, the deeper the network is, the more 95 

complex it is. Such a model is powerful enough to adjust perfectly to a specific training 96 

dataset with a risk of resulting in poor performances on new information, which is called 97 



“overfitting”. Therefore, different techniques of internal and external validation aim to avoid 98 

this problem which tampers applicability of the algorithm. “Deep learning” refers to the use 99 

of these deep neural networks.  100 

Artificial Intelligence in Radiology is a promising field that may lead to a better 101 

preoperative radiological assessment of patients with EC, and some literature have already 102 

been published. However, because of its novelty, complexity and rapid evolution, assessing 103 

the quality of this literature can be challenging. Therefore, our main objective was to study 104 

the contribution of radiomics on the preoperative radiological assessment of patients with 105 

EC through a systematic review. Our second objective was to establish a simple and 106 

reproducible AI Quality Score applicable to Radiomics and Deep Learning studies. 107 

 108 

  109 



Methods 110 

Literature Search Approach 111 

Medline (Pubmed) was searched on October 10, 2020, by two independent reviewers (LL, 112 

JD) using the following keywords: endometrial carcinoma, imaging, radiomics, machine 113 

learning, deep learning, artificial intelligence. Original articles were considered if they 114 

studied endometrial carcinoma through imaging-based AI techniques. Non-English articles, 115 

editorials or review articles were not included. Inclusion of studies was made in consensus. 116 

 117 

Data extraction 118 

Data extracted included first author name, year of publication, main objective, study design 119 

(retrospective or prospective, mono or multicentric), imaging technique used, sample size 120 

(training, validation and testing), model type (Machine learning or Deep Learning), classifier 121 

and diagnostic performance metrics. 122 

 123 

Quality assessment using a Simplified and Reproducible AI Quality Score (SRQS) 124 

Assessing radiology research on artificial intelligence (AI) may be complex. Scores have been 125 

proposed to evaluate the quality of AI studies. The Radiomics Quality Score (RQS) proposed 126 

by Lambin et al. intended to provide guidance and evaluation criteria to readers [5]. 127 

However, this score presents some limitations. It is complex to be used in routine, doesn’t 128 

apply to Deep Learning Research, and doesn’t include clinical relevance. Based on published 129 

guidelines for radiomics to ensure standardization, reproducibility and high-quality of 130 

research articles [9, 10], we modified the RQS into a simplified and reproducible score fitted 131 

to Radiomics and Deep Learning studies. This score (SRQS), based on 10 items and ranging 132 

from 0 to 20 points, was designed to focus on essential steps and discriminate robust AI 133 



research articles (Figure 1). Points were awarded based on the presence of each of following 134 

criteria. First, this score acknowledges the clinical impact and relevance of the study (2 135 

points). In a second step, specific details of data acquisition are evaluated: 5 points are 136 

granted if it was prospective, 2 points if image acquisition was performed according to an 137 

up-to-date and standardized imaging protocol, 2 points if the segmentation was performed 138 

automatically, and 2 points if the authors considered the pathological diagnosis as the gold 139 

standard. Thirdly, the score focuses on the AI model design, i.e., training and testing details. 140 

Specific criteria in the training section are proposed to echo each other between Radiomics 141 

and Deep Learning with an allocation of 3 points if the following criteria were present. 142 

Regarding Radiomics, the model should be IBSI-compliant (Image Biomarker Standardization 143 

Initiative [11]). Extraction and selection (correlation and redundance) of features and 144 

classifiers should be detailed. Regarding Deep Learning, neural network architecture 145 

(number of hidden layers, nodes, activation functions…), initialization of model parameters 146 

(random or transfer learning from a pre-trained network) and training approach (data 147 

augmentation, hyperparameters) should be detailed. As mentioned, testing a model, 148 

preferably using an independent and external dataset, is mandatory to ensure its 149 

generalization. The absence of a test cohort was sanctioned in our score with the withdrawal 150 

of 5 points because it is the major step in the development of an AI model. Diagnostic 151 

performance of the model should be evaluated using reliable performance metrics such as 152 

the area under the curve, sensitivity or specificity to be granted 2 points.  153 

Each article was evaluated by two independent readers using this score. The threshold of the 154 

SRQS for sufficient quality was set at 10/20. We also evaluated the reliability of our 155 

simplified RQS by performing a Cohen’s Kappa test.  156 



Results 157 

Articles selected 158 

Seventeen articles [12-28] were included in this review study (Table 1). The clinical 159 

objectives of these articles were to classify cancer severity according to: deep myometrial 160 

invasion (n=5) [14, 16, 19, 22, 25], lympho-vascular space invasion (n=3) [12, 16, 24], lymph 161 

nodes involvement (n=4) [18, 19, 23, 27], “high-risk” endometrial carcinoma (n=2) [20, 28], 162 

histologic grade (n=5) [12, 13, 16, 17, 21], high-risk histological subtype (n = 1) [19]; 163 

endometrial precancerous lesion versus early-stage carcinoma (n=1) [26], benign versus 164 

malignant endometrial lesion (n=1) [15], recurrence-free survival (n=1) [17], cervical stroma 165 

invasion (n=1) [19]. 166 

Of the 17 studies, only 2 were multicentric [18, 28]. None was prospective. The predominant 167 

technique was Magnetic Resonance Imaging (n=14) [12-19, 21, 22, 24, 25, 27, 28]. Positron 168 

emission tomography computed tomography (n=2) [23, 26] and contrast-enhanced CT (n=1) 169 

[20] were the two other modalities studied. Only two studies developed a Deep Learning-170 

based model [14, 22]. The other 15 studies employed radiomics-based models [12, 13, 15-171 

21, 23-28]. 172 

 173 

Quality Assessment 174 

Quality assessment is shown in Table 2. Mean SRQS ranged from 0 to 14. The median score 175 

was 4. 176 

The highest SRQS (14/20) was for the article studying high risk group classification which 177 

included different clinical and radiological parameters [28]. Absence of testing dataset and 178 

retrospective design of the study were the most decisive criteria. Based on this analysis, we 179 

have selected seven articles [22-28] that demonstrated sufficient quality (> 10/20): 180 



myometrial invasion (n = 2) [22, 25], lympho-vascular space invasion (n = 1) [24], lymph 181 

nodes involvement (n = 2) [23, 27], high-risk endometrial cancer (n = 1) [28]and on 182 

differential diagnosis between endometrial precancerous lesion and early-stage carcinoma 183 

(n = 1) [26].  184 

 185 

Article analysis  186 

Only the results of the 7 articles of sufficient quality were analyzed [22-28]. Performance 187 

metrics of these seven articles are summarized in Table 3.  188 

Chen [22] and Stanzione's [25] articles, both published in 2020, studied myometrial 189 

invasion by endometrial carcinoma. Both were retrospective studies based on MRI images. 190 

The study by Chen et al. included 530 patients including 138 in the testing dataset and aimed 191 

to determine the diagnostic performance of a deep learning model in assessing myometrial 192 

invasion. This model demonstrated higher accuracy than radiologists (84.8% versus 78.3%) 193 

based on pathology examination, but the best results were observed when both were 194 

associated (86.2%). However, this study had limitations, including an unbalanced database 195 

with only 18 cases of deep invasion (≥ 50%) and 120 cases of shallow invasion (< 50%) in the 196 

testing dataset. The authors concluded that their model was effective and could be used in 197 

clinical practice by radiologists [22].  198 

The article by Stanzione et al. aimed to measure the performance of a learning 199 

machine model to detect deep myometrial invasion. They included 54 patients (of which 200 

20% were in the testing dataset and 80% in the training dataset). They found an accuracy of 201 

92% versus 82% for unaided radiologists, and an accuracy of up to 100% (n = 11) when the 202 

radiologist was assisted by the algorithm. The main limitation of these results was the low 203 

number of patients. Nevertheless, this study demonstrated the feasibility of this model and 204 



its usefulness in improving radiologists' performance and reducing inter-individual variability 205 

[25].  206 

The article by Luo et al., published in 2020, was interested in evaluating lympho-207 

vascular space invasion in preoperative imaging, as it is an important prognostic parameter 208 

currently only accessible after post-operative pathological examination. The authors 209 

performed a retrospective study based on MRI and developed a nomogram based on clinical 210 

features and a radiomics score. They included 144 patients of which 43 were in the testing 211 

dataset. The nomogram had a sensitivity of 94%, a specificity of 78.6%, and an area under 212 

the curve (AUC) of 0.807. However, this study did not have a dataset validation, thus 213 

exposing itself to the risk of overfitting and poorer diagnostic performance on the testing 214 

dataset. These results could be used to predict preoperative lympho-vascular space invasion 215 

and thus possibly adapt the therapeutic sequence for endometrial cancer [24].  216 

Crivellaro et al. and Xu et al. studied lymph node involvement in endometrial cancer. 217 

Crivellaro et al. published a retrospective study of 167 patients with early-stage endometrial 218 

cancer in 2020. They evaluated the role of the 18FDG PET-scanner in predicting lymph node 219 

involvement. They showed a moderate contribution in this configuration, especially since it 220 

was based on a morphological and not a morphometabolic parameter, thus eventually 221 

suggesting a better efficiency of MRI [23].  222 

Xu et al. published in 2019 a retrospective study evaluating MRI for preoperative 223 

prediction of metastatic lymph node involvement in 200 patients with endometrial cancer. 224 

The algorithm was developed on 70% of the patients and tested on the remaining 30%. The 225 

authors found an accuracy of about 85%, especially for intermediate sized nodes [27].  226 

Yan et al. published in 2020 a retrospective multicenter study on a nomogram based 227 

on clinical and MRI-based radiomic data to predict preoperatively high-risk endometrial 228 



cancers (defined as the presence of at least one of deep myometrial invasion, grade 3 tumor, 229 

lympho-vascular space invasion, cervical stroma invasion, lymph node metastasis, extra-230 

uterine invasion, or non-endometrioid adenocarcinoma) and therefore their optimal surgical 231 

management. They included 717 patients and compared the therapeutic proposals based on 232 

the nomogram with those taken for these patients. They found on one hand good 233 

preoperative prediction rates (AUC between 0.896 and 0.919) and on the other hand a 234 

benefit in terms of correction of clinical decisions, thus suggesting a possible application in 235 

clinical practice for the choice of surgical treatment [28].  236 

Finally, Wang et al. investigated the differential diagnosis between atypical 237 

hyperplasia with field cancerization and early-stage endometrial cancer (IA). They used 238 

radiomics data from PET-scans of 170 patients. Maximum SUV and peak SUV were the best 239 

predictors of diagnosis, especially between field cancerization and invasive cancer [26].  240 

 241 

Reliability of SRQS 242 

The two independent readers were an oncology surgeon and a radiologist. There was an 243 

excellent agreement between the two reviewer’s assessment (Kappa = 0.95 IC 95% [0.907-244 

0.988]). There was almost no variability between the two readers, except for the item 245 

“clinical outcome improving patient management” in 4 articles [17, 19, 21, 24].  246 

 247 

  248 



Discussion  249 

We conducted a systematic review of the currently available data on the impact of 250 

radiomics on preoperative imaging assessment in endometrial cancer. There is a need for a 251 

non-invasive, efficient and reproducible method of stratification of the risk of recurrence to 252 

adapt the therapeutic management of EC. Most of research studies were MRI-based, the 253 

imaging modality of reference, and focusing on relevant clinical issues [14, 16-18, 22-24, 27, 254 

28]. They demonstrated strong diagnostic performance in various objectives such as deep 255 

myometrial invasion, lympho-vascular space invasion, lymph nodes involvement or 256 

histologic grade. However, only few articles matched quality requirements [22-28], and none 257 

provided a tool with a short-term applicability in clinical practice. We are therefore 258 

compelled to consider that to date, we are only at the beginning of the development of this 259 

field. Quality requirements should be of critical concern for researchers and clinicians in this 260 

domain. For this reason, we developed a novel quality assessment score which avoids the 261 

pitfalls of those already available. Nonetheless, radiomics is a very promising field and its 262 

application in endometrial cancer could change our future practices.  263 

 264 

Quality issues 265 

 First, we noted a certain degree of heterogeneity among methodologies. This 266 

heterogeneity is due to a lack of standardization, and this seems to be true not only for 267 

mathematical methodology, but also for analyzed data.  268 

Secondly, most of the included articles did not provide an independent testing of the 269 

developed model preventing them from generalizability and external applicability. Indeed, 270 

performances of AI algorithms can be impressive on training datasets due to overfitting. 271 



While multicentric and prospective studies are necessary for accurately assessing impact on 272 

clinical outcomes, none have been published. 273 

Quality assessment using a Simplified AI Quality Score 274 

Assessing radiology research on artificial intelligence (AI) may be complex. Scores 275 

have been proposed to evaluate the quality of AI studies. The Checklist for Artificial 276 

Intelligence in Medical Imaging (CLAIM) [9] was inspired from validated ones such as the 277 

STARD-AI [29] and CONSORT-AI [30] checklists. The CLAIM intended to provide a writing and 278 

reading map to ensure standardization, reproducibility and high-quality of research articles. 279 

Similarly, Bluemke et al. had previously proposed the key considerations for authors, 280 

reviewers, and readers, from the definition of image datasets to the explainability of AI 281 

algorithms [10]. Moreover, the Radiomics Quality Score proposed by Lambin et al. intended 282 

to provide guidance and evaluation criteria to readers [5]. However, this score presents 283 

some limitations. It is complex to be used in routine, does not apply to Deep Learning 284 

Research and does not include clinical relevance.  285 

To fill with the described requirements, we modified the Radiomics Quality Score into 286 

a novel Simplified and Reproducible AI Quality Score (SRQS) applicable to Radiomics and 287 

Deep Learning studies based on 10 items and ranging from 0 to 20 points. This score was 288 

designed to focus on essential steps and distinguish robust AI research articles. Its main 289 

advantages are to be easy to use, reproducible and discriminant. First, we considered that 290 

no study could be justified without a clinical substrate. Therefore, any study that did not 291 

attempt to address a clinical issue was considered irrelevant. Secondly, we highlighted 292 

details of dataset acquisition as selection biases are of critical concern, especially for AI 293 

algorithms which can perfectly fit to a specific dataset. It is an understatement to say that 294 

the prospective aspect of a study shields from severe bias. Thirdly, model development is 295 



defined by the training and testing details. Training an AI model requires consistency and 296 

robustness. Every detail should be provided to the reader to ensure reproducibility by 297 

another research team. In a matter of reproducibility and standardization in the field of 298 

“traditional” radiomics, the Image Biomarker Standardization Initiative, an independent 299 

international collaboration, gave guidelines and definitions for the extraction of high-300 

throughput image biomarkers. Such definitions of image biomarkers cannot apply to the 301 

field of Deep Learning as they are free of human intervention. As mentioned, testing a 302 

model, preferably using an independent and external dataset, is mandatory to assure its 303 

generalization. We stated in this score that testing a model was the major step in the 304 

development of an AI model. Finally, statistical analysis – including performance metrics – 305 

should be detailed and were therefore included in our score.  306 

 307 

Conclusion  308 

 Although there is insufficient evidence of a benefit of radiomics in endometrial 309 

cancer, preliminary data suggest that these new technologies – applied in conjunction with 310 

human intelligence – can address some of the clinical issues. We found that some models 311 

are already under development and show good performances. These models need to follow 312 

high-quality standards and undergo external validation through prospective clinical trials. In 313 

view of the rapid expansion of this domain, we expect to see in a short-term future new and 314 

evidence-based models with applicability in clinical practice.  315 

 316 

 317 

 318 

 319 
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Table 1: Characteristics of the studies included in the review 

Author 
Year of 

Publication 
Objective Study Design 

Imaging 

technique 

Sample size (n) 

Model 

Type Training Validation Testing 

Chen 2020 

Deep 

myometrial 

invasion 

Retrospective 

Monocenter 
MRI 313 79 138 

Deep 

Learning 

Stanzione 2020 

Deep 

myometrial 

invasion 

Retrospective  

Monocenter 
MRI 43 0 11 

Machine 

Learning 

Luo 2020 

Lympho-

vascular 

space 

invasion 

Retrospective 

Monocenter 
MRI 101 0 43 

Machine 

Learning 

Crivellaro 2020 
Lymph nodes 

involvement 

Retrospective  

Monocenter 
PET-CT 69 0 28 

Machine 

Learning 

Xu 2019 
Lymph nodes 

involvement 

Retrospective  

Monocenter 
MRI 140 Cross-validation 60 

Machine 

Learning 

Yan 2020 

High-risk 

endometrial 

carcinoma 

Retrospective 

Multicenter 
MRI 394 0 323 

Machine 

Learning 

Wang 2019 

Endometrial 

precancerous 

lesion versus 

early-stage 

carcinoma 

Retrospective  

Monocenter 
PET-CT 170 0 

Details 

are 

missing 

Machine 

Learning 

Kierans 2016 

Benign 

versus 

malignant 

endometrial 

carcinoma 

Retrospective  

Monocenter 
MRI 54 0 0 

Machine 

Learning 

Yue 2019 
Histologic 

grade 

Retrospective  

Monocenter 
MRI 91 0 0 

Machine 

Learning 

Yamada 2019 

Histologic 

grade 

Recurrence-

free survival 

Retrospective  

Monocenter 
MRI 121 Cross-validation 0 

Machine 

Learning 

Chen 2017 
Histologic 

grade 

Retrospective  

Monocenter 
MRI 73 0 0 

Machine 

Learning 



Ueno 2017 

Deep 

myometrial 

invasion 

Lympho-

vascular 

space 

invasion 

Histologic 

grade 

Retrospective  

Monocenter 
MRI 137 Cross-validation 0 

Machine 

Learning 

Dong 2020 

Deep 

myometrial 

invasion 

Retrospective  

Monocenter 
MRI 24 6 

48 

(including 

the 6 

patients 

of the 

validation 

group) 

Deep 

Learning 

Bereby-

Kahane 
2020 

Histologic 

grade 

Lympho-

vascular 

space 

invasion 

Retrospective  

Monocenter 
MRI 73 Cross-validation 0 

Machine 

Learning 

Ytre-

Hauge 
2020 

High-risk 

endometrial 

carcinoma 

Retrospective  

Monocenter 
CT 155 0 0 

Machine 

Learning 

Ytre-

Hauge 
2018 

Deep 

myometrial 

invasion 

Cervical 

stroma 

invasion 

Lymph node 

involvement  

High-risk 

histological 

subtype 

Retrospective MRI 180 0 0 
Machine 

Learning 

Yan 2020 
Lymph nodes 

involvement 

Retrospective 

Multicentric 
MRI 622 0 0 

Machine 

Learning 
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Chen 

2020 

R1 1 0 2 0 3 NA NA NA 1 1 0 1 2 11 
11 

R2 1 0 2 0 3 NA NA NA 1 1 0 1 2 11 

Stanzione 

2020 

R1 1 0 2 0 3 1 1 1 NA NA NA 1 0 10 

10 
R2 1 0 2 0 3 1 1 1 NA NA NA 1 0 10 

Luo 

2020 

R1 1 0 2 0 3 1 1 1 NA NA NA 1 0 10 

11 
R2 1 0 2 0 3 1 1 1 NA NA NA 1 2 12 

Crivellaro 

2020 

R1 1 0 2 0 3 1 1 1 NA NA NA 1 2 12 

12 
R2 1 0 2 0 3 1 1 1 NA NA NA 1 2 12 

Xu 

2019 

R1 1 0 2 0 3 1 1 1 NA NA NA 1 2 12 

12 
R2 1 0 2 0 3 1 1 1 NA NA NA 1 2 12 

Yan 

2020 

R1 1 0 2 0 5 1 1 1 NA NA NA 1 2 14 

14 
R2 1 0 2 0 5 1 1 1 NA NA NA 1 2 14 

Wang 

2019 

R1 1 1 2 0 3 1 1 1 NA NA NA 1 0 11 

11 
R2 1 1 2 0 3 1 1 1 NA NA NA 1 0 11 

Kierans 

2016 

R1 1 0 2 0 -5 0 0 0 NA NA NA 1 0 0 
0 

R2 1 0 2 0 -5 0 0 0 NA NA NA 1 0 0 

Table 2: Quality assessment of the studies included in the review 



Yue 

2019 

R1 1 0 2 0 -5 1 0 0 NA NA NA 1 0 0 

1 
R2 1 0 2 0 -5 1 0 0 NA NA NA 1 2 2 

Yamada 

2019 

R1 1 0 2 0 -5 0 1 1 NA NA NA 1 0 1 

2 
R2 1 0 2 0 -5 0 1 1 NA NA NA 1 2 3 

Chen 

2017 

R1 1 0 2 0 -5 0 0 0 NA NA NA 1 0 0 
0 

R2 1 0 2 0 -5 0 0 0 NA NA NA 1 0 0 

Ueno 

2017 

R1 1 0 2 0 -5 0 1 1 NA NA NA 1 2 3 
3 

R2 1 0 2 0 -5 0 1 1 NA NA NA 1 2 3 

Dong 

2020 

R1 1 0 2 0 -5 NA NA NA 1 1 1 1 2 4 

4 
R2 1 0 2 0 -5 NA NA NA 1 1 1 1 2 4 

Bereby-

Kahane 

2020 

R1 1 0 2 0 -5 0 1 1 NA NA NA 1 0 1 

1 
R2 1 0 2 0 -5 0 1 1 NA NA NA 1 0 1 

Ytre-

Hauge 

2020 

R1 0 0 2 0 -5 0 0 0 NA NA NA 1 0 0 

0 
R2 0 0 2 0 -5 0 0 0 NA NA NA 1 0 0 

Ytre-

Hauge 

2018 

R1 1 0 2 0 -5 0 0 0 NA NA NA 1 0 0 

0.5 
R2 1 0 2 0 -5 0 0 0 NA NA NA 1 2 1 

Yan 

2020 

R1 1 0 2 0 -5 1 1 1 NA NA NA 1 2 4 

4 
R2 1 0 2 0 -5 1 1 1 NA NA NA 1 2 4 

 



Table 3: Performance metrics of the 7 articles of sufficient quality (Note: PPV = positive predictive value; NPV = negative predictive value) 

Classifier 
Metrics 

(AUC) 

Performances 

Model Model + human 

Accuracy Sensitivity Specificity PPV NPV Precision Accuracy Sensitivity Specificity PPV NPV 

Chen 

2020 

CNN-based 

Resnet network 
0.78 84,8% 66,6% 87,5% 32,4% 93,3% 86,7% 86,2% 77,8% 87,5% 48,3% 96,3% 

Stanzione 

2020 
Random Forest 0.94 NA 91,0% 76,0% NA NA 92,0% 100,0% NA NA NA NA 

Luo 

2020 

Logistic 

Regression 
0.807 NA 77,8% 78,6% NA NA NA NA NA NA NA NA 

Crivellaro 

2020 

Cut-off on 

volume-density 
0,77 67,9% 42,9% 92,9% 85,7% 61,9% 92,0% NA NA NA NA NA 

Xu 

2019 

Logistic 

Regression 
0,883 

[84,9%-

85,7%] 

[47,1%-

97,0%] 

[44,4%-

93,4%] 

[61,5%-

86,5%] 

[80,0%-

88,8%] 
NA NA NA NA NA NA 

Yan 

2020 

Logistic 

Regression 
0,748 NA 81,8% 53,6% NA NA NA NA NA NA NA NA 

Wang 

2019 

Linear 

Regression 

(LASSO) 

0,715 NA 67,6% 77,8% NA NA NA NA NA NA NA NA 




