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A B S T R A C T   

In emergency cases, when nuclear accidental releases take place, numerical models, developed by French 
Institute of Radiation Protection and Nuclear Safety (IRSN), are used to forecast the atmospheric dispersion of 
radionuclides. These models compute the quantity of radionuclides in the atmosphere, their deposited amount on 
the ground, and the subsequent gamma dose rate. Their results are used to make recommendations to protect the 
population in case of nuclear accident. However, the simulations are subject to considerable uncertainties. These 
uncertainties originate from different sources: input variables (weather forecasting, source term), physical pa
rameters used in the models (turbulent diffusion, scavenging coefficient, deposition velocity, etc.) and model 
approximations (representativeness and numerical errors). 

This paper presents the propagation of input uncertainties through a Eulerian radionuclide transport model, 
ℓdX, applied to the Fukushima nuclear disaster. This uncertainty propagation involves perturbing the input 
variables and making numerous calls to the model. The perturbations should be broad enough to cover the 
possible range of variation of uncertain variables. Weather forecast ensembles are used to take into account 
meteorological uncertainties, and several source terms from the literature are included. The following step is to 
evaluate the spread of the outputs in order to draw insights about the subsequent uncertainties. In order to assess 
the quality of the ensemble of simulations, comparisons with radiological observations were carried out, using 
statistical indicators, both deterministic such as Root Mean Square Error (RMSE) or Figure of Merit in Space 
(FMS), and probabilistic indicators such as rank histograms, Brier score and Discrete Ranked Probability Scores 
(DRPS).   

1. Introduction 

1.1. Context 

Atmospheric dispersion modeling is the numerical implementation 
of physical models that describe the evolution of air pollutants in the 
atmosphere. At French Institute of Radiation Protection and Nuclear 
Safety (IRSN), atmospheric dispersion models are developed and used to 
determine the consequences of an accidental release of radionuclides in 
the atmosphere. The results provide an estimate of the geographical 
spread of the potentially contaminated areas and the corresponding 

impact on human health and environment. These estimations can be 
used as a tool for decision making. On their basis, countermeasures may 
be proposed to protect the population, such as sheltering, evacuation, 
thyroid protection by using potassium stable iodine, restriction of food 
intake or water supply. 

IRSN’s modeling capabilities include a short-range Gaussian puff 
model, pX, used within a few tens of kilometers from the source, and the 
long-range model, ℓdX. The latter, used in this study, is a Eulerian 
transport model, based on the solution of a system of 3D advection- 
diffusion equations. ℓdX is an operational version of Polyphemus/ 
Polair3D (Mallet et al., 2007). The two models were used during and 
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after the Fukushima nuclear disaster in 2011. Atmospheric dispersion 
simulations were carried out with the pX model within 80 km of the 
source (Korsakissok et al., 2013) and over the Honshu island with the 
ℓdX model (Mathieu et al., 2012; Saunier et al., 2013). The pX model is 
typically used between 1 and 30 km from the source, and this may be 
extended up to 80 km if necessary (Korsakissok et al., 2013). The ℓdX 
model is used at regional or continental scale and the domain may 
extend up to a few thousands kilometers. Its spatial resolution depends 
on that of the input weather data. These studies provided a better un
derstanding of the different contamination events, but also shed light on 
the uncertainties that still linger years after the accident. 

Dealing with uncertain information is inherent to a crisis situation, 
where lack of knowledge and incorrect information (e.g., human errors) 
are key issues, especially in the early stage of an accident. There are deep 
uncertainty, as defined by French (2015); French, S. et al. (2020), that is, 
epistemic uncertainties that we know too little of to model or quantify 
them. As the knowledge of the damaged installation’s state and 
sequence of events improves with time, the confidence in the simulation 
results should increase accordingly. However, as proven by the 
Fukushima case, uncertainties can still be large at a post-accident stage 
(i.e. when major releases are over), even when a large number of 
environmental observations are available. Besides, time is a key issue in 
the decision making process during an emergency. Currently, numerical 
simulations are carried out in a deterministic way. A single result is 
obtained by making conservative hypotheses in an attempt to encom
pass all sources of uncertainties. This practical approach has its limita
tions, because (a) it is very difficult to ensure that no possible 
contamination scenario has been left out, and (b) it may lead to un
necessary protective actions that can have large human and economic 
consequences. Therefore, a better understanding and quantification of 
all sources of uncertainties related to atmospheric dispersion simula
tions is crucial. 

1.2. Uncertainty analysis 

The stages of uncertainty analysis of numerical models are, following 
Girard et al. (2014); Armand et al. (2014):  

1. Identify the main sources of uncertainty and the parameters that 
significantly represent them, 

2. For each parameter, construct a probability distribution that repre
sents our a priori knowledge on this variable,  

3. Determine the output variables that are sensitive to these input 
variables,  

4. Propagate the uncertainties through the model,  
5. Use the observations to improve our knowledge on these parameters 

(calibration). 

This paper deals with stages 1–4 for the Fukushima case, as detailed 
in the following sections. 

1.2.1. Input uncertainties (stages 1 and 2) 
Uncertainties in atmospheric dispersion simulations primarily stem 

from input data, namely meteorological fields and source term. The 
former comprise two or three-dimensional fields varying in time for 
several variables such as wind, rain, or atmospheric stability. The latter 
consist in the time-varying release rate for several emitted species, as 
well as emission location and release height (including possible buoy
ancy effects). 

As far as meteorological fields are concerned, some weather situa
tions may lead to larger uncertainties than others. For instance, the 
timing and location of rain events, particularly convective showers, are 
difficult to forecast with accuracy. In the case of low wind speed, the 
wind direction is not well established and uncertainties can be very 
large. Therefore, meteorological uncertainties depend on the weather 
situation as well as on the forecast lead (i.e. how far in the future the 

weather forecast is used). They are also related to the meteorological 
model characteristics, especially its spatial and temporal resolution. In 
the case of the Fukushima accident, several studies highlighted the un
certainty of the meteorological inputs, and their effect on deposition 
patterns (Draxler et al., 2015; Arnold et al., 2015; Leadbetter et al., 
2015). 

The a priori knowledge of a source term, in the pre or early-release 
stage, is derived from the available knowledge of the state of the 
reactor and on-site operators’ actions. In that case, uncertainties can be 
huge but very dependent on the accidental scenario. When environ
mental observations are available, a posteriori source terms can be 
constructed by taking into account these measurements. In the case of 
the Fukushima accident, all source terms in the literature were derived 
from environmental measurements, but there is still a large variability in 
these estimations, both on the total emitted quantities for the different 
radionuclides (a factor 2 or more) and the emission rate as a function of 
time (Mathieu et al., 2012, 2017). 

Aside from these two sources of uncertainties, physical processes 
such as dry deposition, wet scavenging, or turbulent diffusion, are rep
resented with physical parameterizations that are also subject to errors. 
Finally, the dispersion model in itself leads to biases due to numerical 
and mathematical errors. Bedwell et al. (2018) and Wellings et al. 
(2018) conducted a literature review of the range of variation for the 
most common physical parameters used in atmospheric dispersion 
models. Concerning the Fukushima case, the sensitivity to wet deposi
tion schemes was investigated by Arnold et al. (2015); Quérel et al. 
(2015); Leadbetter et al. (2015). 

A summary of these input uncertainties and how they can be 
modelled is provided in Leadbetter et al. (2020). 

1.2.2. Sensitivity and uncertainty propagation (stages 3 and 4) 
The aforementioned studies conducted after the Fukushima accident 

are all local sensitivity analyses, devoted to investigate the influence of 
one particular kind of variable on a given output. While these studies 
allow analyzing in detail the effect of a particular physical process, they 
do not provide a global view on the joint effect of all uncertain variables 
together. A global sensitivity analysis based on Polair3D was carried out 
by Girard et al. (2014, 2016) on the Fukushima case. These papers 
studied the relative influence of a set of uncertain inputs on several 
outputs. They concluded that the highest uncertainties in nuclear 
dispersion simulations for the Fukushima accident were due to the 
weather forecasts and the source term, and quantified the part of output 
variance related to each input variable. These studies were carried out 
by using large ranges of variation in an attempt to broadly encompass 
the input uncertainties, without trying to determine realistic input dis
tributions. In particular, constant, homogeneous perturbations were 
applied to the meteorological fields, while meteorological uncertainties 
are inter-dependent and highly heterogeneous. To take these un
certainties into account, some studies added complex perturbations in 
meteorological inputs (Girard et al., 2020). Another way to represent 
these uncertainties with spatial and temporal variations is using mete
orological ensembles, constructed by weather offices to be representa
tive of weather forecast uncertainties. They have been used as input for 
dispersion models in the case of Fukushima (Sørensen et al., 2016; 
Kajino et al., 2019) as well as in hypothetical nuclear accident scenarios 
(Sørensen et al., 2016; Korsakissok et al., 2018, 2019, 2020; De Meutter 
et al., 2016). These studies accounted for meteorological uncertainties 
only, or, in some cases, both meteorological and source term un
certainties in a systematic approach (that is, all combinations of mete
orology and source terms were simulated), which implies a significant 
computational burden. 

To properly conduct an uncertainty analysis, prior input distribu
tions have to be determined for all uncertain input parameters; these 
distributions are then sampled and propagated within the atmospheric 
dispersion model, typically with a Monte Carlo (MC) method. This 
approach, combined with the use of weather forecast ensembles, was 
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carried out with the short-range model pX on the Fukushima case and 
compared to the systematic, cross-simulations approach mentioned 
earlier (Périllat et al., 2016). Simulations were compared to radiological 
observations of dose rate and airborne deposition measurements 
collected in Japan. 

1.3. Objectives of the study 

The aim of this study is twofold: (a) to investigate the use of a coarse- 
resolution weather forecast ensemble for propagation of meteorological 
uncertainty, and (b) to propagate the uncertainties in the Fukushima 
case at continental scale (up to a few hundreds of km), using the ℓdX 
model. 

Périllat et al. (2016) showed that using a high-resolution meteoro
logical ensemble may not be significantly beneficial for our purpose, and 
a coarse-resolution, operational ensemble may be sufficient to encom
pass most uncertainties. The first part of this paper aims at analyzing 
more thoroughly an operational weather forecast ensemble provided by 
the European Center for Medium-range Weather Forecasts (ECMWF), as 
could be used in case of an emergency (Section 2). In particular, the 
effects of grid resolution (Section 2.2.1) are investigated. 

The second part of this paper (Section 3) presents MC simulations for 
the Fukushima disaster with ℓdX model. In this study, we used all 
members of the weather ensemble, six a posteriori source terms from the 
literature, and random perturbations on the other inputs. The simula
tions are compared to radiological observations of activity concentra
tion in air, gamma dose rate and airborne deposition measurements 
collected in Japan. The principal objectives are the validation of the a 
priori distributions of the uncertain inputs and the analysis of sensitive 
outputs. 

2. Analysis of a meteorological ensemble 

2.1. Description of ensemble weather forecasts 

2.1.1. Principle of ensemble forecast 
Numerical weather prediction (NWP) models are used to predict the 

evolution of the state of the atmosphere. The first step is to evaluate the 
current state of the atmosphere (called the analysis). To achieve this 
goal, millions of observations are available everyday. The various ob
servations and a priori simulated estimations are combined to make a 
consistent 3-D multivariate representation of the atmosphere, a process 
called data assimilation. The resulting analysis is subject to uncertainties 
coming from the observations partial coverage, observational errors as 
well as errors introduced by the data assimilation process itself. The 
analysis is used as initial condition to the subsequent forecasts made by 
NWP models, which rely on a discretization of the mathematical equa
tions governing the physical processes occurring in the atmosphere. 
Therefore, further uncertainties are introduced in the forecasts by the 
physical and numerical approximations made by the model. Boundary 
conditions, such as interactions of the atmosphere with the land or 
ocean, are imperfectly taken into account, leading to an additional 
source of uncertainties. These three sources of uncertainty or error 
(initial conditions, modeling discrepancy and boundary conditions) can 
all be reasons for a forecast to differ from what actually occurs. Due to 
the chaotic nature of the atmosphere, small initial errors can grow 
during the forecast and lead to substantial changes in large-scale pat
terns. The rate at which these inevitable errors grow vary from day to 
day (it is flow-dependent). Sometimes, small errors in the initial con
ditions may result in dramatically different outcomes, while on other 
occasions, the forecasts will be more or less the same regardless of the 
slight perturbations in the initial conditions. 

An ensemble is a set of forecasts run from different initial conditions 
to account for initial uncertainties, and possibly including NWP model 
errors as well. The ensemble of forecasts provides a range of possible 
future scenarios describing how the atmospheric flow may evolve, in 

accordance with our knowledge of its initial state and of the model ca
pabilities. The ECMWF-ENS operational ensemble prediction system 
(EPS), as described in Leutbecher and Lang (2014), comprises fifty 
simulations representing slightly different starting conditions, plus one 
“control” member (without perturbation). Each simulation is called a 
member. The initial perturbations are generated from an ensemble data 
assimilation (EDA) process Buizza et al. (2008). It consists in adjusting 
the recent ensemble forecast (providing a “first guess”) to available 
observations using 4D-var techniques. Ideally, the EDA would be suffi
cient to represent the initial uncertainties. As this step does not provide 
enough spread, this approach is completed by another one called Sin
gular Vector–SV (Leutbecher and Lang, 2014). This mathematical 
technique generates perturbations to an initial state that will grow the 
fastest over a given time interval (here, 48 h). Using these perturbations 
together with the EDA helps to compensate for having a relatively small 
number of ensemble members, by ensuring to produce fast-growing 
forecast spread. 

In addition, the ECMWF-ENS forecast takes account of model un
certainties. Physical parametrizations are used to represent the effect of 
processes that are unresolved (or partially resolved) by the model. In 
particular, subgrid-scale phenomena, occurring at a scale smaller than 
that of a grid box, are parametrized. Uncertainties arise from the 
parametrized processes due to two aspects:  

• Using simplified representations of processes not fully resolved: the 
impact on the resolved flow is represented via some bulk/averaged 
quantity (e.g., surface drag, convection rates, phase transitions, ra
diation transfers),  

• Representing processes that are poorly constrained due to lack of 
observational coverage, or not fully understood (e.g., vertical cloud- 
overlap, composition of the atmosphere, non-orographic drag). 

ECMWF uses a combination of two methods: Stochastically Per
turbed Parametrization Tendencies (SPPT) and Stochastic Kinetic En
ergy Backscatter scheme (SKEB) to account for these different aspects of 
the model uncertainty Palmer et al. (2009). The SPPT scheme introduces 
a random element to the parametrized variables, in order to account for 
the subgrid-scale uncertainty. The SKEB scheme accounts for energy 
transfers between subgrid scales and larger scales. In the ensemble 
construction, each initial (perturbed) state is then used with a different 
version of the numerical model, modified by random perturbations from 
SPPT and SKEB schemes. This inclusion of model uncertainties is made 
in order to generate a larger ensemble’s spread, in an attempt to make 
the spread more representative of the error for variables used in weather 
forecasting. In practice, there are limitations to these schemes in terms 
of physical consistency of the forecast and partial representation of the 
model uncertainties. A better representation of model uncertainties is 
currently under development at ECMWF (Ollinaho et al., 2017). 

2.1.2. Application of ensemble weather forecast to the Fukushima study 
The ECMWF-ENS operational ensemble used in this study was 

retrieved from the ECMWF archive in 2017. It contains 50 members with 
0.25∘ of horizontal resolution and 3-h time step, the domain spans 40 ×

40 grid boxes that cover a great part of Honshu island. The vertical 
resolution of the data is coarse, with only five pressure levels to cover the 
boundary layer height: 50,000, 70,000, 85,000, 92,500, 100,000 Pa. For 
dispersion purposes, the meteorological variables are then interpolated 
on a finer grid adopted to our needs (see section 3.2). The ECMWF 
operational ensemble forecast is representative of the kind of data that 
could be retrieved and used on a relatively short term for emergency 
response. Ensembles of finer resolution have been made operational for 
weather forecast at national level as computer efficiency increases, but 
for a given computational burden, there is a balance between the 
respective benefit of increasing resolution compared to using more 
ensemble members to represent uncertainty (Raynaud and Bouttier, 
2017). The huge amount of data for high-resolution ensembles currently 
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poses a challenge for downloading, processing, using and storing the 
data and results. On the other hand, previous studies have shown that 
coarse-resolution ensembles may be sufficient to provide a first, broad 
view of the main uncertainties related to dispersion (Périllat et al., 
2016). One of the main objectives of this study is to further investigate to 
what extent an ensemble of this spatial and temporal resolution may be 
appropriate to account for uncertainties in the first stage of emergency 
response. 

Another concern is that such an ensemble is designed to capture the 
spread of meteorological variables on synoptic scales, while the domain 
and scales in this study are much smaller. Weather forecast ensembles, 
however, are also used in practice to predict local variables within the 
boundary layer, such as rain showers or wind at 10-m level. It is 
acknowledged that, generally, these ensembles are under-dispersive 
when compared to boundary layer variables, since they fail to take 
into account all sources of uncertainties at this scale. Before using them 
for dispersion within the boundary layer, a first step is to perform a 
model-to-data comparison to such local-scale variables in order to have 
a better view of this under-dispersion (section 2.2). 

A third challenge in this study is posed by the length of the accident 
(three weeks). Usually, weather forecasts are made up to about five 
days. When the accidental scenario spans a longer time period, it raises 
the issue of how to properly combine different ensemble forecasts made 
from different initial times to cover the whole simulation period. To deal 
with this issue, this study uses a meteorological ensemble made of 
forecasts that started from 12 h to 36 h before the current time. For day D 
at 00:00, the ensemble of forecasts was simulated starting from analyzed 
states (i.e., initial states merging simulations and observations) for 12:00 
of the day D − 1. We make use of the subsequent forecasts until the end 
of day D. For day D+ 1, we switch to the better forecasts that originate 
from day D at 12:00. The perturbations of the initial state are indepen
dent from one day to the other. This means that the simulations of a 
member M of the day D and D + 1 do not come from the same pertur
bation which may lead to assimilation jumps when updating the 
ensemble member. Fig. 1 illustrates the cycle, using forecasts with a time 
step of 3 h. The period covered by the meteorological ensemble con
structed that way is 11–30 March 2011. 

This process leaves clear room for improvement and research on 
methods to insure a better temporal continuity in the ensemble members 
for long simulation periods. This ensemble, however, is representative of 
what could be constructed in a real emergency case, in the sense that 24 
h is the typical forecast period that would be used in order to anticipate 
the consequences of potential releases. The Fukushima accident is a 
succession of independent releases coming from different units and 

installation events (Mathieu et al., 2018). It is probable that this kind of 
situation would be dealt with by repeatedly using 24-h forecasts used to 
infer or update recommendations for the protection of the population. 
The ensemble constructed here is made in this perspective. The first 12 h 
of the forecast are not used in order to let the perturbations grow, then 
the next 24 h are used by the simulation. 

2.2. Model-to-data comparison of the meteorological ensemble 

The Automated Meteorological Data Acquisition System (AMeDAS) 
in Japan provides observations of wind direction and velocity, precipi
tation and/or temperature on more than a thousand measurement sta
tions, from which 653 are within our simulation domain. Stations within 
the same grid cell are averaged for comparison purposes, and there are 
354 cells containing at least one meteorological measurement point. The 
comparisons are made from March 12th to March 30th 2011; some ob
servations are given every 10 minutes, others every 1 hour. The mete
orological time step is 3 h but the model output is saved every 1 h in 
order to correspond to the observation time resolution. Therefore, our 
comparisons are made on 354 points and 150 time steps. Finally, among 
the selected points and time steps, the observed values of wind and 
temperature are unavailable about 20% of the time. Indeed, many sta
tions were out of order during the first days following the tsunami that 
triggered the Fukushima accident. 

2.2.1. Subgrid-scale variability 
While ground observations are representative of one given location, 

a forecast gives the average of variables over a three-dimensional grid 
cell. In addition, the horizontal resolution of this ensemble is 0.25∘, i. e 
about 22 km × 28 km at the center of the simulation domain. A cell can 
be spread over different topographies. Therefore, the comparison to 
observations from a given monitoring stations can be biased. For 
example, the temperature predicted at Fujisan is much higher than the 
observation; but the model-to-data difference is constant in time, about 
20∘C. This phenomenon can be explained as follow:  

• The altitude of Fujisan station is about 3775 m above sea level. The 
temperature observed at this station is obviously lower than that at a 
lower altitude;  

• With a large resolution, the cell containing the Fujisan station has a 
large variation in altitude. Weather forecast takes into account this 
variation and compute the average across the cell, Fig. 2. 

Stations like Fujisan create a bias on the evaluation of weather 
ensemble. If we compare the forecast interpolated at each station to the 
measurements, the bias can be important. To circumvent this issue, it is 
preferable to compare the simulations to averages of all stations in each 
grid cell. However, this approach is limited by the small number of 
stations in one grid cell. 

2.2.2. Probabilistic indicators for ensemble evaluation 
There are several output products for ensemble weather forecast 

systems, such as meteograms, which display the time evolution of the 
distribution of meteorological parameters from the ensemble at a given 
location, as illustrated by Fig. 2. To evaluate the quality of an ensemble 
by comparison to observations, it is necessary to derive probabilistic 
scores that will provide a view on the capability of the ensemble to 
correctly represent the uncertainty for a given meteorological variable. 
At ECMWF, the overall performance of the forecasts is evaluated by 
using a set of headline scores which summarize different aspects of the 
forecast. Commonly used verification metrics are the rank histogram, 
spread-skill diagrams, Brier score (BS) and Discrete Ranked Probability 
Score (DRPS) (Hudson and Ebert, 2017). 

While the ECMWF products are routinely verified against observa
tions using these scores (Haiden et al., 2019), the variables of interest 
are those of synoptic scale, as discussed in Section 2.1, whilst we focus 

Fig. 1. Illustration of which meteorological forecasts are used (in bold) during 
the day. The forecasts originate from 12:00 on one day and are used the next 
day only. 
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here on boundary layer variables, which are much more difficult to 
represent but are of prime interest for dispersion. Besides, routine 
verification is often made for a particular forecast lead time, whereas in 
this case different lead times are used (from 12 to 36 h after analysis 
time), to better represent what will actually be used for dispersion. 
Therefore, the verification conducted here is not representative of the 
ensemble quality for weather forecast, but rather, of how it may be 
suitable for use for atmospheric dispersion purposes. Fig. 3 gives a first 
view of three variables: rain, temperature and wind speed of a cell which 
contains weather and radiological stations. The first map in this figure 
represents the location of the cell in Japanese territory. 

2.2.2.1. Rank histogram. Rank histograms are a good way to measure 
how well the ensemble is representative of the observed uncertainty. 
The rank of an observation is determined by counting how many 
members of the ensemble are below this observation. A “perfect” 
ensemble would have a flat histogram (see appendix A.1). 

Fig. 4 shows the rank histograms for precipitation, temperature, 
wind speed and wind direction of the ensemble compared with all 
measurement stations. For the wind speed, we removed the values below 
1ms− 1 because the measurements of low wind speeds are highly un
certain. The ensemble does not spread out enough, hence its rank his
tograms show high external bars. There is a tendency to overestimate the 
wind speed (high left bar). This bias is partially explained by all the 
coastal cells that contain a large proportion of sea area, where the wind 
speed is generally higher than over land. The histogram for precipitation 
shows, with a high bar on the right, that the weather ensemble un
derestimates the observations. The chosen threshold was 0.5mm h− 1, 
the rain gauge threshold, in order to avoid a bias due to the number of 
occurrences with no rain, where all members and observations are equal 
to zero. Therefore, only periods where either an observation or a 
member of the ensemble features a rain episode are taken into account. 
This leads to a limited number of observations for the construction of the 
rank diagram. There are only 9.7% rain observations whose values are 
higher than 0.5 mm− 1. As discussed in Section 2.1, the operational 
ensemble forecasts are not designed to capture the full uncertainty of 
boundary layer parameters. This error is still larger due to the spatial 
and temporal scales of the ensemble. To accurately represent precipi
tation, the spatial and temporal scales are crucial. The subgrid effect 
described in Section 2.2.1 can lead to significant bias, due to the 
discrepancy between the cell average and the observation on station. 
Besides, the 3-h time step may lead to a delay in the beginning or end of 
the rain episode, since rainfall rates are interpolated between two time 
steps. These representativeness errors are not well taken into account by 
the ensemble approach, and are the main limitation of this dataset. 

2.2.2.2. BS and DRPS. The BS is an aggregated measure of discrepancy 
between the observed outcome and a prediction of threshold exceed
ance–the average squared error difference. In other words, it is a cost 
function that measures the accuracy of probabilistic predictions. Thus, 
the lower the BS is, the more accurate is the prediction. In its most 
common formulation, the best and worst possible BSs are 0 and 1 
respectively. 

Assume that we have n binary outcomes o1,…, on ∈ {0,1} that we 
want to predict. Let our predictions be denoted by pi, probability that ith 
outcome is 1, for i = 1,…,n. The BS for these predictions is given by the 
following formula 

BS=
1
n
∑n

i=1
(pi − oi)

2 

In order to evaluate weather forecasts, the BS can be computed for a 
sequence of m thresholds of observed variables. Let us take an example 
in computing BS of rain forecast, we consider H = (h1,…,hm), the vector 
which contains rain thresholds in mm/h. The BS is computed with each 
hj for all j = 1,…,m 

oi =

{
1 if ​ oi > hj
0 otherwise  

and pi = P(ith ​ outcome> hj). 
Fig. 5 shows the Brier Score as a function of threshold for rain, wind 

and temperature. The BS as a function of the threshold should converge 
toward zero for large enough threshold values, where both simulated 
and observed values are always below the threshold (thus being in 
perfect agreement regarding the threshold exceedance). Before that, the 
BS curve may be always decreasing (as for the rain in Fig. 5 (a)) or in
crease and reach a maximum before decreasing (as for the wind speed in 
Fig. 5c). The choice of the range of variation of the variable of interest is 
of particular importance for the result interpretation. Here, the ranges of 
variation are [0.5, 10] mm/hr for rain (to be consistent with the rain 
gauges’ accuracy), [ − 20,20] ∘C for temperature (in accordance with 
wintertime temperatures which may be locally very low, as shown by 2, 
and [0.5, 30] m/s for wind speed. The highest Brier Score obtained is 
around 0.5 for wind speed and temperature, and 0.4 for rain. The highest 
BS, which correspond to the largest discrepancies, are obtained for low 
threshold values. For instance, in the case of rain, the prediction of 
threshold exceedance is less accurate when model or observations have 
zero values (meaning that there are a lot of false-positive or false- 
negative occurrences). 

To aggregate the information provided by these figures, a single 
score called CRPS may be computed. It is obtained by integrating the BS 
on all the thresholds of the variable of interest and dividing by the range 
of variation of the variable. When the range of variation is discrete, the 

Fig. 2. Temperature comparisons at two stations in the same grid cell (Fujisan and Fuji), and topographical map of this cell. The weather forecast ensemble, which 
contains 50 members, corresponds to the blue band and the black dots are measurement values. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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area below the curve is not computed by an integral, but as a sum over 
“bins” that discretize the x-abscissa. The associated score is called 
“discrete rank probability score” (DRPS). Again, a good prediction will 
have a low CRPS or DRPS. However, it should be noted that these scores 
carry the same unit as the variable of interest. So the CRPS (or DRPS) of 
different variables, as shown in Table 1, should not be compared. 

The ECMWF ensemble could be used in case of an emergency situ
ation, although it may not represent very well the boundary-layer 
meteorological variables and should be considered with caution. The 
goal of the next sections is to propagate these uncertainties, along with 
others, through an atmospheric dispersion model and determine 
whether this might nonetheless provide a first assessment of un
certainties for operational purposes. A possibility is that the un
certainties on plume trajectories may accumulate over time and/or 
space, and this, combined with source term and dispersion model un
certainties, might compensate for the limitations of the meteorological 
ensemble itself. 

3. Monte Carlo simulations 

3.1. ℓdX description 

ℓdX is a Eulerian transport model that solves advection-diffusion 
equations over a fixed 3D-grid. It is derived from Polyphemus/ 
Polair3D which is an air quality modeling system. IRSN modified this 
model to meet the requirements and specificities of a nuclear emer
gency. The advection-diffusion equation of this model for a given 
radionuclide, noted by index r, is written as follows: 

∂cr

∂t
+ div(wcr)= div

(
ρK∇

cr

ρ

)
− Fc+Er − Λrcr (1)  

where cr is the concentration in the air of radionuclide r, c the vector of 
concentrations of all radionuclides, F the matrix of decay coefficients for 
all radionuclides, w = (wu,wv,wz) the wind velocity vector, ρ the air 

Fig. 3. Rain [mm], temperature [∘C] and wind speed [m/s] in a grid cell on March 14–16. The map on the right is a zoom on this cell. The red points are the 
meteorological stations, the pink points are the concentration stations and the blue points are the dose-rate stations. Note that Shirakawa is both a meteorological 
station and a dose-rate station. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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density, K the turbulent diffusion matrix, assumed to be a diagonal 
matrix with diagonal (Ku, Kv, Kz), Er the emission term and Λr the 
scavenging coefficient for the given radionuclide. The coefficient of 
horizontal diffusion is computed following a probability density in 
Table 2. The coefficient of vertical diffusion is computed by using Troen- 
Mahrt parametrization within the boundary layer and the Louis formula 
above (Louis, 1979; Troen and Mahrt, 1986). The equation is solved 
using first-order operation splitting, with diffusion integrated after 
advection. 

ℓdX uses a weather forecast and a source term as inputs to calculate 
the concentration in the air and the amount of radionuclides deposited 
on the ground. Speed and amount of deposition depend on weather 
condition, land use coverage and radionuclide’s physical properties. 
Given the concentration in the air and deposition on the ground for each 
radionuclide, the gamma dose rate in the atmosphere can be inferred. 
This makes it possible to estimate the radioactive consequences on 
human health and environment. 

3.2. Simulation setup 

Once all sources of uncertainties have been identified, we sample 
them according to given probability distributions. The MC ensemble 
contains 200 simulations and is carried out on ten parameters, detailed 
in Table 2. For each simulation, a meteorological member and a source 
term are randomly chosen in the weather ensemble and the six source 
terms, with a uniform distribution. For the other parameters, we have 
reused the same variations as proposed by Girard et al. (2014). The 
parameters are not all perturbed in the same way, some are added a 
random value, some are multiplied by a random value, and others are 

replaced by a random value. All parameters are perturbed indepen
dently. The six source terms used are from the literature. Almost ten 
years after the accident, no reliable source term has been produced by 
relying only on the reactor physics and on-site events. All source terms in 
the literature are based on more or less sophisticated inverse or reverse 
modeling techniques, which combine environmental observation data, 
meteorological and dispersion modeling. An account of the different 
source terms available in the literature and the various techniques and 
observation datasets used to obtain them is available in Mathieu et al. 
(2018). Here, six source terms have been retained. Some source terms 
were not selected, either because they did not significantly differ from 
another source term (to avoid introducing bias in the ensemble), 
because they were not deemed relevant due to the spatial and temporal 
scales of interest in the study, or because insufficient information was 
available. Although they are all a posteriori source terms based on ob
servations, the variability in the overall released quantities is important. 
The total release of 137Cs over the whole period ranges from 8 PBq to 
20.6 PBq, and the differences are even larger when looking at particular 
release events, due to large differences in the release kinetics Mathieu 
et al. (2018). These six source terms present complete time series of 
releases for different radionuclides during the three weeks considered in 
the article. Fig. 6 illustrates the time evolution of the release rate for 
137Cs for the six source terms. It shows the large variability between the 
temporal evolution of the different release estimates, with peaks of 
various intensity corresponding to the different release events during the 
three weeks. In addition, the number of radionuclides considered also 
varies between one and eight depending on the source term. 

As this variability is representative of the a posteriori uncertainty, 
additional perturbations have been applied on the released quantities 

Fig. 4. Rank histograms of ensembles.  
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(called emission factor in Table 2) and on the emission release time 
(called emission delay in Table 2). The values used for these perturbations 
come from Girard et al. (2014). They are crude perturbations, in the 
sense that the uncertainty on the released time and quantity is depen
dent on the release event, and therefore should be time-dependent. 
Besides, to be representative of a priori uncertainties, it would be bet
ter to use source terms derived only from installation events, without 
incorporating information from the observations, if available in the 
future. 

Similarly to Girard et al. (2014), we made use of ℓdX which is a 
Eulerian model for radionuclide dispersion described in Section 3.1. The 
simulation domain and grid resolution used by the dispersion model 
coincide on the horizontal with the discretization of the weather fore
casts, that is, a grid cell size of 0.25∘ horizontal resolution and a domain 
that spans 40 × 40 grid boxes to cover a great part of Honshu island. As 
the vertical resolution of the NWP ensemble is very coarse, the meteo
rological fields are interpolated on a vertical grid used for dispersion by 
the ℓdX model. The center altitudes are 20 m, 100 m, 220 m, 340 m, 500 
m, 700 m, 1000 m, 1500 m, 2200 m, 3000 m, 3850 m and 4650 m. The 
model computes every hour and in each grid cell the air activity con
centration and deposition values for all radionuclides released, taking 
into account dry deposition, scavenging processes due to precipitation, 
radioactive decay and progeny. This yields three-dimensional fields 
(resp. two-dimensional for deposition) varying in time. From these 

variables, the ambient gamma dose rate can be derived. Simulation are 
carried out from March 12 to March 30, 2011, with three-weeks atmo
spheric releases. 

As the grid resolution of the model is coarse, the subgrid effect 
detailed in Section 2.2.1 for meteorological fields also applies to 
dispersion results. In particular, close to the source, the grid cell size is 

Fig. 5. BS of original weather forecast ensemble.  

Table 1 
DRPS of original weather forecast.  

Variable DRPS 

Temperature [∘C ] 11.69 
Wind speed [m/s] 2.57 
Precipitation [mm/h] 0.42  

Table 2 
Variation space of ℓdX input variables.  

Variable Distribution/ 
Method 

Variation space 

ECMWF ensemble 
member 

Discrete/replace [member 1, …, member 50] 

Source term Discrete replace [Katata et al. (2015); Terada et al. 
(2012); Mathieu et al. (2012); Saunier 
et al. (2013, 2016); Winiarek et al. 
(2012)] 

Emission factor Log-normal/ 
multiplication 

[1/3, 3]

Source elevation 
[m]

Discrete/replace [0–40, 40–160, 160–280, 280–400] 

Emission delay 
[hours]

Truncated normal/ 
addition 

[ − 6, + 6]

Dry deposition 
velocity [m/s]

Uniform/replace [5.10− 4, 5.10− 3]

Scavenging factor 
aa [hs− 1mm− 1]

Uniform/replace [10− 7, 10− 4]

Scavenging 
exponent ba  

Uniform/replace [0.6,1]

Horizontal 
diffusion [m2s− 1]

Uniform/replace [0, 1.5] × 104  

Factor of vertical 
diffusion 

Uniform/ 
multiplication 

[1/3, 3]

a Scavenging coefficient: Λr = apb
0, where p0 is the rain intensity.[mm.h− 1]
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significantly larger than the size of the plume. Therefore, the error made 
by the Eulerian model in predicting air concentrations close to the 
source is very large, due to an unrealistic initial dilution of the plume. In 
general, it is recommended not to use the results of a Eulerian model at 
distances closer than about 5 cells from the source (Korsakissok and 
Mallet, 2010). 

3.3. Description of the observation datasets 

A review of the radiological observations available for the Fukush
ima case, with their advantages and drawbacks, was made by Mathieu 
et al. (2018). The following sections briefly describe the datasets used 
for our comparison purposes. 

3.3.1. Air activity concentration 
In this paper, we make use of the hourly concentrations of 137Cs 

retrieved by Oura et al. (2015). The air activity concentration is given in 
Bq.m− 3. The data was obtained from the air quality automated moni
toring network measuring suspended particulate matter (SPM) on filter 
tapes. They were measured too late to detect short-lived radionuclides, 
but they give crucial information on the temporal variation of 137Cs 
concentration close to ground level, therefore indicating the passage of 
different plumes. Fig. 7 shows the spatial distribution of the 108 stations; 
unfortunately the repartition is not uniform, especially over the mostly 
contaminated area (in grey). 

3.3.2. Deposition 
Among the long-lived species, 137Cs abundantly contaminated the 

Japanese territory and was measured during several airborne and 
ground measurement campaigns. The airborne measurements obtained 
from the various surveys conducted jointly by Japanese authorities 
(Ministry of Education, Culture, Sports, Science and Technologie; 
MEXT) and the U.S. Department of Energy (DOE) were calibrated 
against the ground readings to map the total 137Cs deposit over Honshu 
island Sanada et al. (2014). The values were corrected from the radio
active decay to represent the deposition on April 1st 2011, after the end 
of all significant releases. While this kind of measurements gives a 
time-integrated information, there is a very fine spatial coverage (a few 
hundreds of meters). Here, the observations were averaged over a mesh 
of resolution 1 km, which amounts to more than 30,000 points. Fig. 8 
shows the corresponding deposition map (values below 10 kBq.m− 2 

were not measured). 

3.3.3. Gamma dose rate 
The gamma dose rate measurements were provided by automated 

stations as early as March 11st , with a 10-min time step. The dose rate 
measurements are available from the IAEA database IAEA (2012). There 
are 88 stations spread over Japan, although the spatial coverage is 
heterogeneous (Fig. 9). The dose rate readings have the advantage of 
measuring the contribution from all radionuclides, including the 
short-lived species that could not be detected by the other monitoring 
systems. It is composed of two parts: the direct plume contribution 
(“cloud-shine”) and the gamma-ray emitted by radionuclides deposited 
on the ground (“ground-shine”). Hence, the cloud-shine is usually 
responsible for peak values observed during the plume passage, whereas 
ground-shine corresponds to a lasting contribution that lingers after the 
plume has left the area, and decreases because of the radioactive decay. 

Fig. 6. Time series of release rate (in Bq/s) of the six source terms considered in 
this study from March 12 to March 26, 2011. 

Fig. 7. Position of activity monitoring stations for 137Cs and their availability 
periods. From Quérel et al. (2016). In grey, the area where 137Cs deposition is 
higher than 10kBq.m− 2. 

Fig. 8. Observed deposition of 137Cs established for April 1st 2011, Quérel 
et al. (2016). 
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3.4. Model-to-data comparison for Monte Carlo simulations 

The 200 simulations from the MC sampling described in Section 3.2 
are now compared to the observation data detailed in Section 3.3. For 
this purpose, the 3-D 137Cs air concentration (resp. gamma dose rate) 
fields given by each member of the ensemble were interpolated on the 
corresponding station locations. As far as deposition was concerned, the 
2-D 137Cs deposition maps at the final time step of the simulation were 
compared to the observation map. The comparison of ensemble results 
to observation data was carried out using both deterministic indicators 
and probabilistic scores, as presented in section 2.2. The deterministic 
scores, such as the Root Mean Square Error (RMSE) and Figure of Merit 
in Time or Space (FMT, FMS), are used to evaluate the ability for one 
single simulation result to accurately reproduce the characteristics of the 
observations (magnitude, spatial and temporal evolution …). For each of 
the 200 ensemble simulations, these indicators can be computed. Then, 
the maximum, minimum and median values of this score over the 200 
simulations are presented. This gives an idea of the performance of the 
different members of the ensemble by comparison to observations. It 
may indicate whether the contamination predicted by one particular 
selected member, or the ensemble median, would be appropriate for use 
as a tool for decision making. However, the main goal of the ensemble is 
to give an estimation of the results uncertainty, which is usually given by 
the ensemble’s spread. Probabilistic scores, such as rank diagrams, BS 
and DRPS, along with time evolutions (similar to the meteograms shown 
in section 2.2) are therefore computed to evaluate the ensemble’s 
quality. All these indicators are computed for the three different 
observation datasets described in section 3.3. 

3.4.1. Deposition 
Pollutants can be removed from the air during the transport by 

various processes. Deposition concerns the transfer from airborne ma
terials, gases or particles, to the soil, water and vegetation. When pre
cipitation is absent, this process is called dry deposition. Deposition by 
precipitation such as rain or snow is called wet deposition or scavenging. 
During the Fukushima accident, significant deposition of 137Cs was 
measured in Honshu island. A substantial proportion comes from wet 
deposition, especially during the two contamination episodes of March 
14–16 and March 20–22 Korsakissok et al. (2013). In the MC ensemble, 
some simulations provide a deposition map comparable to observations, 

as illustrated by Fig. 10a. Other simulations show a lower deposition, 
either because the simulated plume was carried away over the ocean or 
since precipitation did not occur during the passage of the plume, as in 
Fig. 10b and c. 

RMSE. The RMSE is a statistical indicator widely used for model-to- 
data comparison (see the definition in Section Appendix A.5). The 
computation of the RMSE on deposition was carried out with all MC 
members (Table 3). The minimum value over all ensemble members is 
given as an illustration of the best score that could be obtained if a 
proper member selection was applied, for instance by minimization of 
such a score. Of course, this step could only be achieved a posteriori, 
when a sufficient number of observations is available. The RMSE has the 
same unit as the variable of interest, and therefore it cannot be 
compared between different variables. Thus, a ratio between the “best 
estimate” (given by the minimum RMSE of the ensemble) and the 
observation mean is also computed in order to have a normalized indi
cator. In addition, the mean and median RMSE are also given as indic
ative of the average performance of the ensemble. Firstly, these 
indicators were calculated over all measurement points. The value ob
tained is much higher than the observational average, as shown in the 
first line of Table 3. Secondly, it was calculated over the cell average, i.e. 
model-to-data error is then the difference between the prediction in a 
cell and the observational mean in this cell. The ratio “Min/Obs mean” 
decreases from 3.24 to 1.42 because there are not subgrid effects in the 
second case. The RMSE values of the third line use only the measure
ment points whose distances from the source are higher than 80 km. The 
ratio is even better because the short-range error is eliminated. In the 
last line, both subgrid effects and short-range discrepancies are filtered 
out and the RMSE falls at 67% of the observational mean. 

FMS. Figures of merit, like RMSE, are analytic parameters used for 
evaluating the prediction accuracy in relation to observations. FMS is 
calculated at a fixed threshold, and it is defined as the amount of overlap 
between the observational and predicted areas where values are greater 
than the threshold. It is given by the ratio between the intersection of the 
areas and their union (see Appendix Appendix A.3). The value 100% in 
FMS represents a perfect cover of prediction over observation. In 
Table 4, two thresholds are used. The threshold of 10 kBq/m2 corre
sponds to the detection limit, and therefore the whole contaminated 
area displayed Fig. 8 is involved; the threshold of 37 kBq/m2 is a 
Chernobyl reference level. When the threshold increases, the perfor
mance of the model decreases because there are less measurement points 
and a small shift in deposited direction may drastically change the FMS 
values. Following Chang and Hanna (2004), a forecast whose FMS value 
reaches about 50% is satisfactory. Therefore, the results shown in tab: 
fms deposition for the ensemble mean and median are acceptable ac
cording to that statistical indicator for the proposed thresholds. 

Rank histogram. According to Fig. 11a, the ensemble shows a bias as it 
tends to underestimate the observations. The rank map rank map 
Fig. 11b indicates the overestimated (blue points) and underestimated 
(red points) areas. According to Mathieu et al. (2018), the long red 
branch, first north-west and then south-west, corresponding to the 
Abukuma Valley, was mainly contaminated during March 14–16. The 
presence of precipitation and/or fog, together with a concentrated 
plume, caused a strong deposition that most simulations failed to 
reproduce. In particular, fog and light rains are not well predicted by 
weather forecasts and these uncertainties may not be well represented 
by the meteorological ensemble. Besides, overestimation in the 
north-west (the blue area) and underestimation in the south-west (the 
little red area) can be due to the subgrid effect. The plume came into a 
valley and was wedged there but our ensemble can not reproduce this 
because of the coarse resolution. 

BS and DRPS. As the model-to-data comparison on weather forecast, 
we plotted the BS following several thresholds and computed the DRPS 
of three radiological outputs. The BS tends towards zero when the 
threshold increases: with a sufficiently high threshold, all observations 

Fig. 9. Position of dose rate monitoring stations for 137Cs and their availability 
periods. See Quérel et al. (2016). In grey, the area where 137Cs deposition is 
higher than 10 kBq.m− 2. 
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and simulations are below the threshold. This situation arises from the 
lack of events above the threshold and not from the effectiveness of the 
prediction ensemble. In some cases, such as deposition and gamma dose 
rate, Figs. 12 and 15, the BS curve takes on a hat shape which reaches a 
maximum. For deposition, the maximum BS value is a little above 0.3, 
which indicates a good ensemble performance for predicting threshold 
exceedance. The DRPS score of deposition computed from Fig. 12 is 
6 Bq/m2. 

3.4.2. Gamma dose rate 
Fig. 13 presents the time evolution of the gamma dose rate measured 

at two stations, Shirakawa and Kita Ibaraki, as well as the ℓdX pre
dictions by MC method in these stations. The sharp increase generally 
corresponds to the plume arrival at the station location, or to the 
beginning of rain (in the case of an elevated plume not detected by the 
station but washed out by precipitation). After the peak, the plume de
parture generally drives to a decrease of measured dose rate. In the case 
of Shirakawa, the remaining gamma dose rate stays high because of wet 
deposition and slowly decreases due to radioactive decay as shown in 
Fig. 13a. When there is no precipitation and only dry deposition is 
involved, there are less radionuclides deposited, so gamma dose rate will 
decrease brutally after the plume departure, as in Fig. 13b. Shirakawa is 
a station located in the western area where the contamination by 
deposition is high (Fig. 3). The rain meteogram in Shirakawa cell (Fig. 3) 
shows that most meteorological members have a tendency to forecast 
late the beginning of the rain episode on March 15th. This episode is 
responsible for the wet deposition in this area and corresponds in timing 
to the abrupt increase of gamma dose rate observed on this station 
(Fig. 13a). Therefore, the delay in the simulation of the gamma dose rate 
peak observed Fig. 13a can be explained by the difficulty to accurately 
forecast rain. It should be noted that several members (dark blue lines) 
seem to predict peaks with a correct arrival time, but lower amplitude 
than the observed gamma dose rate peak. Besides, it is probable that 
both rain observations and simulations are not accurate enough for light 
rain events, and that light rain might actually have occurred before the 
detection by rain gauges. It is therefore possible that wash-out of the 

Fig. 10. Illustration of the final deposition of 137Cs, computed by three ensemble members, in Bq.m− 2: (a) Final deposition of 69th member, (b) Final deposition of 
28th member and (c) Final deposition of 29th member. 

Table 3 
RMSE on the final deposition [kBq/m2] .   

Min Mean Median Obs 
mean 

Min/Obs 
mean 

RMSE all points 263.27 269.05 282.46 81.06 3.24 
RMSE all cells (cell 

average) 
67.18 92.36 91.5 47.44 1.42 

RMSE points > 80 km  16.69 22.11 21.63 22.15 0.75 
RMSE cells > 80 km  10.56 17.49 14.72 15.72 0.67  

Table 4 
FMS [%] for final deposition at all stations.  

Threshold [kBq/m2
] Max Mean Median 

10 99.16 93.08 82.07 
37 57.64 48.20 42.39  
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elevated plume by light rain may have been sufficient to trigger an in
crease on gamma dose rate station earlier than expected, or a higher 
peak than modelled by our wash-out coefficients (Quérel et al., 2016). 

Kita Ibaraki is a station on the south-west coast as shown in Fig. 13c 
and d. The time evolution of the gamma dose rate observations shows 
three consecutive peaks between March 15th and 17th, corresponding to 
different plume passages. The sharp decrease of gamma dose rate after 
each peak shows that, contrary to Shirakawa, there was no wet depo
sition during this episode. However, some simulation members feature a 
very large gamma dose rate due to deposition, leading to a significant 
overestimation of the observed values. Those may be members where 
either the rain episode, or the wind direction change (first blowing to
ward North-West, then South-West) on March 15th were not accurately 
forecast in time. Additionally, in the MC simulations, a perturbation was 
also applied to the release time on top of choosing various source terms. 
This illustrates how the uncertainties linked to release time and mete
orology (especially rain) may have a very large impact on some stations. 

RMSE. The RMSE of the gamma dose rate is shown in Table 5. The 
subgrid effect is of relatively lesser importance for gamma dose rate than 
for deposition. Indeed, the measurement stations of gamma dose rate 
can detect gamma radiation within a few kilometers, therefore 
smoothing over the spatial variability observed with deposition. For 
stations at more than 80 km from the source, the ensemble minimum, 
average, median and the observational mean are similar. The ratio 
“Min/Obs mean” decreases significantly when we remove the stations at 
less than 80 km from the source, where the numerical diffusion due to 
the grid resolution is too high. 

FMT. In the same way as FMS, the computation of FMT is based on a 
threshold. It represents the ratio of overlap between prediction and 

observation over time (see the definition in appendix Appendix A.4). 
Table 6 confirms that the ℓdX results over the area beyond 80 km are 
better than those over entire Japanese territory or closer to the source. 
The FMT value of the ensemble average is similar to the maximum FMT, 
and 58% is the result of most ensemble members. Following Korsakissok 
et al. (2013), this is a satisfactory value. 

Rank histogram. The triangular shape of the rank histogram of gamma 
dose rates shows that the ensemble spreads out largely in comparison to 
the observations. A threshold of 0.1μSv h− 1 was applied, to account for 
background noise. Contrary to the rank histogram of deposition, the 
rank histogram of gamma dose rate has low bars on the left, as shown 
Fig. 14. This shape suggests that the ensemble is over-dispersed by 
comparison to this variable. This was illustrated by the stations shown 
Fig. 13 and some reasons for this overestimation were already discussed. 
Each gamma dose rate station provides many measurements, but they 
mostly bring similar, correlated information. After the plume has left the 
area, the only difference between two consecutive measurement points 
comes from the radioactive decay of the deposited radionuclides. 
Therefore, in that case, most observations get similar ranks, as it is the 
case at Shirakawa station (see Fig. 13a). This issue creates peaks in the 
rank histogram. 

BS and DRPS. The maximum BS shown Fig. 15 is a little over 0.3, 
which again indicates a good ensemble performance for predicting 
threshold exceedance. The DRPS score of gamma dose rate is 0.012 μSv/
h with a threshold of 0.1 μSv/h to take into account natural background 
radiation. By comparison, Korsakissok et al. (2018) compared several 
ensembles (constructed with the same meteorological ensemble and set 
of source terms, but different dispersion models) with Fukushima ob
servations on March 15th–17th. The DRPS for this episode were globally 
lower, ranging from 0.003 to 0.011. The discretization of the range of 
variation, the way background noise was taken into account and the 
time period which differ from the present study prevent from drawing 
general conclusions from this comparison. However, the better ensem
bles’ performance given in Korsakissok et al. (2018) is consistent with 
the fact that the meteorological ensemble used had a better resolution, 
spatially (0.2∘ with 36 vertical levels) and temporally (hourly values). 

3.4.3. Air activity concentration 
During the Fukushima accident, two main episodes of contamination 

over the Honshu island were observed and will be studied here: March 
14–16 and March 20–22 Mathieu et al. (2018). During the first period, 
the observational amplitude was correctly represented by the ensemble 
but at some stations, a delay in time and a discrepancy in the duration 
was observed. The highest values of most stations are included in the 

Fig. 11. Rank study of final deposition of 137Cs over all points with a threshold at 5 kBq.m− 3. (a) Rank histogram. (b) rank map: the color of each point corresponds 
to the rank of the observation. The dark blue points are overestimated, the dark red are underestimated. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 12. BS of deposition [kBq/m2
].  
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ensemble envelop. Some members largely overestimate the observa
tions. However, at 57 out of 108 stations, the plumes simulated by all 
members do not stay long enough to cover all observations, as illustrated 
by Fig. 16 for Yabuki station. All plumes modelled by the ensemble 
arrive too late at 22 stations. For the second episode, simulations tend to 

underestimate observations and a delay in time is observed for several 
stations. At 39 stations out of 108, the ensemble envelop does not reach 
the highest observed values. The plumes arrive late at 32 stations. 

In Fig. 16, two measurement stations of air concentration are shown: 
Sukagawa and Yabuki. These stations are located in the same cell, about 

Fig. 13. Illustration for gamma dose rate temporal variations in Shirakawa (left), Kita Ibaraki (right), location of the cell containing Kita Ibaraki and zoom in on 
this cell. 

Table 5 
RMSE for gamma dose rates μSv/h.   

Min Mean Median Obs mean Min/Obs mean 

All stations 1.85 2.86 2.19 0.68 2.72 
Stations > 80 km  0.33 0.34 0.39 0.34 0.97 
Stations < 80 km  4.43 6.97 5.3 2.4 1.84  

Table 6 
FMT [%] for gamma dose rate.   

Max Mean Median 

All stations 41.1 33.09 28.22 
Stations > 80 km  58.83 58.61 42.30 
Stations < 80 km  35.74 23.40 21.17  
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70 km in the south-west of the Fukushima plant (Fig. 3). This figure is a 
good illustration of the subgrid effect. ℓdX computes the cell average of 
air concentrations. Hence, the simulations give the same result at these 
two stations. However, the mesh used is coarse, and the plume does not 
fill entirely the cell, as illustrated by Fig. A19 in Appendix Appendix A.2. 
During the first episode, Yabuki station detected several plumes whereas 
Sukagawa station observed only one plume from 03:00 to 21:00 on 
March 15th. The same phenomenon took place during the second 
episode. Therefore, stations inside the plume give measurements that 
differ from those given by stations outside the plume, whereas the 
simulations are identical. This can produce a significant model-to-data 
discrepancy. 

3.4.3.1. RMSE. Table 7 presents for air concentrations: the best RMSE 
among all ensemble members, the RMSE of the ensemble average and 
that of the median. Overall, the “best” RMSE is about 3–4 times the 
observational average, which confirms that the ensemble members do 
not show a very good performance for air concentrations, compared to 
the other observation datasets. 

The RMSE can vary a lot from one member to another (from 
13.43 Bq m− 3 and 116.06 Bq m− 3), which is a sign of high variability in 
the ensemble. There are very few members whose RMSE values are 
higher than 40 Bq m− 3. Note that a high RMSE does not necessary mean 
that an ensemble member is useless. It can still help in capturing some 
part of the uncertainties, and produce the forecasts at some locations 
and times. 

3.4.3.2. Rank histogram. Fig. 17 presents a rank histogram for air 

concentrations. This histogram does not use all measurements. We 
selected stations whose distances from the source are greater than 80 km 
because ℓdX is a long-range model. The resolution used is about 25 km ×

25 km and the model results are reliable only beyond about three to five 
cells from the source, to account for unrealistic numerical diffusion close 
to the source Korsakissok and Mallet (2010). We also put a threshold at 
1 Bq m3 in order to discriminate stations with a significant signal. This 
rank histogram is U-shaped with two external bars that are very high. 
The left bar indicates some overestimation of the ensemble, partly 
because of the coarse resolution that causes plume dilution, inducing 
unrealistic near-source concentrations at some stations. The right bar 
corresponds to some underestimation. Activity concentration is very 
sensitive to the arriving time of the plume. If there is a time delay in the 
simulations, the measured concentration at time t can be higher than all 
members values, leading to a high right bar. The concentration mea
surements are very difficult to reproduce because of the coarse (spatial 
and temporal) resolution, which leads to a rather bad rank histogram. 

3.4.3.3. BS and DRPS. The DRPS of activity concentration is 2 ×

10− 3Bq m− 3 for a threshold of 1 Bq m− 3. The maximum BS is 0.6, which, 
again, represents a lesser ability to forecast threshold exceedance than 
for deposition or gamma dose rates (Fig. 18). 

4. Synthesis and perspectives 

Uncertainties carried by the weather forecasts influence very sub
stantially the results of atmospheric dispersion models: air concentra
tion activity, deposition and gamma dose rate. Among all 
meteorological variables, wind direction and speed, and precipitations 
are obviously two major factors that influence the plume trajectory and 
subsequent contamination patterns. The wind direction determines di
rection and spread of plumes, and precipitation has a strong influence on 
the deposited quantities. The model-to-data comparison to meteoro
logical observations provided a first insight into the suitability of 
weather ensemble forecasts as a descriptor of uncertainties related to 
these boundary layer variables. In this study, the operational ECMWF- 
ENS forecast was retrieved and used for the three weeks of the 
Fukushima disaster (12–30 March 2011). This raised several issues. 
First, the horizontal and vertical resolution of this ensemble, as stored by 
ECMWF, is quite coarse, with a 0.25◦ horizontal grid resolution, only 
five pressure levels within the boundary layer, and a 3-h time step. This 
in turn raises the concern of subgrid variability which will create dis
crepancies with local variables at meteorological stations. Another issue 
was the fact that the ECMWF ensemble prediction system is tuned to be 
representative of large-scale errors. This spread is not sufficient to 
represent the uncertainty within the boundary layer height, as illus
trated in this paper by the rank diagrams for meteorological variables. 
Finally, another challenge was to combine different ensemble forecasts 
from various initial times to span the three-week period of the accident. 
This was done by simply juxtaposing successive 24-h forecasts. This may 
be viewed as representative of what could be used operationally in case 
of an emergency, as successive forecasts would be used to infer of 
complement recommendations for the protection of the population, as 
the accidental sequence develops. However, this leaves clear room for 
future research in order to ensure a smoother transition between 
different ensembles. The ensemble performance shown in this study is 
therefore representative of the quality of an ensemble that could real
istically be used for operational purposes. 

The other question addressed in this study was then to what extend 
this ensemble may be used, despite its limitations, to evaluate the un
certainties in the dose evaluations made by atmospheric dispersion 
models. The study of Girard et al. (2014) ascertained that three uncer
tainty sources are meteorological forecasts, source term and some pa
rameters used inside the model. The perturbation by MC was carried out 
over ten input variables of ℓdX. Among those, the weather forecasts and 

Fig. 14. Rank histogram of gamma dose rate over all measurement stations 
with a threshold of 0.1 μSv/h. 

Fig. 15. BS of gamma dose rate [μSv/h].  
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the source term are uniformly selected in discrete sets. Other variables 
follow different probability distributions. Two hundred perturbed data 
samples were generated, and as many dispersion simulations were 

computed. Observations of air concentrations, deposited quantities and 
gamma dose rates allowed us to evaluate this simulation ensemble with 
several statistical indicators, both deterministic (RMSE, FMS and FMT) 
and probabilistic (rank diagram, BS, DRPS). 

The aim of this study was to implement a method of perturbation on 
inputs and analyze the uncertainty propagation in ℓdX. In the weather 
ensemble assessment, we understood that the coarse resolution of the 
forecasts was responsible for a significant part of the model-to-data 
discrepancy. With the MC perturbations, the simulations’ output 
spread was much larger than what was observed in the meteorological 
ensemble. Although the ensemble did not prove sufficient to represent 
uncertainties for air activity concentrations, the results encompassed 

Fig. 16. Model-to-data comparison of air concentrations at two stations located in the same cell: Sukagawa (left) and Yabuki (right), during two episodes: 14–16 
March 2011 (top) and 20–22 March 2011 (bottom). The red line is the observation. The simulations are represented by the light-blue lines. The dark blue line is the 
average of the simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 7 
RMSEs on air activity concentrations of 137Cs during entire March 2011, for the 
best RMSE among all ensemble members (Min), the RMSE of the ensemble 
average (Mean) and that of the median.  

Thres. Min Mean Median Obs. mean Min/Obs mean 

0.1 Bq/
m3  

13.43 18.76 14.03 3.49 3.84 

1 Bq/ m3  15.18 21.21 15.86 4.38 3.47 

10 Bq/ m3  20.87 29.24 21.83 7.14 2.92  

Fig. 17. Rank histogram of air concentrations in March 2011.  

Fig. 18. BS of activity concentration [Bq/m3].  
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reasonably well the deposition and gamma dose rate observations 
despite the resolution. In addition, the removal of the area within 80 km 
of the source confirmed the ℓdX effectiveness for long distances. One of 
the questions when dealing with ensemble simulations, especially in an 
emergency context, is the computational time. Therefore, the use of a 
coarse-resolution meteorological ensemble may be an acceptable 
choice, compared to a high-resolution ensemble which may improve the 
accuracy but would significantly increase the computational burden. To 
take into account the subgrid effect, suitable perturbations may be 
studied in the future to compensate for this uncertainty not taken into 
account in our ensemble. 

A next step is to improve the perturbations on the key inputs so that 
the ensemble better fits the observations. The comparison should rely on 
probabilistic scores, like the BS or the rank histogram. Several statistical 
methods are available to carry out an ensemble calibration. Among them 
are Bayesian inference schemes, for instance, based on Monte Carlo 
Markov Chain (MCMC) algorithms. This approach makes use of obser
vations to calibrate the model inputs and samples from the a posteriori 
probability distribution of each input variable. However, this approach 
requires a huge number of simulations, of the order of several millions. It 
is not reachable with current models. A future study should therefore 
focus on meta-models’ construction. A meta-model is a mathematical 
approximation of some model but with a much lower computational 

time. The results of the meta-model must be similar to those of the 
model, so that they can replace the model in the MCMC algorithms. A 
more complex issue, raised in this study, is the redundancy in the 
observational data. When two stations are close, they may essentially 
bring the same information. This may also happen at one given station 
because of high correlation in time, such as gamma dose rate stations 
when they are measuring the radioactive decay of the surrounding 
deposition. 
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Appendix A.1. Interpreting by using rank histogram 

The shape analysis of the histograms allows to conclude on potential biases in the ensemble as well as over- or under-dispersions. In the rank 
histogram, the height of the bar i is the number of observations that are higher than exactly i ensemble members. If an ensemble is reliable, the 
observations are indistinguishable from any other ensemble member, and the rank histogram is flat. If an ensemble does not spread out enough, the 
external bars will be higher than the internal bars. If an ensemble spreads out too much, the observations’ dispersion is smaller than the ensemble’s 
spread, and the rank histogram is shaped like a triangle. In case the ensemble has a bias, e.g., overestimates (resp. underestimates) the variable, the 
histogram will show higher bars on the left (resp. on the right) than on the other side. In practice, the rank histograms are rarely flat because all 
uncertainties are not taken into account. 

Appendix A.2. Illustration of subgrid effects

Fig. A.19. subgrid effect description.  

Appendix A.3. FMS 

The FMS formula is 

FMS=
Am ∩ Ap

Am ∪ Ap
100  

where Am is the observed area above the threshold and Ap is the predicted area above the same threshold. 
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Fig. A.20. Illustration of FMS.  

Appendix A.4. FMT 

The FMT formula is the same as the FMS formula. Fig. A21 shows how to find the formula components. The intersection of Am and Ap can be written 
as the minimum between them and the union is the maximum.

Fig. A.21. Illustration of FMT.  

Appendix A.5. RMSE 

Indicator RMSE is the standard deviation of model-to-data error, it aggregates the magnitudes of the difference between simulation and obser
vation in space for various time into a single value. It allows to compare accuracy of different simulations. RMSE is always positive and the value 
0 represents a perfect prediction. In practice, this value is never reached because of various reasons: model error, observational error, etc. Let Y = (y1,

y2,…, yn) the observed vector and Ŷ = (ŷ1 , ŷ2 ,…, ŷn) the predicted vector of variable y. The RMSE formula reads 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ŷi − yi)
2

n

√

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.aeaoa.2021.100112. 
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Twenhöfel, C., de Vries, H., Wellings, J., 2020. Ranking uncertainties in atmospheric 
dispersion modelling following the accidental release of radioactive material. 
Radioprotection 55, S51–S55. 

Leadbetter, S., Hort, M., Jones, A., Webster, H., Draxler, R., 2015. Sensitivity of the 
modelled deposition of caesium-137 from the fukushima dai-ichi nuclear power 
plant to the wet deposition parameterisation in name. J. Environ. Radioact. 139, 
200–211. 

Leutbecher, M., Lang, S.T.K., 2014. On the reliability of ensemble variance in subspaces 
defined by singular vectors. Q. J. R. Meteorol. Soc. 140 (682), 1453–1466. 

Louis, J., 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary- 
Layer Meteorol. 17. 
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