
HAL Id: hal-03397627
https://hal.science/hal-03397627

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quantification of Conceptual Model Uncertainty in the
Modeling of Wet Deposited Atmospheric Pollutants
Laura Urso, Mouhamadou Moustapha Sy, Marc Andre Gonze, Philipp

Hartmann, Martin Steiner

To cite this version:
Laura Urso, Mouhamadou Moustapha Sy, Marc Andre Gonze, Philipp Hartmann, Martin Steiner.
Quantification of Conceptual Model Uncertainty in the Modeling of Wet Deposited Atmospheric Pol-
lutants. Risk Analysis, 2022, �10.1111/risa.13807�. �hal-03397627�

https://hal.science/hal-03397627
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


n> Check for updates

Risk Analysis, Vol. 0, No. 0, 2021 DOI: 10.1111/risa.13807

Quantification of Conceptual Model Uncertainty in the 
Modeling of Wet Deposited Atmospheric Pollutants

Laura Urso ©/’* Mouhamadou Moustapha Sy ,2 Marc-André Gonze,3 Philipp Hartmann,1 

and Martin Steiner1

Conceptual model uncertainty and parameter uncertainty are dominant contributors to the 
total uncertainty of a radioecological model output. In the present study the focus is on con- 
ceptual model uncertainty, which is often not acknowledged. Conceptual model uncertainty 
is assessed by subtracting from the total uncertainty of the model output the propagated 
parameter uncertainty, obtained by means of Bayesian inference analysis. The conceptual 
model uncertainty is quantified for two process-based models, which describe the intercep­
tion of wet deposited pollutants under equilibrium and kinetic conditions, respectively. The 
natural variability due the chemical valence of the elements considered is accounted for in 
both models. Quantitative evidence has been obtained that the conceptual model uncertainty 
can contribute to the total uncertainty budget of the models for interception of wet deposited 
pollutants at least as much as, if not more than, parameter uncertainty.

KEY WORDS: Model structure;Bayesian modeling;uncertainty

1. INTRODUCTION

1.1. Environmental Models and Uncertainty of 
Their Output

Environmental models deliver outputs that are 
characterized by an inevitable degree of uncertainty.

Uncertainties can be either of epistemic or 
aleatory nature (Hoffman & Hammonds, 1994), 
(Salbu, 2016). Generally, an epistemic uncertainty 
arises from a misunderstanding of the processes in- 
volved or from the lack of relevant data. This can
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be reduced by more research or empirical effort. 
Aleatory uncertainty (also called variability) is a sta- 
tistical uncertainty, for which quantities vary in space 
and time because of the pure stochastic nature of 
the processes involved. Such variability is an inher- 
ent property of many natural environments, of pro­
cesses related to the transfer of pollutants in the en­
vironment, of animal and human behavior, and so 
on. When enough reliable data are available, vari­
ability can be quantified and properly accounted for, 
but cannot be reduced. In the field of radioecology, 
for example, variability of spatial soil properties, the 
variability of plant characteristics even within same 
species as well as variability related to the uptake of 
radionuclides via food in animals and humans is often 
acknowledged (Simon-Cornu et al., 2015).

Epistemic uncertainty types that contribute to 
the total uncertainty of a model output are exten- 
sively described by many authors (Ascough Ii, Maier, 
Ravalico, & Strudley, 2008; EPA, 2009; Petersen, 
Janssen, & Van der Sluijs, 2003; Refsgaard, van der
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Sluijs, H0jberg, & Vanrolleghem, 2007; Rowe, 1994; 
Salbu, 2016; Walker et al., 2003).

Model parameters are constant quantities 
(Kirchner & Steiner, 2008) whereas model input 
variables are time-dependent quantities. These are 
usually measured during experimental activities.

Epistemic uncertainties may include:

• parameter uncertainty, which arises from a lim- 
ited knowledge of the values for the model pa- 
rameters and the correlations between model 
parameters;

• conceptual model uncertainty (sometimes also 
called structural or model uncertainty), which 
arises from an inadequate or oversimplified 
model structure that does not represent key 
characteristics of an ecosystem and key pro­
cesses;

• input uncertainty or the uncertainty on the val­
ues of the input variables, which arises princi- 
pally from inaccuracies while measuring these 
alongside the process of concern.

• scenario uncertainty, which arises from an in- 
complete knowledge of the scenario to be mod- 
eled, especially site-specific information and 
data;

• modeler uncertainty, which arises from the (im- 
perfect) way in which a modeler translates an 
assessment situation in a model (inadequate in- 
terpretation of the assessment situation, selec- 
tion of an inappropriate model);

• computational/numeric uncertainty, which 
arises from inaccuracy in numerical solutions.

In numerous environmental disciplines, uncer- 
tainty contributions have been not only character- 
ized but also quantified (e.g., Alderman & Stanfill, 
2017; Jin, Xu, Zhang, & Singh, 2010; Lindenschmidt, 
Fleischbein, & Baborowski, 2007; Radwan, Willems, 
& Berlamont, 2004). Evidence has been brought that 
in many cases conceptual model uncertainty explains 
most of the difference between experimental data 
and model output (e.g., Draper, 1995; Engeland, Xu, 
& Gottschalk, 2005; H0jberg & Refsgaard, 2005; 
Neuman, Wierenga, & Nicholson, 2003).

Methods to evaluate conceptual model uncer- 
tainty are manifold and no standard recipe is avail- 
able. However, many make use of the assump- 
tion that the residual between experimental output 
and modeled output quantifies the total uncertainty. 
For example, starting from probabilistic or Bayesian 
treatment of parameter uncertainty, the other con­

tributions to the overall uncertainty can be obtained 
with decomposition of mean squared error as in Al- 
derman & Stanfill (2017), Jin et al. (2010), Draper 
(1995), and Wallach et al. (2017). If several different 
conceptual models are available multimodel analysis 
is possible which requires high computational effort 
as in Symonds & Moussalli (2011), Walsh & Kaiser 
(2011), McAllister & Kirchner (2002).

In the context of radioecology, conceptual model 
uncertainty has not been quantified so far. The 
present study addresses this gap by considering a spe- 
cific case study involving two process-based models 
developed for quantifying the process of interception 
of wet deposited pollutants including radionuclides.

1.2. Conceptual Model Uncertainty in 
Radioecology

Radioecological models have often a very simple 
mathematical structure, for example transfer factors 
or parametric equations (Urso, Hartmann, Diener, 
Steiner, & Vives i Batlle, 2015), that lacks of causal 
attributes and that represents in an aggregated form 
the processes under consideration. For example, con- 
ceptual model uncertainty in radioecology plays an 
important role when (Gonze & Sy, 2016), (Salbu, 
2016):

• empirical, highly sensitive parameters are used, 
for example the so-called concentration ratios 
and transfer factors. Concentration ratios quan- 
tify the transfer from one medium to another 
one, for example concentration ratio soil-plant, 
soil-mushroom, soil-cow milk, and so on. These 
factors can vary over orders of magnitude and 
are based on measurements of the total ac- 
tivity concentration in bulk samples (Bq kg-1, 
Bq m-2);

• relevant processes are deliberately excluded, 
for example resuspension. Resuspension (Prohl, 
2003) is the process by which contaminated par- 
ticulate material in soil or sediments are remo- 
bilized into the air or the water column, re- 
spectively, by mechanisms such as wind action, 
sea currents and mechanical disturbances by hu- 
man activity. Although generally not considered 
to be a significant pathway of human exposure 
it may become an important secondary source 
of airborne exposure for example due to min- 
ing activities because of the larger amounts of 
dust produced and the increased amounts of
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radionuclides that can be inhaled or following 
a nuclear accident;

• modeling of atmospheric dispersion of the ra­
dionuclides is too simple and inadequate. For in­
stance, when sites with complex topography are 
modeled with Gaussian model, which is appro- 
priate for flat sites (Leelossy, Lagzi, Kovacs, & 
Mészaros, 2018).

• the radioactive particle characteristics are not 
considered in the characterization of the source 
term, for example characteristics of radionu­
clide inventory of a specific environmental com- 
partment (IAEA, 2011);

• it is assumed that the system is in an equilibrium 
state when this is not the case (i.e., the dynamics 
of the process are neglected);

Because of the too simple mathematical struc­
ture used in many cases, conceptual model uncer- 
tainty together with parameter uncertainty can be 
considered a major contributor to the total uncer­
tainty budget of model output. Objectives of the 
present study are to apply a methodology for char- 
acterizing and quantifying conceptual model uncer- 
tainty to the modeling of interception of wet de- 
posited atmospheric pollutants and to distinguish 
contribution of the conceptual model uncertainty to 
the total uncertainty budget of the model output 
from the contribution provided by parameter uncer- 
tainty.

2. MATERIALS AND METHODS

2.1. Total Uncertainty of a Model Output

The present study builds upon the analysis and 
results of (Gonze & Sy, 2016), in which two process- 
based models for interception of wet deposited pollu- 
tants are developed and analyzed in terms of parame- 
ter uncertainty and model performance. In (Gonze & 
Sy, 2016) as well as in the present study, it is assumed 
that the measure of the total uncertainty of model 
output is given by the residual between modeled out- 
put and the experimentally obtained quantity. Under 
this assumption, it is also implicitly granted that the 
data used to carry out quantitative uncertainty anal­
ysis is representative of the studied quantity/process. 
The effect of variability also impacts the residuals 
and hence differentiation between uncertainty and 
variability needs to be addressed. In the present 
study, variability is assumed to be solely induced by 
the physicochemical characteristics of the pollutant.

Quantification of Conceptual Model Uncertainty

Not all the uncertainty contributions listed in Sec­
tion 1 propagate directly to the model output. For ex­
ample, scenario uncertainty is usually addressed by a 
“What if” type of analysis (Refsgaard, Van der Sluijs, 
Brown, & Van der Keur, 2006). However, parame- 
ter uncertainty and conceptual model uncertainty do 
propagate to the model output. The authors that pro- 
duced datasets used in the present study did not pro­
vide any information about quality of measurement 
and/or of the sampling strategy and therefore input 
uncertainty is not accounted for. However, in (Gonze 
& Sy, 2016) a (not formal) sensitivity analysis based 
on the mathematical analysis of the models, estima­
tion of the ranges of variation for input quantities and 
Monte Carlo calculations was carried out and impact 
of input variables and model parameters on model 
output was assessed.

2.2. Equilibrium Model and Kinetic Model for 
Quantifying Wet Interception Process

Wet deposition is the process for which airborne 
pollutants are entrained by falling rain droplets and 
deposit onto the ground surface. In the case of a vege- 
tated surface, wet interception is the process by which 
a fraction of the deposit is intercepted by the aerial 
biomass (e.g., shoot). The process of wet interception 
is quantified in terms of wet interception factor fB, 
defined as:

t,=B (1)

where f is the ratio between the amount of pollutant 
retained by plant and the total amount of pollutant 
deposited on the soil plant system. The f, is obtained 
by normalizing f to the standing biomass B [kg m-2 
d.w.] in order to account for different growth phases 
of the plants. f depends upon the plant/foliage char- 
acteristics, precipitation characteristics and element 
characteristics. The amount of pollutant absorbed by 
the plant will be due to the balance between drainage 
and absorption mechanisms, water storage capacity 
and chemical valence of the pollutant. In fact, it is 
observed that inert particles interact more with leaf 
surfaces than divalent cations and these are more re­
active than monovalent cations (Gonze & Sy, 2016). 
Anions (e.g. iodine) do not interact with plant sur­
faces. Two process-based models are presented in de­
tail in (Gonze & Sy, 2016). These have been derived 
from mass balance equations with explicit parameter- 
ization of the hydrological, biological and chemical 
mechanisms involved.
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The équations used in the analysis are the analyt- 
ical solutions to the system of mass balance equations 
described in detail in (Gonze & Sy, 2016). The equi- 
librium model (EM) has been obtained by assuming 
that the interaction between pollutant and plant fo- 
liage is instantaneous and reversible (Gonze & Sy, 
2016). The kinetic model (KM), instead, has been ob- 
tained by assuming that the interaction between pol- 
lutant and plant foliage is irreversible and depends 
on the kinetics of absorption and drainage processes. 
The EM and KM equations are provided here for 
completeness:

• EM:

f 1 - P if T < Ts
lTl ■ (1 - (1 - k ■ Ts) ■ e-À'(T-T)) if T > Ts

where

X = Ds
LAI ■ (L + CR)

(3)

• KM:

Table I. Parameters and Input Quantities Involved in EM and 
KM

L (mm) Specific foliage storage

SLA (m2 kg-1d.w.) Specific foliage area
B (kg d.w. m-2) Standing biomass density
Eo (mm h- Evaporation rate
H (mm) Rainfall height at time of

deposition
I (mm h-1) Rainfall intensity
p(-) Throughfall coefficient
CR (mm) Concentration ratio
J/K (mm h-1 ) Absorption velocity

pollutant and plant foliage in the EM whereas the ab­
sorption velocity J/K (mm h-1) mathematically rep- 
resents the interaction between pollutant and plant 
foliage in the KM. The throughfall coefficient p pro­
vides the fraction of rainfall the reaches the ground 
without hitting the plants. The biomass density B is 
specific to each herbaceous species whereas the rain­
fall height H and the rainfall intensity I are specific

[Lp p LAI L Ts +
if T < Ts 

T +LAI L
Ds

a+Ds a+(1-p)-I
) ■ (1 - e-l<T-Tsif T > TsD D (4)

where

a = — ■ LAI
K

(5)

and
. a + Ds
K — LAI- L

(6)

To use Equation (2), (3), (4), (5) and (6)

the single-sided leaf area index LAI [m2 m 2] = 
SLA ■ B
the exposure time T [h] = H
the saturation time Ts [h] =
the drainage term at saturation Ds [mm h-1] =
(1 - p) ■ I - E0

need to be calculated starting from the parame- 
ters CR, JK, SLA, L and input quantities B, H, I, p, 
E0 listed in Table I.

In Table I, the concentration ratio CR (mm) 
mathematically represents the interaction between

to the rainfall event considered in the experiment. 
Different assumptions for the dependence between 
wet interception factor and chemical valence have 
been tested to quantify the impact of variability re- 
lated to chemical valence. In (Gonze & Sy, 2016), it 
has been shown that both the models perform best 
when the chemical valence of the element interact- 
ing with plant is accounted for. For anionic particles 
(i.e. which undergo no chemical interaction with the 
plant, that is CR = J/K = 0) EM and KM reduce 
to the same equation. For water (H2O), the mod- 
els simplify to a form similar to the Horton equation 
(Horton, 1919).

2.3. Available Data
Data used in the present study consist of 440 

observations for wet interception factor fB obtained 
mostly with controlled experiments using monova­
lent cations (Cs), divalent and trivalent cations (Ba, 
Be, Cd, Cr, Pb, Sr), inert particles (Polystyrene 
with median aerodynamic diameter of 1 pm and
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Fig 1. Data used for calibration (top) and prédiction (bottom).

3 ^.m), anions (I), water (H2O) and different herba- 
ceous species (e.g., grasses, clovers and weeds). Data 
considered originated from experiments that were 
conducted either in greenhouses or outdoor plots, 
in which at least the physicochemical form of the 
pollutants and the rainfall height were known and 
documented in the related publications (Chadwick 
& Chamberlain, 1970), (Angeletti & Levi, 1977b), 
(Angeletti & Levi, 1977a), (Hoffman, Thiessen, 
Frank, & Blaylock, 1992), (Hoffman, Thiessen, & 
Rael, 1995), (Kinnersley, Goddard, Minski, & Shaw, 
1997), (Bengtsson, Gârdenâs, Eriksson, Vinichuk, & 
Rosén, 2014). In addition, three observations from 
Chernobyl fallout are included (Jacob et al., 1993). 
The set of collected observations covers a wide range 
of variation both for rainfall amount and intensity. 
As an example, in Fig. 1, the experimental wet inter­
ception factor fB is plotted against the rain intensity 
I (mm h-1). In the experiments considered, observa­
tions are obtained with either constant or intermit­
tent precipitation. For an intermittent precipitation, 
an equivalent rainfall amount and duration were es- 
timated by cumulating event-based quantities, and an 
equivalent intensity was estimated as the ratio of the 
cumulated amount and duration.

Of the 440 observations, (Gonze & Sy, 2016) use 
363 data points for calibrating the free parameters 
CR, SLA, L for EM and J/K, SLA, L for KM as 
shown in Fig. 1 (top). For these datapoints all rel­
evant input variables in the models are available. 
Data for model calibration consists of 27 datapoints 
for monovalent cations (Cs), 125 datapoints for di­

valent cations (Be, Sr), 88 datapoints for inert par- 
ticles (Polystyrene with median aerodynamic diam- 
eter of 1 ^m and 3 ^m), 108 datapoints for anions 
(I) and 15 datapoints for H2O. The data for model 
prediction instead consists of 1 datapoint only for 
monovalent cations (Cs), 24 datapoints for anions 
(I), 11 datapoints for inert particles (Polystyrene) and 
41 datapoints for divalent and trivalent cations (Ba, 
Be, Cd, Cr, Pb, Sr). The 77 data points used for pre- 
diction analysis are shown in Fig. 1 (bottom). Al- 
though the experiments are conducted on different 
types of herbaceous species, no clear dependency of 
fB upon herbaceous species is observed in (Gonze & 
Sy, 2016).

For the prediction data, information either on 
the standing biomass B and rainfall height H is not 
available and is produced “artificially” by means of 
random sampling over the experimental distribution 
of H or B of the calibration data.

Although the present study considers the process 
of wet interception in context of radioecology, not 
only data for radionuclides are considered but also 
data available for inert particles (i.e., Polystyrene) 
and water (H20) are used in order to account for the 
benefit of a larger database to the statistical analysis. 
The EM and KM, in fact, account for chemical va­
lence of pollutants and do not depend on radioactive 
properties. Data used in the present study is included 
in Section 6. Also, it is made extensively available in 
(Gonze & Sy, 2016).

2.4. Bayesian Inference Analysis and Parameter 
Uncertainty

In (Gonze & Sy, 2016) Bayesian analysis is car- 
ried out for calibrating the model parameters (CR, 
SLA, L) from EM and (J/K, SLA, L) from KM and 
for determining their uncertainty. Bayesian inference 
(Box & Tiao, 2011) consists of calculating the poste- 
rior distribution functions for relevant model param- 
eters by means of Monte Carlo Markov Chain simu­
lations on the basis of assumed priors and available 
observations (stochastic realizations of the modeled 
process).

The input variables, which are model compo- 
nents for which the value is known are B, H, I. 
These are driving input quantities specific to each 
herbaceous plant (for B) or rainfall event (H, I) 
considered in the laboratory experiment and ideally 
measured for each realization. Being different among 
the experiments, they cannot be estimated by any sta- 
tistical calibration technique.
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The model parameters, for which the uncertainty 
is quantified using the Bayesian analysis are CR, JK, 
SLA, and L. In particular, SLA and L are driving 
parameters that moderately vary with herbaceous 
species and can be assumed constant among the re- 
alizations (although uncertain). For the specific fo- 
liage storage L, a uniform distribution between 0.1 
and 0.5 mm was defined as prior in order to cover 
the typical range of values found in the literature for 
the maximum thickness of the water film that can 
be retained by leaves (Clark, 1940) (Merriam, 1961). 
For the specific foliage area, SLA the range from 
12 to 35 m2 kg-1 d.w., consistent with the values in 
(Jouven, Carrère, & Baumont, 2006), was adopted 
as such range of values corresponds not only the in­
terception by the foliage but also by the other or- 
gans such as the stem. For CR and J/K, no pre- 
liminary accurate information could be used to ap- 
propriately define a prior distribution. However, to 
avoid implausible values the upper bounds of the uni­
form distributions were fixed at 10 mm for CR and 
100 mm h-1 for J/K respectively whereas the lower 
bounds were fixed to 0 for both quantities to account 
for nonreactive (i.e., nonabsorbed) species such as 
iodine.

E0 and p are quite insensitive quantities and 
therefore are fixed to a deterministic value. As cli- 
matic conditions may have been very specific for 
especially in-door experiments, it cannot be ex- 
cluded that relatively high evaporation rates oc- 
curred. In (Gonze & Sy, 2016) two extreme situ­
ations were considered and tested, by setting E0 
value to either 0 mm h-1 (no evaporation) or 0.6 
mm h-1 (high evaporation). The best agreement in 
(Gonze & Sy, 2016) between model and experi­
mental observations was obtained with E0 = 0.6 
mm-h-1. Therefore, in the present study, the evapo­
ration rate is set to E0 = 0.6 mm-h-1. The through- 
fall coefficient p is set to 0, which is valid for a 
dense, nonsparse herbaceous layer because the se- 
lected experiments were not dealing with sparse 
vegetation.

The posterior distribution functions of the model 
parameters (CR, SLA, L) from EM and (J/K, SLA, 
L) from KM are obtained, with which the posterior 
distribution functions of the models’ output fB is cal- 
culated.

In the Bayesian formulation, the quantity fB is of 
stochastic nature and is normally distributed (based 
on the principle of maximum entropy (Jaynes, 1957)) 
with mean value i from EM and KM output and 
residual variance S,2 obtained for each data point i:

fB, - N (im, S2) (7)

In (Gonze & Sy, 2016), 15.000 simulations were 
used to obtain Bayesian statistics for each of the rel­
evant parameters. The probability distribution func- 
tions (pdfs) are obtained for all the relevant parame- 
ters and for residual uncertainty S,.

2.5. Quantification of the Conceptual Model 
Uncertainty

Given that in the analysis parameter uncertainty 
and variability are accounted for and given the for- 
malism presented in Section 2.4, it is justified to 
consider that the residual uncertainty S fully repre- 
sents the conceptual model uncertainty. Hence, S will 
be referred to as the conceptual model uncertainty 
throughout the rest of the study. Predictive calcula­
tions for all 77 datapoints (i = 1,... ,77) are carried out 
with and without propagating the conceptual model 
uncertainty S, that is, the posterior distributions of 
the models’ outputs have been calculated from the 
posterior distributions of the model parameters by
using

fB„ S, = f (P1,-Pn, Si) (8)

and

fBi = f (P1 ,-Pn) (9)

The conceptual model uncertainty S is quantified 
by comparing the two pdfs obtained with Equation 
(8) and (9), which account for propagated S, p and 
only propagated p, respectively. The pdfs are then 
compared by means of different statistical metrics in 
order to evaluate the relative impact of parameter 
uncertainty and conceptual model uncertainty on the 
total uncertainty.

2.6. Metrics Used to Compare pdfs and to 
Quantify Conceptual Model Uncertainty

The conceptual model uncertainty for the EM 
and KM wet deposition models is quantified by com- 
paring:

• the error bars obtained with the 95th percentile 
for model output with propagated S and without 
propagated S;

• coefficients of variations (Ozkaynak, Frey, 
Burke, & Pinder, 2009).

The error bars for each of the datapoints consid­
ered are used to deduce from 95% credibility interval
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of model output and 95% credibility interval of pa- 
rameter uncertainty, the 95% credibility interval of 
conceptual model uncertainty. From the width of the 
error bars obtained with and without propagating S, 
it is possible to visualize how the conceptual model 
uncertainty S affects the total uncertainty compared 
to parameter uncertainty for each datapoint.

The coefficients of variations (CV) are calculated 
using the following mathematical expression:

CV95
fBP975 ÎBP

fBmedian
(10)

where fBp97 5 and fBp2 5 are the fB values obtained with 
probability 97.5% and 2.5%, respectively. fBmedian is 
the median value of fB. The CV95 provides the disper­
sion of the 95th percentile to the median value. The 
CV95 are calculated for EM and KM in order to:

(1) quantify the difference between the pdf that 
accounts for the contributions of the concep- 
tual model uncertainty and parameter uncer- 
tainty and the pdf that includes only the con­
tribution of the propagated parameter uncer- 
tainty;

(2) quantify the effect of the variability on the 
model output by comparing fB obtained by cal- 
ibrating S over the whole dataset (obtaining a 
unique range of S for all pollutants, indepen- 
dently of their chemical valence) and fB ob- 
tained by calibrating S over the radionuclide- 
specific subsets Si (obtaining single ranges of 
S for each type of pollutant). The latter is the 
standard approach in the present study. 3

3. RESULTS

3.1. Application of Data and Use of Output from 
Performed Parameter Uncertainty Analysis

Predictive fB was obtained by using posterior dis­
tributions for the parameters inferred in (Gonze & 
Sy, 2016). Note that, 15.000 values of fB were ob- 
tained by considering the 15.000 values of the poste- 
rior distributions of each of the relevant parameters 
and input values. The posterior distributions of fB are 
shown in Fig. 2 for one datapoint. The distribution of 
fB were compared to those recovered in (Gonze & 
Sy, 2016) for each of the datapoints. The values were 
very similar but not always identical, since for pre- 
dictive calculations the missing input values were ob- 
tained randomly in both studies using different seeds 
for sampling over the available distributions.

Fig. 2 shows the posterior probability distribu­
tions obtained for the model output fB with and with- 
out propagating the conceptual model uncertainty S. 
The pdfs without S are narrower and account for 
the contribution of the propagated parameter uncer- 
tainty only. The width of the posterior distributions 
obtained by propagating S is a result of Bayesian in- 
ference analysis. The posterior distributions obtained 
for fB are not normally distributed.

Data for iodine were used to check the consis- 
tency of predictions with EM and KM obtained in 
(Gonze & Sy, 2016). As mentioned in Section 2.2 for 
iodine the EM and KM provide identical model out- 
puts. This was confirmed in the present study, indi- 
cating also the correct implementation of the models 
in the programming environment R (Grunsky, 2002) 
Version 3.6.2.

3.2. Graphical Quantification of Conceptual 
Model Uncertainty Via Error Bars

Error bars for all 77 datapoints and both KM 
and EM were produced. An example is displayed 
in Fig. 3, which shows the difference between EM 
and KM with and without considering S for obtaining 
the posterior distributions of fB for one datapoint for 
divalent cation (barium and lead), for monovalent 
cation (cesium) and for anion (iodine). In Section 6 
(Supporting Information) the results obtained for 77 
datapoints with and without S are presented in tabu- 
lated form. The difference between error bars with 
and without conceptual uncertainty S is in general 
larger for EM than KM. It is more or less the same 
in the case of data points for which the two mod- 
els perform similarly. The difference between error 
bars with S and without S shows that parameter un- 
certainty contributes less to the overall uncertainty of 
the model output than the uncertainty of the model 
structure. An exception is Cs-137, for which the pos­
terior distribution of fB without S for KM (due to pa- 
rameter uncertainty) is already rather large. In fact, 
the posterior distribution function obtained for J/K 
for the monovalent cation Cs-137 is larger than for 
other particles and makes most of the parameter un- 
certainty.

3.3. Coefficient of Variations (CV95)

The conceptual model uncertainty S increases 
the dispersion of the model output for the KM case 
on average by a factor 13 (from the ratio of the CVs 
obtained) and by a factor 22 for the EM case. This
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Fig 2. Example of posterior distributions of fs obtained with and without propagating S for EM (top) and KM (bottom).

is shown in Fig. 4, in which CV95 from pdfs obtained 
with (right) and without propagating S (left) are plot- 
ted. For Cs-137 and KM, the dispersion of the model 
output around the median for Cs-137 without S is 
rather large compared to the other elements. From 
Fig. 5, it can be observed, as expected, that the poste- 
rior distributions obtained with single S have smaller 
dispersion around the median value compared to 
these obtained with one unique S. This is due to 
the variability arising from the chemical valence 
of the pollutant. The dispersion of the fB values 
around the median increases by a factor 4 for both 
KM and for EM.

4. DISCUSSION
A methodology based on the analysis of resid- 

uals within a Bayesian framework has been ap- 
plied to quantify conceptual model uncertainty of 
two process-based models, EM and KM, for mod- 
eling the process of interception of wet deposited 
pollutants. In particular, this methodology discrimi- 
nates between conceptual model uncertainty and pa- 
rameter uncertainty. In this way, the impact of con- 
ceptual model uncertainty is explicitly considered 
and not implicitly attributed to parameter uncer- 
tainty. The applied methodology combines the use of
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Fig 3. 95% credibility intervals for EM (circle) and KM (triangle) obtained with and without propagating the conceptual model uncertainty, 
that is, (EM +S, KM +S) and (EM-S, KM-S), respectively. Black vertical line indicates the experimentally obtained fg.

residual analysis and the Bayesian approach, which 
allows for quantification of conceptual model uncer­
tainty efficiently and includes expert judgement in a 
formalized way. The coefficient of variation CV95 is 
the metric applied to quantify impact of conceptual 
model uncertainty and it includes 95th percentile in 
its estimation. The 95th percentile is important in ra- 
dioecological assessments, especially for regulatory 
purposes (ICRP, 2006). This metric proves to be ad- 
equate not only to quantify how conceptual model 
uncertainty affects the outputs of EM and KM, re- 
spectively, but also to quantify how natural variabil- 
ity contributes to modeling outputs.

Nevertheless, there are fundamental assump- 
tions that underlie the study, namely that the 
Bayesian residual is a suitable measure of total un- 
certainty of EM and KM and that the data used are 
representative for the scientific question under study.

The Bayesian methodology allows for straightfor- 
wardly propagating the uncertainties related to the 
parameters and model structure to the model output. 
This has the advantage that typical assumptions on 
additivity and correlations between the different un- 
certainty contributions need not to be carried out.

If no adequate measurement and sampling infor­
mation is available, the uncertainty of input variables 
that depend on the experimental set-up (such as H, 
I, B in the present study) cannot be properly quanti- 
fied.

Dedicated effort already during the exper­
imental procedure to gather information about 
uncertainty related to measurements and sampling 
is necessary. However, such information is not al- 
ways gathered because data are often collected 
for specific purposes and are not targeted to mod- 
eling activities. In several studies—from various
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Fig 4. CV95 obtained for EM (top) and KM (bottom) by considering pdf of fs with propagated S (right) and the CV95 obtained for EM and 
KM by considering pdf of fs without propagated S (left).

environmental disciplines —the same issue is re- 
ported for quantifies like evapotranspiration, tem- 
perature, soil water content, and so on (Radwan 
et al., 2004) (Hpjberg & Refsgaard, 2005) (Jin et al., 
2010) (Alderman & Stanfill, 2017). Nevertheless, 
methods to quantify uncertainties related to sam- 
pling activities and/or measurements exist (Kirkup 
& Frenkel, 2006). In particular, assessing the per­
formance of measurement sensors (Chen, Chen, 
& Chen, 2018) (Damgaard, 2020) is crucial to de- 
termine the uncertainty due to measurements. In 
studies where input uncertainty is considered and 
discussed at least qualitatively, more exhaustiveness 
in the determination of the total uncertainty budget 
of a model is obtained (see Section 3.2 in Gondwe, 
Merediz-Alonso, & Bauer-Gottwein, 2011; Radwan 
et al., 2004).

In environmental models, data available not only 
should provide as much information as possible re-

garding input quantities but also need to be repre- 
sentative of the situation being analyzed that is cover 
the entire validity domain of the model. Instead, data 
may be rather limited: for the present radioecological 
study the 440 observations available with large range 
of variation of quantities such as I or H and for dif­
ferent types of radionuclides are more the exception 
rather than the rule.

For Bayesian analysis the choice of priors re- 
quires information on the possible range of variation 
of the quantities involved and the choice of most sen­
sitive parameters needs to be outweighed based also 
on the possibility to build a probability distribution 
function. A more formal sensitivity analysis on all 
input quantities (Saltelli, 2002) is an interesting per­
spective when the aim to characterize the total uncer- 
tainty budget.

In the field of radioecology not so many different 
conceptual models for a given transfer process may
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Fig 5. CV95 obtained for EM (top) and KM (bottom) by considering posterior distributions of fs with propagated single S (left) and 
propagated unique S (right).

be considered or are available (Urso et al., 2015) 
as can be the case instead in other disciplines (e.g., 
Gondwe et al., 2011; Hpjberg & Refsgaard, 2O05). 
Indeed, the availability of two different process- 
based models for describing the process of inter­
ception of wet deposited pollutants on herbaceous 
species is rather unique and motivated the present 
study. The results from various studies (Gondwe 
et al., 2011; Jin et al., 2010; Refsgaard et al., 2006) in- 
dicate that conceptual model uncertainty contributes 
even more than parameter uncertainty to the total 
uncertainty budget of a model in agreement with 
the present findings. Also, the analysis of conceptual 
model uncertainty improves model understanding 
and confidence in model predictability. It is espe- 
cially when data are not available and hence models 
are needed for prognostic assessment that improved 
understanding of the uncertainty contributions is 
necessary. The present case is very specific and more

modeling examples and research is required before 
generalizations valid for radioecological models can 
be made. However, the developed methodology 
can be certainly applied to other radioecological 
models.

5. CONCLUSION

The main finding is that KM describes exper­
imental data better than EM in agreement with 
(Gonze & Sy, 2016). However, in (Gonze & Sy, 2016) 
the predictive model performance is carried out by 
means of posterior predictive loss criterion (PPLC). 
The present study suggests model performance test- 
ing by looking at how the model structure affects the 
gap between the observations and the corresponding 
predictions. In fact, the substantial differences in the 
EM and KM mathematical structures and the fact 
that the same set of data was used for both models
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justifies the considération of conceptual model uncer- 
tainty as being the dominant contribution to residu- 
als. This analysis shows that for the majority of data 
points the process-based approach, which models the 
interception process as a kinetic process, provides re- 
duced structural uncertainty (and hence better agree- 
ment) than the modeling of the interception process 
under equilibrium conditions.

The main conclusions are:

• the 95% credibility intervals are larger for EM 
than KM for the majority of the datapoints.

• CV95 values obtained with and without single 
S show that, on average, conceptual model un- 
certainty is larger for EM than KM by at least a 
factor 10.

• CV95 values obtained using single S and unique 
S show that the effect of variability related to 
chemical valence on EM and KM output affects 
the dispersion of the model outputs around the 
mean value by a factor 4.
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