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1Laboratoire de Mécanique des Fluides et d’Acoustique, Univ Lyon, École centrale de Lyon,
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We explore the strong stratification regime of stably stratified turbulence and the
intermediate regime towards the viscosity-affected stratified state. 3D velocity-
density fields from Direct Numerical Simulations are decomposed into Internal
Gravity Waves (IGW) and eddy motion based on Riley’s decomposition (Riley
et al. 1981) extended to account for the space-time properties of waves, their
modification by vertically-sheared horizontal flow and the vertical mixing by
eddies (Lam et al. 2020). We establish the evolution equations for the IGW and
eddy parts separately. Up to buoyancy Reynolds number Reb ∼ 1, we observe a
large exchange of energy that pumps energy from IGW to eddy. For Reb > 1, IGW
and eddy dynamics seem to be separate and no global exchange is observed. Our
decomposition permits to compute the contributions to the mixing coefficient in
terms of IGW and eddy. At the largest Reb considered, the mixing due to eddies
is four times the mixing due to waves.

Key words: In line

1. Introduction

In stably stratified turbulence, Internal Gravity Waves (IGW) and eddies are
closely entangled and interact with each other at different scales, as observed
in the ocean (see e.g. Cusack et al. 2020). Many studies focus on different
kinds of interactions, separately. First, the wave-vortex interaction concerns the
propagation of IGW through large quasi-geostrophic eddy flow (Müller 1976)
during which energy is transfered from eddy to waves. The eddies thus appear
to deviate rays of IGW (Moulin & Flór 2006). Second, the wave-wave interaction
was examined starting from the isolated triadic point of view (Olbers 1976), then
considering a stochastic field composed of many resonant triadic interactions
(Müller et al. 1986) and finally extended to the wave turbulence formalism (Lvov
et al. 2010). The creation of IGWs in a surrounding quiescent region due to a
localized stratified turbulent cloud has been studied by Maffioli et al. (2014).
Lelong & Riley (1991) studied the weakly non-linear interactions in a highly
stratified system between a vortical mode (i.e. a horizontal rotating eddy) and
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an IGW. They show that the vortical mode acts as a catalyst and facilitates the
energy transfer between waves.

Nevertheless, in stably stratified turbulence, mixing by waves and eddies occurs
over a wide range of scales, rendering difficult their separation and the precise
identification of mutual interactions. According to Brethouwer et al. (2007),
several regimes of stratified turbulence are found depending on the Froude number
Fr = εu/Nu

2
h and the buoyancy Reynolds number Reb = εu/νN

2 where εu is the
kinetic energy dissipation, uh is the rms horizontal velocity, N the Brunt-Väisälä
frequency and ν the viscosity. For a strong stratification, at Fr� 1 and Reb � 1,
the regime is a viscosity-affected stratified flow (VASF) and the flow is dominated
by large smooth and stable horizontal layers and few turbulent-like structures,
such as vortex tubes, are observed. This flow appears to be characteristic of a
large-scale vortical mode (Waite & Bartello 2004). At Fr � 1 and Reb � 1,
the regime is strongly stratified turbulence (SST) where large vertically sheared
horizontal flow (VSHF) and three-dimensional (3D) overturning structures are
observed. In order to separate a turbulent field into eddy and wave parts, Riley
et al. (1981) first proposed a 3D spatial decomposition. This decomposition was
extensively used for stably stratified flow with or without rotation in many the-
oretical and numerical studies that explored different properties of IGW, eddies,
VSHF and their interactions in terms of energy, transfer and scale dependence (see
e.g. Godeferd & Cambon (1994), Bartello (1995), Smith & Waleffe (2002), Kimura
& Herring (2012), Herbert et al. (2016)). This approach appears to be relevant
at small Froude number Fr � 1 and low buoyancy Reynolds number Reb � 1
where the eddies are mostly horizontal and the vertical motion and density field
are associated to IGW (Lelong & Riley 1991). Nevertheless, when Reb increases,
as in the SST regime, parts of the vertical velocity and density fields are linked
to vertical mixing and therefore not to waves. Moreover, IGW are characterized
by their dispersion relation ωr(k) = N cos θ(k) where θ(k) is the angle of the
wave-vector k with the horizontal plane. Clearly, Riley’s decomposition is a
spatial decomposition and does not reflect the temporal properties of the waves,
since it includes all frequencies of the flow motion, even outside the dispersion
relation. Therefore, the dispersion relation of IGW cannot be characterized with
this decomposition.

Alternative approaches have been developed, for example by selecting only
a few Fourier modes (Lindborg & Brethouwer 2007), and detecting in their
temporal signal the presence of frequency peaks linked to their wave vector by the
dispersion relation, which is a signature of IGW. Recent detailed analyses have
been proposed to study waves in turbulence: in stratified turbulence, a global
signature of IGW was observed in experiments of Savaro et al. (2020) and in
numerical simulations by Di Leoni & Mininni (2015), and Maffioli et al. (2020)
clearly characterized the presence of IGW by using a temporal analysis of reduced
energy from Riley’s decomposition.

However, there is a heavy computational cost to a complete wave/eddy separa-
tion, so that simplifying assumptions are used in the above-mentioned methods:
horizontal isotropy, and the fact that transport of IGW occurs in a homogeneous
distribution of VSHF. The latter assumption discards possible variations in time
and space of the transporting motion that in principle modifies significantly
the waves dispersion relation. Recently, Lam et al. (2020) extended Riley’s
decomposition by taking into account the 3D spatial and temporal properties of
fields. This method permits to extract the 3D fields of IGW and eddies separately,
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accounting for the overturning of density and vertical velocity. It is based on a
joint analysis in space and time by performing the full 4D Fourier transform. This
is computationally expensive and requires adequate numerical resolution in time
and in space.

In the present work, we use a more advanced and versatile version of this
method which also takes into account the spatial and temporal variation of the
VSHF on the dispersion relation. Nevertheless, in order to achieve statistical
stationarity of the flow, the VSHF is damped in our DNS but it plays a significant
role even if it does not dominate the overall structure of the flow. It is then possible
to obtain a precise budget of wave and eddy energies, their interactions and the
different fluxes. Thanks to this budget, it becomes possible to clearly decompose
the mixing coefficient Γ used in oceanography to model vertical turbulent mixing
(Mashayek et al. 2017; Ivey et al. 2008), into a part coming from the waves
and another part coming from the eddies. In order to improve modelling, it is
possible to analyse the mixing done by eddies due mostly to the breaking of IGW
(MacKinnon 2017) and the mixing by IGW themselves.

In the following, we thus first present in section 2 the method used for sep-
arating waves and eddies in stratified turbulence, in order to apply it to fields
coming from DNS presented in section 3. The energetics is analyzed in section 4,
and consequences on mixing are discussed in section 5. Conclusions are drawn in
section 6.

2. Extraction of eddies and waves in stratified turbulence

2.1. Governing equation

We consider a linearly stratified incompressible fluid, and the corresponding
Navier-Stokes equation under the Boussinesq approximation:

∂tu + ω × u +∇p− ν∇2u = bz + Fu (2.1)

∂tb+ u · ∇b−X∇2b = −N2uz . (2.2)

The velocity vector is u = (ux, uy, uz) with vorticity ω = ∇ × u, and p is the
modified pressure field. The kinematic viscosity is ν and the thermal diffusivity
X . The Brunt-Väisälä frequency is N so that the buoyancy field b is the negative
fluctuation of density around the mean constant gradient N2. z is the unit vector
of polar direction, also vertical. The flow can be set in motion via the body force
Fu. All equations and parameters are dimensionless by reference to length and
scale.

Our method for extracting the IGW from the full flow is based on the charac-
teristics of IGW. Indeed, classical IGW are plane-wave solutions of the inviscid
equations, obtained by removing the non-linear terms of equations (2.1)-(2.2),
and identifying their dispersion relation ωr(k). However, in the presence of large-
scale advection (such as the VSHF), this dispersion relation ωr(k) is modified. If
one takes only into account the sweeping effect by large structures on IGW, as-
similated to an advecting velocity field c, the modification of IGW characteristics
can be modelled by the following linearized equations:

∂tuG + c · ∇uG +∇pG − νG∇2uG = bGz

∂tbG + c · ∇bG −XG∇2bG = −N2uz,G + Fb
(2.3)

and we shall use density forcing via Fb with new variables named uG, bG, νG,
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XG associated to equation (2.3). In our modelling of the modification of IGW’s
characteristics, we do not take into account the refraction of waves by the
vertical shear (i.e. uz∂zc) as it does not change significantly our results: our DNS
show that ∂zc ∼ 0.04 � N , and the corresponding analytical evaluation and
preliminary numerical tests show that the dispersion relation is not significantly
modified in that case with respect to the sweeping effect.

The characteristics of the IGW are obtained by solving equations (2.3) and are
used to extract the wave part from the full velocity obtained by equation (2.2). In
both cases, it is useful to use the same basis of description for equation (2.2) and
(2.3). In Fourier space, since incompressibility imposes that the velocity vector
be perpendicular to the associated wave vector, we introduce polar-spherical
coordinates where the unit vectors of the so-called Craya-Herring frame are
(et, ep, ek) defined with respect to the vertical axis z:

et =
k× z

|k× z|
, ep =

k× (k× z)

|k× (k× z)|
, ek = k/k. (2.4)

Therefore, in this basis, the Fourier-transformed velocity writes û(k, t) =
ût(k, t)et + ûp(k, t)ep + ûs(kz, t) where ˆ represents the Fourier transform in
space (details in Lam et al. (2020)). The toroidal part ût is horizontal and
corresponds to a horizontal wave vector kh 6= 0 with kh = (k2x + k2y)

1/2, and
the poloidal part ûp contains both horizontal and vertical velocity and thus
corresponds to IGW motion. In physical space, the corresponding velocity
fields are ut and up. This decomposition excludes the VSHF mode — noted in
Fourier space ûs(kz, t) = û(kh = 0, kz, t) — which corresponds to the horizontal
velocity field at exactly vertical wave vector such that kh = 0. This results from
the mathematical definition of polar-spherical coordinates based on an axis of
symmetry borne by z.

2.2. Method of extraction

In the original decomposition by Riley et al. (1981), the Craya-Herring decom-
position is applied on velocity fields of stratified turbulence in the limit of small
Froude number. The poloidal part up is clearly the velocity of IGW and the
toroidal part ut is the non-wave part which coincides with a two-dimensional
horizontally rotational velocity associated to eddy dynamics, and often called
‘vortical mode’. This decomposition appears to be relevant at low buoyancy
Reynolds number Reb � 1 and at low Froude number Fr � 1 where the flow
consists of an interaction between vortical modes at large scale and IGW (see
Lelong & Riley (1991)). At larger Reb, a part of vertical velocity up and of density
b is linked to vertical mixing, and therefore not to waves. To account for this,
Lam et al. (2020) extended Riley’s decomposition to explicitly include the space-
time properties of waves and their transport by a constant advecting velocity c
estimated from the energy of the VSHF.

In the case of a constant advection velocity c, homogeneous in time and space,
Riley’s decomposition applied to equation (2.3) is rigorous. Indeed, an analytical
solution of Green’s function of the IGW can be obtained from the linearized
equations (2.3) forced by Dirac functions in time and space Fb = δ(t)δ(x). Solved
in the four-dimensional Fourier domain in space and time (k, ω), and denoted ,̃
the Green’s function of IGWs is composed only by the poloidal part denoted ũpG,a
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and by the density denoted b̃G,a:

b̃G,a(k, ω) =
1

2

{[
Xk2 + i(ω + ω+

c (k))
]−1

+
[
Xk2 + i(ω − ω−c (k))

]−1}
ũpG,a(k, ω) =

i

2N

{[
νk2 + i(ω + ω+

c (k))
]−1 − [νk2 + i(ω − ω−c (k))

]−1} (2.5)

where the analytical dispersion relation ω±c (k) = c · k ± ωr(k) is ωr modified to
include c · k that represents the sweeping effect, similar to Doppler shift. The
toroidal part ũtG,a(k, ω) is constant in time, i.e. with a zero frequency, and it is
the vortical mode which is the rotational horizontal flow i.e. kh 6= 0 (see note
14 in Smith & Waleffe (1999)). Our new technique is based on a filter ζ(k, ω) in

four-dimensional space (k, ω) applied on the density field b̃ and velocity field ũ

from DNS. The wave part is obtained from the b̃ and ũ fields and by filtering the
frequencies ω associated with each wave vector k for the velocity component ũp

and density component b̃. In Lam et al. (2020), this filter is based on the analytical
dispersion relation: ζ(k, ω) = 1 when ω = ω±c (k) where c is horizontal and its
amplitude c varies between [−cV , cV ], cV being the rms of VSHF amplitude. This
supposes that the large-scale such VSHF is modelled as a homogeneous flow that
transports velocity fluctuations. In practice, the velocity of VSHF varies along
the z axis with time i.e. c(z, t) and it is not possible to derive an analytical
solution such as equation (2.5). More generally, no theoretical dispersion relation
can easily be found when c is inhomogeneous. To overcome this difficulty we
simulate numerically the Green’s function.

For an inhomogeneous advecting velocity c(z, t), we generalize a property that
appears in the analytical wave solution (2.5): when the frequency ω → ω±c (k), the

density energy |b̃G|2 peaks, only damped by viscosity. This permits to compute
the Green’s function relevant for the linearized equations (2.3) where c(z, t)
is the inhomogeneous VSHF, numerically extracted from DNS i.e. ĉ(kz, t) =
û(kh = 0, kz, t) and Fb =

∑
x,t δ(x)δ(t) is an inhomogeneous distribution of Dirac

functions in space and time. The extended filter is obtained simply by computing
the energy of |b̃G|2 with respect to the space variable k and time variable ω. When

the energy b̃G peaks, for (k0, ω0), one defines the corresponding spectral region as
characteristic of a wave, so we set ζ(k0, ω0) = 1. In practice, to reach the peak,
the extended filter is therefore defined as:

if |b̃G(k, ω)|2 > β−1maxω|b̃G(k, ω)|2 then ζ(k, ω) = 1 else ζ(k, ω) = 0 (2.6)

where the real parameter β = 100 is selected in order to capture all peaks of
energy on a range of frequencies and take into account not only the spread of peak
over frequencies due to diffusivity but inaccuracy due to spatial and temporal
discretization (see section 3). The filter ζ(k, ω) implicitly defines a new dispersion
relation ωG(k) that accounts for the inhomogeneity of c(z, t). It can be applied
on the DNS fields to separate wave part (ζ = 1, label ‘w’) from eddy part (ζ = 0,
label ‘e’):

ũw(k, ω) = ζ(k, ω)ũp(k, ω)ep

ũe(k, ω) = ũt(k, ω)et + (1− ζ(k, ω)) ũp(k, ω)ep

b̃w(k, ω) = ζ(k, ω)b̃(k, ω) and b̃e(k, ω) = (1− ζ(k, ω)) b̃(k, ω) .

(2.7)

In this decomposition IGW are defined as being the poloidal and buoyancy
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components close to the dispersion relation. Eddies are defined here as elements
that are not a wave as IGW and that are not the VSHF either. In this article,
we employ the term ‘eddy part’ for convenience, admitting that it is initially
defined by what it is not. Nevertheless, the eddy part mostly contains large-scale
vortical modes, which are exactly toroidal components, but also small-scale three-
dimensional structures which are a mixture of poloidal and toroidal components.

The decomposition of ũw agrees with the observations of Maffioli et al. (2020)
that only the poloidal components recover the waves dispersion relation. The wave
part in equations (2.7) contains only frequencies corresponding to the dispersion
relation and the eddy part contains a part of vertical velocity and the density.
Applying the inverse four-dimensional Fourier transform from frequency space
(k, ω) to physical space (x, t) yields ua(x, t) =

∑
k,ω ũa(k, ω)e−ik·x−iωt, ba(x, t) =∑

k,ω b̃
a(k, ω)e−ik·x−iωt (a stands for w, e and remaining part s), and one obtains

the decomposition of velocity and density:

u(x, t) = uw(x, t) + ue(x, t) + us(x, t) and b(x, t) = bw(x, t) + be(x, t) (2.8)

where the VSHF has been identified as a mean flow in physical space us(x, t)
coming from its definition in Fourier space as ûs(k, t) = û(kh = 0, kz, t).

This decomposition permits to define an orthogonal basis and an inner product
in vector function space, by using the complete set of unit vector functions eik·x

and eiωt. For two functions f̂ and ĝ, we thus define an inner product in terms
of wavevector k and time t, as [f̂(k, t), ĝ(k′, t)] ≡ 1

T

∫
T
f̂(k, t)ĝ(k′, t)δk−k′dt

where T is the considered time span and is the complex conjugate. Due to the
orthogonality of vector space functions and orthogonality of Fourier velocity with
wavevector space k from incompressibility, one shows the orthogonality between
wave, eddy, and shear parts: [b̂i(k, t), b̂j(k′, t)] 6= 0 and [ûim(k, t), ûjn(k′, t)] 6= 0
only if i = j and k = k′ (where i, j stand for w, e or s, and m, n stand
for space direction x, y, or z). Moreover, the overall energetic content is

< f̂, ĝ >=
∑

k<[f̂(k, t), ĝ(k, t)].

3. Numerical methodology and parameters

3.1. Parameters space

In a first kind of DNS we run, equations (2.1) and (2.2) are solved using a standard
pseudo-spectral algorithm in a 2π-periodic three-dimensional spatial domain. A
phase shifting method is used to treat aliasing in the non-linear term (see Lam
et al. (2020) for details). The Prandtl number is Pr = ν/X = 1. Ten numerical
simulations have been run with the parameters shown in table 1 at resolutions
2563 and 5123. The exploration of parameters is mainly based on 5123 points,
the lower resolution of 2563 points is used to confirm and explore trends. We
have plotted in Figure 1 the exploration points in the parameter space (Fr,Reb),
along with data from Maffioli et al. (2016) and Garanaik & Venayagamoorthy
(2019). According to Brethouwer et al. (2007), our parameters explore a VASF
regime which contains weak IGW interactions where wave anisotropy extends to
small scales (Fr � 1 and Reb � 1), as well as a SST regime where the scale of
wave anisotropy is distinct from small dissipative scales (Fr � 1 and Reb � 1).
The exploration of these two regimes also induce a modification of the Taylor-
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5123 points with ν = 1/700

N Fr Reb Reh Reλ DE SE(%) ωmax ωmin urmskmax kmaxη ∆t
(×10−4)

20 0.035 11 9000 146 760 0.3 1570 3 800 1.12 2
30 0.023 5 9500 148 1080 0.4 1570 3 810 1.12 2
50 0.013 1.8 10700 180 980 0.4 1570 3 890 1.12 2
70 0.007 0.9 18000 225 820 0.3 1570 3 990 1.12 2
100 0.004 0.5 31000 290 730 0.3 1570 3 1110 1.12 2
200 0.0014 0.1 51000 430 22 0.08 3140 6 1300 1.13 1
600 0.00045 0.01 49000 510 11 0.005 3140 6 1370 1.19 1

2563 points with ν = 1/250

N Fr Reb Reh Reλ DE SE(%) ωmax ωmin urmskmax kmaxη ∆t
(×10−4)

50 0.014 0.7 3600 94 2500 1 1570 3 423 1.18 4
70 0.0095 0.35 3900 109 420 0.16 1570 3 450 1.19 5
200 0.0022 0.04 8300 175 74 0.03 1570 3 557 1.21 4

Table 1: List of parameters in the seven DNS runs. Reh = u4
h/(εuν) is the

horizontal Reynolds number, SE is the ratio of energy of shear flow over the
total kinetic energy, DE is the ratio of density of shear energy per point against

the total kinetic energy per point, ωmax = π/∆t′ and ωmin = 2π/T
are the maximum and minimum pulsation solved.

Fr

Reb

 0
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 2
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T(t) �=1

Eu
T(t) �=0

Eu
T(kh=0,t) �=0

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03
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 0  2  4  6  8  10  12  14

Eu
T(kh=0,t) α=1

t

(a) (b)

Figure 1: (a) Our parameters of the numerical simulations (open circle for 5123

points and filled circle for 2563 points). For reference, the DNS of Maffioli et al.
(2016) (from 963 points to more than 10243 points) and Garanaik &

Venayagamoorthy (2019) (5123 points) are shown. (b) Total kinetic energy
ETu (t) and VSHF energy Eu(kh = 0, t) for α = 1 and α = 0 for Reb = 5 and

Fr = 0.023.

length-based Reynolds number Reλ = urmsλ/ν with λ the Taylor scale and urms

the rms velocity. The regimes studied in our numerical simulations and in other
numerical simulations are shown in figure 1a. The figure shows that the two
resolutions 2563 and 5123 explore different regions of parameters space (Fr,Reb)
and we expect this to change the characteristics of the transition regime between
the VASF and SST regime. Additional few points in parameter space at 2563
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resolution permit to explore a slight variation of Reb and Fr. The two parameters
Fr and Reb are of course dependent on one another since Reb = Fr2Reh, via the
horizontal Reynolds number Reh = u4

h/(εuν) defined by Maffioli et al. (2016),
that accounts for the horizontal turbulence intensity. The 2563 simulations have
almost one order of magnitude lower Reh than 5123 simulations (see table 1)
for similar (Reb, F r). By adjusting the resolution, one can therefore study the
variation of the dynamical system either by setting Fr and weakly increasing Reb
(from low to high resolution), or by setting Reb and weakly increasing Fr (from
high to low resolution) in the parameter map.

3.2. Numerical parameters

The time step ∆t varies with the stratification N to agree with the CFL condition.
For the spatial resolution of 5123 points, the maximum wavenumber is kmax = 241
such that kmaxη ∼ 1.1, η being the Kolmogorov scale (see table 1). This moderate
number of points is necessary because our wave/eddy decomposition requires
many 3D fields in time. Turbulence reaches a statistically stationary state due to
the added body force Fu in equation (2.1), as in Maffioli et al. (2020) who injected
a constant power P =

∫
Fu ·u dv = 10. Fu is spectrally localized on a cylindrical

spectral surface of horizontal wave number kh = 4 and vertical wave number
1 6 kz 6 3, away from the VSHF at û(kh = 0, kz). It forces the poloidal and
toroidal parts of the velocity equally. Thus this choice allows on average the wave
and vortex components of the flow (in the sense of Riley’s decomposition) to be
excited in equal proportions. The forced wavenumbers are at an angle θf between
the wavevector k and the horizontal plane, in the range 0.72 6 θf 6 1.31, meaning
that high frequencies close to N are forced and a wave turbulence cascade may
develop with lower frequency. To delay the emergence of VSHF at large scale, we
add a friction term F̂u − αû(kh = 0, kz) (with α = 1) as proposed by Le Reun
et al. (2017) to stabilise the geostrophic mode in rotating turbulence. The latter
authors also note that this term mimics the effect of a horizontal wall. It also
helps the numerical simulation to reach a stationary state as shown in figure 1b.
This figure shows the total kinetic energy ET

u (t) and the kinetic energy of VSHF
ET
u (kh = 0, t) for α = 1 and α = 0. Both energies diverge when α = 0 but

stay bounded when α = 1. This statistical stationarity allows to compute time
Fourier transforms with less truncation-related spurious effects. Furthermore the
divergence of the kinetic energy ET

u (t) for α = 0 is about the same as that of
VSHF energy ET

u (kh = 0, t), meaning that roughly the same amount of energy
is advected by the VSHF. The main difference between the two cases with and
without friction is that the flow is significantly advected by VSHF in the first
case (α = 0) whereas this advection is much less in the case with friction (α = 1).

Our simulations contrast with those of Maffioli et al. (2020) in that we apply
a friction term to quench VSHF to less than a few percent of the total kinetic
energy, though still active enough to contribute to the flow structuration. We
show in table 1 that the percentage of shear energy over the total kinetic energy
(SE = ET

u (kh = 0, t)/ET
u (t)) is very low. However, we still consider the VSHF to

be the main advecting flow.
We consider that all wavevectors kx, ky, kz (5123 points) are ‘active’ — i.e. they

are prone to contributing significantly — in the total kinetic energy, whereas in
the kinetic energy of the VSHF, we only consider as active wavevectors with
kh = 0, at whatever kz (512 points). Then, from these total kinetic energy ET

u
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and kinetic energy of VSHF ET
u (kh = 0), it is possible to define the following

average energy densities: eK = ET
u /5123 and eshear = ET

u (kh = 0)/512. These
average densities take explicitly into account the number of active wavenumbers
they involve. Finally, we can define the average density ratio per wavevector
by DE = eshear/eK . The value DE is given in table 1 and shows the relative
importance of the VSHF compared to the number of points in the DNS involved.
DE ∼ 1000 shows that the VSHF importance per point is strong for weaker
stratification, but decreases while still intense for higher stratification.

In a second kind of DNS we run in order to build the ζ function, in preparation
for the DNS with 5123 points, the Green’s function is simulated during T =
10 000∆t by using equation (2.3) with the forcing term Fb =

∑
x,t δ(x)δ(t) where

each Dirac function is set at a random position and enforced at each time step
∆t during the first 100∆t. The initial condition of this calculation is zero. The
velocity c comes from the VSHF û(kh = 0, kz) extracted every ∆t′ = 10∆t
from the DNS, after it has reached statistical stationarity. To ensure that IGW
are not dissipated, we use very small viscosity νG = XG = 10−8 and we check
that only the poloidal part ûp and the density b̂ are active with respect to the
toroidal part ût that is close to machine-precision zero. We apply the FFT in
time on 1000 fields of b̂G extracted every ∆t′. For DNS with 2563 points the time
step ∆t can be taken larger and result in a DNS with less iterations (T = 4 000
or 5 000∆t) but with statistics written on the same time step ∆t′ = 0.002 as
in numerical simulations with 5123 points. The time step is chosen very small in
order to capture the sweeping effect from the full rms velocity urms on the highest
frequency of eddies urmskmax, as validated in homogeneous and isotropic DNS
simulation by Di Leoni et al. (2015). The highest frequency of eddies urmskmax

must be compared to maximum frequency ωmax and minimum frequency ωmin
resolved by the numerical algorithm. The fields are not extracted at every ∆t
both to reduce the memory cost and because in the DNS this time step comes
mainly from the CFL constraint.

The value β = 100 is based on the simulation of the Green’s function under
conditions similar to the analytical solution (2.5) for buoyancy b̃G,a which is a
benchmark for our method. As explained after equation (2.6), β is the cutoff
parameter for identifying the spectral peaks. Two reasons render imprecise the
capture of peaks in the simulation of Green’s functions. First, even if very
low (e.g. νG = XG = 10−8 ), viscosity tends to smear the peaks around the
resonance frequencies ω±c . Spectral discretization also adds to this smearing: for
each wavevector k, 100% of energy is localized in a single frequency ω±c (k) when
analytically computed, whereas it is distributed over a bandwith of frequencies
in simulations. The second reason is due to time discretization: the frequency
ω±c is not exactly measured, but is approximated by the two closest discrete
frequencies. These two mechanisms lead to a search for the set of points closest
to the peak. When trying to capture the peak in a configuration similar to
the analytical solution (??), we observe that the peaks span several orders of
magnitude in amplitude over a bandwith of frequencies. In simulations, even
if 100% of the energy is distributed over all frequencies, in practice a large
percentage is still located in a small frequency range. In numerical simulations
in the exact configuration of the analytical solution b̃G,a, we adjusted β to 100
because we observe that 95% of the total potential energy is selected as waves
around a small bandwith of frequencies. This 95% value is retained for all the
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Figure 2: Evolution of the percentage of energy in waves and eddies
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T ) for kinetic, potential and total energy (i = b, u, T

respectively) against (a) Reb; (b) Fr. Numerical simulations with 5123 points
are shown with open symbols and solid lines, and numerical simulations with

2563 points are shown with filled symbols and dotted lines.

simulations of the Green’s function from equation (2.3). Choosing lower β means
that less potential energy from equation (2.3) would be considered as waves,
meaning that some eddies would be assigned as waves. Conversely, choosing a
higher β would not change much in the wave energy in equation (2.3) and might
increase the number of eddies associated to IGW. In configurations other than
the analytical solution, simulations of Green’s functions also show that more or
less 95% of the total potential energy is preserved as waves.

Eventually, the ζ filter is applied to the ût, ûp, b̂ fields extracted every ∆t′ from
the stationary part of the first type of DNS, i.e. over the same period T of
extraction of VSHF. The inverse FFT then yields the decomposition (2.8). No
Hann window is used to avoid modifying the signal and energy, except for the
creation of ζ. All following statistics are averaged over T0 = 600∆t′ in the middle
of the time domain T . They do not change significantly if T0 is halved, ensuring
they are converged. All frequencies are adequately resolved since the minimum
frequency is ωmin = 2π/T and the maximum frequency is ωmax = π/∆t′. In
supplementary material, the video compares the fields b, bw, be for N = 70.

4. Balance of energy between waves and eddies

4.1. Energy of waves and eddies

The total mechanical energy ET = ET
u + ET

b is the sum of kinetic energy ET
u

and potential energy ET
b . Based on our orthogonal decomposition, we split these

energies into their wave and eddy parts as ET = Ew+Ee and El = El
u+El

b, with
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El
u = 0.5 < ûl, ûl > and El

b = 0.5N−2 < b̂l, b̂l > where l stands for w (wave), e
(eddy) or T (total) and <,> is defined in section 2. The eddy part of the poloidal
kinetic energy is defined as Ep,e = 0.5 < ûp,e, ûp,e >.

Figures 2a and 2b show for both resolutions, the energy distribution between
waves and eddies, Ee and Ew compared to total energy ET . Since two parameters
Fr and Reb appear to be strongly correlated (recall that Reb = RehFr

2), we plot
the distribution against Fr and Reb separately. Moreover, we can observe the
evolution of these energies either at constant Reb and weakly increasing Fr (from
high to low resolution on figure 2a), or at constant Fr and weakly decreasing Reb
(from high to low resolution on figure 2b). As expected, on figure 2 we observe
that the eddy part of any form of energy Ee increases and the wave part Ew

decreases, both when Reb increases (figure 2a) and when Fr increases (figure 2b).
Staquet & Godeferd (1998) found a similar distribution of kinetic energy (60%
to eddies and 40% to waves) at Fr ' 0.006 for decaying turbulence. Moreover, at
fixed Reb (figure 2a), when Fr increases, there is more energy in the eddy part
than in the wave part, as expected by the meaning of Fr (inertial effects are more
important than gravity effects). By increasing Fr, the evolution of Ew, Ee as a
function of Reb seems to be shifted to smaller values of Reb as well as towards
the equilibrium point where Ew = Ee. Nevertheless, at fixed Fr (figure 2b), when
Reb decreases, there is more energy in the eddy part than in the wave part, which
is not obvious. Once again, this evolution seems to be shifted towards a smaller
value of Fr.

To analyse this result, we must analyse the composition of each type of energy.
Figures 2a and 2b show the ratio of potential and kinetic energy distribution
of waves (Ew

b , E
w
u ) and eddies (Ee

b , E
e
u) compared to total energy ET . First, we

observe that the buoyancy energy Ew
b and kinetic energy Ew

u contain the same
percentage of total energy of waves, i.e. Ew

b ∼ Ew
u for any Reb or any Fr, as

generally expected for gravity waves. Secondly, we observe that the buoyancy
energy of eddies is less than kinetic energy of eddies i.e. Ee

u > Ee
b for any Fr or

Reb. Nevertheless, at fixed Fr, for instance at Fr ∼ 0.014, when Reb decreases
there is more kinetic energy in eddy for lower Reb i.e. Ee

u(Fr = 0.014,Reb =
0.7) > Ee

u(Fr = 0.013,Reb = 1.8).
This non obvious result can be analysed by decomposing the kinetic energy of

eddies into poloidal and toroidal parts. By following the decomposition (2.7) and
(2.8), the eddy part can be decomposed into poloidal and toroidal components:
Ee
u = Ep,e

u +Et,e
u where Ep,e

u = 0.5 < ûe ·ep, ûe ·ep > and Et,e
u = 0.5 < ûe ·et, ûe ·

et >. On figures 2a and 2b we have only plotted Ep,e
u , from which the value of

Et,e
u = Ee

u−Ep,e
u can be deduced. We observe the same percentage of total energy

in the poloidal and buoyancy eddy energy, i.e. Ee
b ∼ Ep,e

u independently of Fr
or Reb. This percentage increases slowly with Reb or with Fr. Note that total
potential energy ET

b = Ew
b + Ee

b is linked to the available potential energy (see
section 14.1 in Davidson (2013)). The available potential energy is a mechanical
form of gravitational potential energy that stores the energy of an unstable density
pattern i.e. the light- and heavy-density fluid parcels are not in equilibrium. While
a part of this unstable configuration is related to the IGW (Ew

b ) as the waves
induce spatial variations of density fluctuation, the other part (Ee

b ) contains,
among other things, the density overturns (light density over heavy density). It
seems that the equality Ee

b ∼ Ep,e
u reflects the effect of eddies in the vertical plane,

which is directly related to the poloidal part of the velocity field. Since Ee
b ∼ Ep,e

u

is more or less constant with Reb at fixed Fr, this means that only the toroidal
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part Et,e
u increases when Reb decreases. The increase of Et,e

u leads to an increase
of the total kinetic energy of the eddy part Ee

u. We remind that the toroidal part
(kh 6= 0) does not include the VSHF (kh = 0). Generally, large scales contain
more kinetic energy than small scales dominated by the dissipation, so that the
large scale vortical modes are well represented by the toroidal part of energy. We
therefore argue that the relative increase — with respect to total energy — of the
part of kinetic energy in the vortical modes can be associated with an increase
in large, smooth and stable horizontal layers as the flow is more and more in the
VASF regime by decreasing Reb, as in the nomenclature by Brethouwer et al.
(2007). This observation could explain the shift of the distribution of energy Ew,
Ee towards smaller Fr as Reb decreases.

Note that at very large Reb, it seems that Ep,e
u ∼ Ee

b ∼ Ew
b ∼ Ew

u . In the
original decomposition by Riley, at large Reb all the potential energy of eddies
Ee
b and the poloidal part of kinetic energy of eddies Ep,e

u are wrongly assigned
to the wave part (i.e. ∼ 10% for each part), thus inducing a departure of 40%
in comparison to our results: +20% of energy in IGW and −20% of energy in
eddies.

4.2. Flux of waves and eddies

The evolution of total energy in stratified turbulence is driven by the flux of
energy in equation dET/dt = P − εT where the total dissipation εT = εu + εb
with εu = ν < k2û, û > and εb = XN−2 < k2b̂, b̂ >. During the statistically
stationary regime, the total energy stored is constant, so that dET/dt = 0 and,
for all stratification intensities, the output flux balances the input flux as P ' εT .
The wave and eddy decomposition now permits to address the question about
how do wave- and eddy-related fluxes evolve with stratification?

We consider the equation of evolution of wave and eddy parts described by
Verma (2019) as Lin-type equations, and hence that for total energy. We start

with equations (̂2.1) and (̂2.2) as space Fourier-transformed equations (2.1) and
(2.2). We also use the space Fourier-transformed decomposition of velocity and

density (2.8), and we project both equations (̂2.1) and (̂2.2) on the wave part using

the inner products [(̂2.1), ûw(k, t)] and [(̂2.2), b̂w(k, t)], and on the eddy part using

[(̂2.1), ûe(k, t)], and [(̂2.2), b̂e(k, t)], relying on orthogonality properties noted in
section 2. This yields four (k, t)-dependent equations for potential/kinetic energy
and for the wave/eddy part. Balance equations are finally obtained by summing
the potential and kinetic energies and using the spectral integration <,>:

dEw/dt = Twee + Twwe − εwT + Pw

dEe/dt = T eww + T eew − εeT + P e (4.1)

where εlT = εlu + εlb with εlu = ν < k2ûl, ûl > and εlb = XN−2 < k2b̂l, b̂l >
is the total dissipation rate for each part l = w, e, the exchange term T lij =<

ûi × ωj, ûl > −N−2 < ûi · ∇bj, b̂l > and the injected power P = Pw + P e = 10
for each part P l =< F̂u, û

l >. In equations (4.1), one neglects the interactions
T lsj of waves and eddies with VSHF because in our simulations these terms are

small compared to others (for N = 100, T lsj ∼ O(10−7T lij)). As discussed by

Verma (2019), triadic transfers are such that T lij = −T jil so that Twwe = −T eww
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Figure 4: Sankey’s diagram of energy flux at Reb = 1.8 and Fr = 0.013 (see

text).

and T eew = −Twee. T lij is an energy exchange term between l and j parts, due to
the interaction between the part j ‘convected’ by part i that exchanges energy
with part l. Thus, T jij = 0 so that such terms are not net exchange terms, but
are dynamically similar to convection terms, since they convey the modification
of part j by part i that acts onto part j. For instance, T eee = 0 and Twww = 0 are
respectively similar to a classical non-linear transfer between eddies and to a non-
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linear transfer between waves. In the statistically stationary regime, dEw,e/dt = 0
and the equilibrium of the fluxes is reached since all ters compensate one another.

Figures 3a and 3b show, for both resolutions, the evolution with Reb and
with Fr of the amount of the different terms in equation (4.1). Again, we can
estimate the evolution of these values either at fixed Reb and weakly increasing
Fr (from high to low resolution) or at fixed Fr and weakly decreasing Reb (from
high to low resolution). In order to facilitate physical interpretation, we show a
corresponding flux diagram (a.k.a. Sankey’s diagram) in figure 4 for Reb = 1.8 and
Fr = 0.013 to visualize quantitatively the energy flux from the injection P to the
two dissipations εwT and εeT , either directly, or indirectly by wave/eddy exchange
terms T lij. Each band represents a component of the balance of energy, with a
width proportional to the energy flux it involves. Red, blue and cyan respectively
indicate the wave, eddy and exchange parts.

Figures 3a and 3b show that at Reb > ReTb ' 2 and Fr > FrT ' 0.02, the
input power for waves and eddies is in balance exclusively with the dissipation,
i.e. P e ' εeT and Pw ' εwT and there is no exchange between waves and eddies.
This does not mean that there is no transfer between waves and eddies, it only
means that, in overall, no net transfer occurs, but a scale-by-scale transfer (a
‘cascade’) is still possible between them. Moreover, injected energy is mainly
pumped by eddies since P e > Pw. This changes completely when Reb decreases
or Fr decreases as Reb < ReTb or Fr < FrT . Indeed, in the most stratified case
Fr = 0.00045 at low Reb = 0.01, the input power and dissipation are more
important for the wave part than for the eddy part (Pw > P e and εwT > εeT )
and the exchange terms Twwe and Twee remove energy from waves (Pw > εwT ) and
redistribute it to eddies (P e < εeT ). As Reb increases and Fr increases close to the
transition Reb ∼ ReTb and Fr = FrT , the dissipation associated with eddies gets
larger (εeT > εwT ) as expected but, surprisingly, the input power for waves remains
large and there is a significant transfer from the wave part to the eddy part which
amounts to a total up to 50% of the eddy dissipation. During this transition, the
exchange between wave and eddy is dominant. Similarly, in Godeferd & Cambon
(1994), a lot of the energy appears to be pumped from the waves by the exchange
term Twwe. In this transition zone, at fixed Reb, when Fr increases, as expected, the
eddy part takes more importance and the evolution seems to be shifted to a lower
ReTb . Nevertheless, by comparing the numerical simulations with 5123 points and
2563 points, it appears that the transfer mostly depends on the Froude number,
although its amplitude varies slightly between the two resolutions. Moreover, the
way the forcing and the dissipation is distributed between waves and eddies seems
relatively invariant against the Froude number.

These observations result in a global analysis of transfers between waves and
eddies: the global exchange is zero for the exchange terms, i.e. T eee = Twww = Twew =
T ewe = 0, but these terms are associated to ‘cascades’ and therefore influence
indirectly the transfers between wave and eddies. For example, the global term
Twew = 0, meaning there is no global exchange, but there is still a scale-by-scale
transfer between waves aided by an eddy that acts as a mediator (Verma 2019).

5. Mixing by waves or eddies

The above wave/eddy flow decomposition also permits to understand the con-
tribution of IGW and eddies to mixing. The total mixing coefficient is defined
by Γ = εb/εu (Peltier & Caulfield 2003). For oceanographic application, the
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Figure 5: Mixing coefficients Γ , Γw, Γ e compared with data from literature
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eddy diffusity of density κρ can be used for parameterizing the stratification
mixing with equation κρ = XPrΓReb (Caulfield 2021). In this formulation, it is
possible that a highly efficient mixing at low Reb lead to a smaller eddy diffusity
of density than flows with a higher Reb. Γ is also useful for calculating the vertical
diffusivity of density used in the model proposed by Osborn (1980). Whereas Γ
was approximated to a constant Γ ' 0.2 in the ocean where Reb ∼ 100 − 1000
(Mashayek et al. 2017), recent DNS in decaying stratified turbulence at resolution
5123 (Garanaik & Venayagamoorthy 2019) and forced stratified DNS at larger
resolution (Maffioli et al. 2016), suggest a dependence of Γ with Fr and Reb.
On figure 5b, we have reported these authors’ values for Γ in a Froude range
similar to ours, i.e. Fr � 1 and associated with Reb ' 10 − 20 (forced case)
and Reb ' 1 − 10 (decaying case). Moreover, in a wave regime of superposed
low-amplitude IGW with weak nonlinear interactions, Le Reun et al. (2018) find
that Γ = 1/Pr = 1.

Our simulations explore the transition between these two regimes. In order
to understand separately the effect of waves and eddies on mixing, we therefore
separate the total mixing coefficient Γ = εb/εu = Γw + Γ e into mixing due
to waves Γw = εwb /(ε

e
u + εwu ) and mixing due to eddies Γ e = εeb/(ε

e
u + εwu ) by

using εu = εeu + εwu and εb = εeb + εwb . On figures 5a and 5b, the coefficients Γ ,
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Γw, Γ e are plotted versus Reb and Fr respectively, and compared to the above-
mentioned data. Our coefficient values seem to coincide better with a variation in
Fr rather than with a variation in Reb (as in the flux analysis discussed previously
in section 4.2). For Reb > 1 and Fr > 10−2, we find a value Γ ' 0.5 similar to
that in Garanaik & Venayagamoorthy (2019) at similar resolution and slightly
lower Froude number. Moreover, we observe that the wave mixing and eddy
mixing reach a plateau, as expected, but the eddies mix more than waves since
Γ e ' 0.4 > Γw ' 0.1. Note that our decomposition considers as eddies, among
others, the breaking of internal waves or overturning with vertical velocity. This
could nuance the belief that overturning is the main source of mixing (Gregg et al.
2003). The global mixing coefficient found by Maffioli et al. (2016) is close to our
mixing coefficient by eddies Γ e. As their DNS are done at a higher Reb ' 10−20, it
is possible that their flows contain mostly eddies, resulting in a mixing coefficient
dependent only on mixing by eddies. When Reb → 0, the total mixing increases
and tends to Γ ' 1 as expected by Le Reun et al. (2018). In this case, Γw

increases a lot, whereas Γ e decreases. Indeed, we expect at very low buoyancy
Reynolds number that the waves dominate the flow and become the main factor
of mixing. At fixed Fr, when Reb decreases, the same physics is shifted to low Reb
but in a non-obvious way the plateau value seems to be constant for wave mixing
Γw ' 0.1, while mixing by eddy seems to be weaker Γ e ' 0.3.

In order to better understand the physical phenomena underlying mixing and
its modelling, an in-depth analysis of the different dissipation terms is necessary.
Note that while kinetic and buoyancy energies are more related to large scales,
the different dissipations are related to small scales. On Figures 5c and 5d, we
have plotted the different contributions to dissipation as functions of Reb and Fr.
Note that during statistically stationary regime, the constant forcing P = 10 and
dissipation are in balance so that P ' εeu + εwu + εeb + εwb . First, as expected for
IGW, the kinetic and potential dissipations of the waves are equal, i.e. εwb ∼ εwu .
Moreover, this confirms the idea proposed by Le Reun et al. (2018) that Γ = 1 is
always true for the IGW even if they are mixed with eddies. Secondly, the kinetic
dissipation of eddies is greater than the potential dissipation of eddies i.e. εeu > εeb.
Thirdly, all these values tend towards a plateau when Fr is large and Reb ' 1,
with εwb ∼ εwu ∼ εeu/6. In this regime, as all the statistics εw,eb and εw,eu involved
reach a plateau, so does the mixing coefficient. Apparently, our coefficient values
seem to coincide better with a variation in Fr rather than a variation in Reb
which shifts the evolution to a lower Reb. At fixed Fr and decreasing Reb, all
dissipation terms remain unchanged except εeb, which implies that the mixing Γ e

due to eddies decreases.

6. Conclusion and Perspectives

We have developed and used an extension of Riley’s decomposition (Riley et al.
1981) to separate waves and eddies in a stratified flow. This method takes into
account the vertical mixing and the temporal/spatial properties of waves with
their modifications by the mean flow (VSHF). We apply this analysis on DNS
results with strong stratification (Fr 6 1), but varying buoyancy Reynolds
number over a wide range of regimes, from a viscously affected stratified regime
(Reb � 1) to stably stratified turbulence regime (Reb � 1). From this separation,
as expected, we show that the total wave energy dominates for Reb � 1 and
the total eddy energy dominates for Reb � 1. There is an equipartition in the
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wave energy between the kinetic and the potential part which indicates that we
succeeded in obtaining a good extraction of the IGW in the turbulent mixing for
any Reb. Moreover, at large Reb, the potential energy of eddies is close to the
potential or kinetic energy of waves.

We establish the balance equations of energies separately for wave and eddy
parts. In a statistically stationary regime, the different fluxes of the energy
balance are studied from input forcing to output dissipation and by taking into
account the exchange between parts. We observe that dissipation by eddies is
more efficient than dissipation by waves except at largest stratification. This
higher efficiency comes from an exchange that pumps the energy from the wave
part and sends it to the eddy part, where it is dissipated. This scenario seems
valid from low turbulence at Reb � 1 to higher turbulence at Reb ∼ 1. In
addition, the dissipation of kinetic energy and potential energy have the same
values, again showing that the characteristics of IGW at small scales are also
adequately captured by our method. For Reb � 1, the input power is directly
dissipated by each part separately, with no global exchange. However, the study
of transfer by waves and eddies with themselves will require further scale-by-scale
analysis in order to identify their specific contributions to the turbulent cascade,
and gain a better understanding of the internal mechanisms of energy transfer
and cascade. However this is outside of the scope of this article. In addition, our
present analysis includes a forcing that disregards the energy partition between
waves and eddies. As a result, the dissipation terms are close to the energy input of
waves and eddies. Another study with wave- and eddy-specific forcing is required
to address this.

Our analysis also provides access to dissipation, and therefore to the contri-
butions of waves and eddies to the mixing coefficient Γ . A result particularly
relevant for mixing models is the plateau reached at high buoyancy Reynolds
number Reb by split mixing contributions, showing that eddy mixing is four
times that of waves for our higher resolution. However, it would be relevant
to explore higher resolution results in order to obtain Γw and Γ e values at a
much higher Reb while keeping Fr small. We assumed Pr = 1 in our study.
Nevertheless, (Smyth et al. 2001) show that the Prandtl number can have a large
effect on mixing, especially important when considering ocean mixing. Moreover,
as remarked above for fluxes, the use of constant power forcing discriminated
between the wave and eddy parts could further advance our knowledge of the
direct impact of wave-eddy interaction on mixing.
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