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We investigate the origin of yield stress aging in semi-dense, saline, and turbid suspensions in which
structural evolution is rapidly arrested by the formation of thermally irreversible roll-resisting in-
terparticle contacts. By performing optical tweezer (OT) three-point bending tests on particle rods,
we show that these contacts yield by overcoming a rolling threshold, the critical bending moment
of which grows logarithmically with time. We demonstrate that this time-dependent contact-scale
rolling threshold controls the suspension yield stress and its aging kinetics. We identify a simple
constitutive relation between the contact-scale flexural rigidity and rolling threshold, which trans-
fers to macroscopic scales. This leads us to establishing a constitutive relation between macroscopic
shear modulus and yield stress that is generic for an array of colloidal systems.

Our understanding of aging in colloidal suspensions has
been guided for decades by studies of transparent steri-
cally stabilized experimental models [1, 2] in which van
der Waals forces are absent and contact formation ex-
cluded. In such systems, aging results from a slow (glass-
like) microstructural evolution [3, 4]. But most colloidal
suspensions in the environment, industry, or civil engi-
neering, are saline and turbid. Turbidity signals the exis-
tence of an index contrast between particles and suspend-
ing fluid, i.e., of attractive van der Waals forces; salinity
introduces ions that screen particle charges, thus weaken-
ing the repulsive Coulombic forces. These two properties
hence conspire to facilitate the formation of solid-solid
interparticle contacts.

It was very recently pointed out that moderate lev-
els of ionic strength and index contrast suffice to bias
the balance between Coulombic repulsion and van der
Waals attraction to the point that no repulsive barrier
limits the formation of adhesive, roll-resisting, and ther-
mally stable interparticle contacts, with the consequence
that, at intermediate (30% to 40%) packing fractions, the
microstructure freezes within seconds of flow arrest [5].
These systems, however, do present mechanical aging on
timescales up to hours [6–9], much beyond structural ar-
rest. For a broad class of real-life suspensions, mechanical
aging is hence non-structural, and governed by contact
scale physical processes.

Identifying these processes is a major challenge, requir-
ing joint advances in experiments (spotting and charac-
terizing the relevant contact scale processes) and theory
(modeling them and deducing macroscopic properties).
Macroscopic shear modulus (G′) aging can be related to
the growth of contact-scale flexural rigidity [5]. But, the
most crucial issue in most practical situations, the mecha-
nism of macroscopic yield stress (σy) aging, is wide open.

Most yield stress models for suspensions [10, 11] in-
deed assume interactions to be centro-symmetric, hence
cannot offer any insight as to how roll-resisting contacts
determine macroscopic modulus and yield stress aging.
Interparticle roll-resisting contacts were experimentally

shown to yield by overcoming a rolling threshold [12], but
no experimental evidence exists for microscopic yield ag-
ing in adhesive contacts between colloidal particles. And
no direct, quantitative, link has ever been established be-
tween contact and macroscopic yielding in any attractive
colloidal suspension.

Here, we address these interrelated issues by inves-
tigating yielding at both the macroscopic and contact
scales in aqueous suspensions of Stöber silica particles
flocculated by CaCl2 at moderate ionic strengths (I).
By performing three-point OT bending tests on par-
ticle rods, we show that contacts yield when reaching
a rolling threshold, and that the associated critical
bending moment My ages. We demonstrate that this
contact-scale process controls macroscopic yield stress
aging as σy(tw) ∝ My(tw)/a3 with tw the age and a
the particle radius. It leads us to identify a constitutive
relation between the macroscopic shear modulus and
yield stress σy(tw) ∝

√
G′(tw)/a, the prefactor being a

material-dependent constant of unit N1/2. Our finding
entails that it is possible to track the growth of the yield
stress by monitoring the shear modulus, an observation
with far-reaching consequences for real-life situations.

Interparticle contacts are probed using Pantina and
Furst’s method [13, 14], a three point OT bending test
on a rod comprising an odd number of particles (see
Fig. 1a). During a test, two fixed traps hold the rod
extremities; a third one grabs the central particle be-
fore being translated perpendicularly to the rod, at a ve-
locity slow enough to avoid hydrodynamic drag effects.
Sample preparation and measurement protocol follow the
Method section of Ref. [5] except otherwise stated.

Here, we perform these tests using particles of diam-
eter 2a = 1.9 µm. At all the considered ionic strengths,
interparticle contacts are thermally stable [5] and can-
not be opened by pulling the particles apart with op-
tical traps. Consistently, the maximum force OT’s can
exert (' 15pN), which is ∼ 3 times larger than those
we will use here, is much smaller than the Derjaguin-
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Muller-Toporov (DMT) [15] estimate for the pull-off
force, πaW ' 24 nN, with W the work of adhesion [16].

Force and deflection measurements rest on image
analysis with subpixel resolution [17]. Before each test,
the average trap stiffness k is measured by monitoring
the thermal fluctuations of particles held by the three
traps. Once the rod formed, before loading, the average
positions of both end particles are measured to identify
the end trap locations. These two points defines the x
axis. Loading is performed along the transverse hori-
zontal axis, denoted y. The force exerted on the central
particle is obtained, in essence, as f = k(∆y1 + ∆yN ),
with ∆y1 and ∆yN the y-displacements of both end
particles from the end trap locations. Finally, the rod
deflection δ is measured as the difference between the y
coordinates of the center and end particles. In practice,
rods are not strictly linear: the associated misalignments
are corrected by analyzing the 3D rod structures [5].

Typical force vs deflection data are reported in Fig. 2a,
for a few aging times (tw), as counted starting from the
formation of the last bond in the assembly process.

At small deflections, rods respond elastically with f
increasing essentially linearly with δ. Meanwhile, the
rod deformation is well-described by the Euler-Bernoulli
beam equation (solid blue line in Fig. 1b), which en-
tails that contacts support finite torques, i.e., resist
rolling [5]. The associated effective bending rigidity is
k0 = 8(N − 1)3f/δ, with N the number of beads. Mod-
elling the rod as a series of beads connected by roll-
resisting contacts, yields the contact scale flexural stiff-
ness kr = k0a

2/Γ with Γ ' 96 a slightly N -dependent pa-
rameter [18]. These stiffnesses grow quasi-logarithmically
with time [5], which attests to the existence of contact-
scale aging dynamics.

With the increasing deflection, yielding eventually oc-
curs, quite abruptly, without any evidence of incipient
plastic activity, at a yield point (fy, δy). Immediately
afterwards (Fig. 1a,b, green data), the rods systemati-
cally display a triangular shape, which evidences that a
single contact (the apex, with abscissa x?), has rolled.
Noticeably, the rods do not break open after yielding.

To shed light on the yielding mechanism, we perform
a large number of tests and report the x? distribution in
Fig. 1c. If yielding resulted from frictional sliding, the
distribution of x? would be uniform, because the shear
force along a bent rod is. In contrast, we find that yield
events occur overwhelmingly at x? = ±a, i.e., in the
contacts formed by the central particle, which is where
the local moment My = (fy/2) [L/2− |x?|] is maximal.
These data hence unambiguously demonstrate that yield-
ing results from the crossing of a rolling threshold [12].

Accordingly, the rare yield events occurring away from
the center particle must be attributed to experimental
artifacts, such as contact-scale defects or poorly formed
rods. Therefore, in order to carry out a quantitative,
time-resolved analysis of roll yielding, we only retain the
x? = ±a events, and report My vs tw in Fig. 2b. Remark-
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FIG. 1. (a) Two snapshots of a 13 silica particle rod, just
before and just after a yielding event. The colored circles
show the particle positions as reconstructed from subpixel
image analysis (radii are reduced for better legibility). Scale
bar = 5 µm. (b) The reconstructed particle positions in the
(x, y) plane, superposed, after magnification along the y axis.
Pre-yielding positions (blue) agree with the Euler-Bernoulli
equation (line); post-yielding ones (green) form two straight
segments connected at a finite angle. (c) Distribution of first
yield event locations (x?): ∼ 70% occur near the rod center,
where the bending moment is maximum.
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FIG. 2. (a) Typical bending force (f) vs deflection (δ) curves
after three aging times. Circles mark the yield points (fy, δy).
(b) Log-lin plot of the critical bending moment (My) versus
aging time (tw). Error bars are deduced from measurement
uncertainties in fy and x?. (c) Critical moment (My) versus
flexural stiffness (kr) for all tw and I.

ably, My grows roughly logarithmically at late times, like
the flexural stiffness kr does [5]. It is also essentially I-
independent over the studied I range, over which the
charge carried by our particles is constant [5, 9].

It was never previously reported that the contact scale
rolling threshold grows logarithmically in time. This ob-
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servation hence constitutes a key experimental finding
about adhesive colloidal suspensions.

Plotting My vs kr as parametrized by tw [Fig. 2c], we
find that these two contact properties quite nicely obey
the relation (solid line)

My = g kαr (1)

with α = 1/2 and g = (3.56 ± 0.3) · 10−10N1/2m1/2.
This relation implies that the critical bending angle
θy = My/kr = g/

√
kr decreases with tw, i.e. that con-

tacts become increasingly brittle as they age. This is di-
rectly visible in Fig. 2a as δy clearly decreases with tw.
It points to a contact yield mechanism (contact line de-
pinning) akin to fragile rupture.

In this OT study, we focused on a single particle
size, due to the difficulties in accumulating data points.
While g is a priori a-dependent, the proximity of the
measured exponent α to 1/2 suggests it might be
prescribed by simple physical principles, with the scaling
My(tw) = g× [kr(tw)]1/2 constituting a generic property
of the contacts between microspheres. We explore this
issue in the rest of the paper.

For a contact to resist rolling, its contour must remain
pinned. Its flexural rigidity, which results from elastic
strains inside the particles, is determined by the contact
geometry. Flexural aging hence demonstrates that the
contact radius ac grows. Following Furst et al [13], we
estimate k0 = 12πEa4c/a

3 [19], the bending stiffness of a
rod of diameter ac and Young’s modulus E, which yields:

kr =
12πEa4c
aΓ

(2)

This a4c scaling is supported by shear modulus aging data
for a range of particle sizes [5]. It arises because flexion
introduces a linear stress σ ∝ θ y throughout the contact
area Ac (y being the bending direction), so that integrat-
ing the associated torque yields

∫
Ac

dydz yσ ∼ a4c θ.
The growth of ac points to a type of sintering process

(e.g. the progressive formation of siloxane bridges [20–
22]), which increases the overall cohesion energy inside
the contact area. Thus, here, adhesion results from two
distinct types of interactions: van der Waals attraction
and intra-contact bonds formed by sintering. The for-
mer is time-independent and invariant under particle ro-
tations: it brings about contact formation and adhesion,
yet does not introduce rolling resistance, which is why
contacts do not display measurable flexural rigidity im-
mediately after they form [5]. Intra-contact bonding is
time-dependent and begets rolling resistance.

We construct a schematic description of such a contact,
in the spirit of contact theories [23], all of which relate
the contact diameter to the adhesion energy W via:

ac(tw) = A

(
3π a2W (tw)

8E∗

)1/3

(3)

with E∗ = E/(1 − ν2)/2 the reduced modulus, E =
30 GPa [24], ν = 0.17 the Poisson’s ratio [25]. For
our aging contacts, W should be interpreted as a tw-
dependent effective adhesion energy, which integrates all
adhesive forces inside the contact. The precise value
of A, = 1—resp. 31/3 ' 1.44—in DMT—resp. John-
son–Kendall–Roberts (JKR) [26]—theories, is irrelevant
to our analysis.

Next, rolling requires contact line depinning, a fragile
rupture mechanism. Namely [27], it takes place when the
strain energy release rate during rolling, ∆G, equals the
adhesion hysteresis ∆W , i.e. the difference between the
surface creation and opening energies at the leading and
trailing edges (resp.). After calculating ∆G as a function
of the bending level for a JKR contact, Krijt et al [27]
thus obtain the following yielding criterion

θy(tw) =
ac(tw) ∆W

6 aW (tw)
(4)

where we explicitly show all tw-dependencies. In Krijt et
al ’s calculation, W appears via the global condition of
zero total force: it corresponds to the W (tw) of Eq. (3),
which integrates all age-dependent adhesive contribu-
tions throughout the contact. In contrast, we expect the
adhesion hysteresis ∆W to be tw-independent because
(i) the closing energy obviously is; (ii) the opening en-
ergy too since opening occurs at the rim of the growing
contact where sintering has not taken place yet.

In our model, the contact state is set by ac(tw), with
the effective adhesion energy W (tw) ∼ a3c(tw) [Eq. (3)].
Equation (4) then yields θy(tw) ∼ 1/a2c(tw), all coeffi-
cients being constant. Since kr(tw) ∼ a4c(tw) [Eq. (2)],

we obtain θy(tw) ∼ 1/
√
kr(tw), or My(tw) ∼

√
kr(tw),

i.e. Eq. (1) with the prefactor:

g =
(3π)3/2A3(1− ν2)∆W

12
√

ΓE

√
a (5)

Using A3 = 3 (JKR), the measured g '
3.56 · 10−10N1/2m1/2 corresponds to ∆W ' 77 mJ/m2,
a fairly reasonable value [28], which provides compelling
support to our argument.

For a fixed microstructure, we expect the shear modu-
lus [5] and yield stress to be proportional to the flexural
stiffness kr and critical moment My respectively. For di-
mensional reasons, these relations read:

G′(a, φ, tw) =
S(φ)

a3
× kr(a, tw) (6)

σy(a, φ, tw) =
Q(φ)

a3
×My(a, tw) (7)

where S and Q, which characterize the frozen microstruc-
ture, are independent of time, particle size, and ionic
strength.

Equation (7) offers us an opportunity to test our theo-
retical analysis of the contact problem, which predicts the
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FIG. 3. (a) Macroscopic yield stress (filled symbols) of φ '
0.35 suspensions as measured from rheology stress sweep tests.
Open symbols (in corresponding colors) are the predictions
obtained from Eq. (8) using the single value Q ' 0.9 for all
three series of points. (b) Test of the macroscopic constitutive

relation [Eq. (9)]: σy vs
√
G′/a for all φ ' 0.35 suspensions,

with 2a ranging from 0.7 to 1.6 µm and I from 0.1 to 0.2 M.
The solid line is not a fit, but the prediction of Eq. (9) using

the φ-average value of Q/
√
S ∼ 0.355 from panel (c) and

the fitted value of g(a?)/
√
a?. (c) Q/

√
S as a function of

φ, obtained from independent fits of Q and S by matching
microscopic and macroscopic data.

non-trivial scaling My(a, tw) ∼W 2/3(tw) a4/3. This can-
not be done directly using OTs due to the limited range
of accessible particle sizes. But, together with Eq. (7), it
predicts that, for two different radii a and a?:

σy(a, φ, tw) =
Q(φ)

a3

( a
a?

)4/3
My(a?, tw) (8)

which expresses the macroscopic threshold of suspensions
of arbitrary a as a function of My(a?, tw).

We have systematically tested this relation against
rheometry data [9]. Like My, σy does not depend on
I, but strongly grows with φ over the studied range.
A typical test is presented in Fig. 3a. Filled symbols
represent σy(tw) for φ ' 0.35 suspensions, at tw = 300,
600, 1200 s, and for 2a = 0.7, 1.0, and 1.6 µm. As seen,
σy increases with tw and decreases with a. Equation (8)
predicts that all these data points can be reconstructed
from our My(a?, tw) OT data, with 2a? = 1.9 µm
[Fig. 2], using a single fitting parameter Q. This highly
constrained fit yields the three series of open symbols:
it works remarkably well, thus bringing clear support to
our analysis.

Combining Eqs. (1), (5), (6) and (7), we now obtain

σy(a, φ, tw) = C(φ)

√
G′(a, φ, tw)

a
(9)

which is a constitutive relation between the macroscopic
shear modulus and yield stress of an aging suspension.
Here, C(φ) = (g(a)/

√
a)Q(φ)/

√
S(φ) is a function of φ

only since g/
√
a only depends on physical properties of

the particles [Eq. (5)]. Equation (9) is tested in Fig. 3b

where we plot σy vs
√
G′/a for φ ' 0.35 and an otherwise

broad range of conditions (2a from 0.7 to 1.6 µm, I from
0.1 to 0.2 M). The agreement is remarkable.

We have successfully tested Eqs. (8) and (9) for
various packing fractions over the range (from φ ' 0.3
to 0.4) over which our suspensions are stable and
present a measurable yield stress [? ]. We are thus
able to estimate Q(φ) and S(φ) independently: the
former, by matching Eq. (8) as in Fig. 3; the latter
via a similar analysis of G′ and kr data [5]. The

resulting values of Q(φ)/
√
S(φ), displayed in Fig. 3c,

do not show any systematic φ-dependence. This is
quite meaningful, despite the limited accessible packing
fraction range, because the parameters S(φ) and Q(φ)
vary separately by significant factors: S from 1.9 to
47 (a factor of ' 25), and Q from 0.5 to 2.5 (a factor of 5).

To rationalize our observations, let us emphasize that,
since contacts form within seconds of flow arrest, their
relative age differences decrease with time. Moreover,
despite experimental difficulties, our kr(tw) data [5]
show strikingly moderate sample-to-sample fluctuations.
Hence, in a suspension at rest, beyond a short transient,
all contacts essentially present the same kr(tw). Mean-
while, normal stiffnesses are essentially infinite.

Therefore, when a suspension microstructure responds
elastically, the microscopic non-affine motions are age-
independent: at macroscopic strain γ, for any contact ij,
the flexion angle θij = Aijγ, with Aij constant. In a sys-
tem of volume V , the energy density is 1

2V

∑
ij krA

2
ijγ

2,
the sum running over all contacts; the elastic modulus
G′ = Nc

V 〈A
2
ij〉 kr, with Nc the number of contacts and

〈·〉 the ensemble average. Since the studied phenomenon
takes place in a limited packing fraction range, away from
jamming, we may write Nc/V ' ρ/a3, with ρ a constant
of order a few units, which yields Eq. (6) with S = ρ〈A2

ij〉.
We found above contacts to be brittle, and increas-

ingly so with age. Yet, suspensions are ductile: their
yielding hence requires that of a measurable fraction
of contacts precipitating a drop in the elastic modulus.
Under such yielding conditions, the rescaled moment√
〈θ2ij〉/θy(tw) = κ should achieve a constant value.

Therefore, the yield strain γy = κθy/
√
〈A2

ij〉 and

σy = G′γy = (1/a3)
√
ρSκMy. We now recover Eq. (7)

while predicting Q/
√
S = κ

√
ρ to be a constant, just as

shown by our data.

In summary, we have brought compelling evidence
that adhesive colloidal suspensions yield by a mechanism
that depends on interparticle contacts reaching an age-
dependent rolling threshold associated with the depin-
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ning of the contact line, a brittle rupture mechanism.
We have identified a microscopic constitutive relation
[Eq. (1)] relating this threshold to the flexural stiffness
and were able to explain its origin within a model which,
although schematic, is fully consistent with both our pre-
vious interpretation of the origin of flexural rigidity [5]
and an existing estimate of the rolling threshold [27].
This model, moreover, predicts a non-trivial particle size
dependence of the macroscopic yield stress, which we suc-

cessfully tested.
This led us to identify a macroscopic constitutive rela-

tion between the yield stress and shear modulus [Eq. (9),
with C a constant], which constitutes a major outcome.
It opens two perspectives of considerable practical in-
terest: identifying non-destructive probes of the age-
dependent yield stress of suspensions, the most impor-
tant property in many situations; or controlling the yield
stress (and shear modulus) by altering the surface chem-
istry of particles.
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