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We investigate the origin of yield stress aging in semi-dense, saline, and turbid suspensions in which
structural evolution is rapidly arrested by the formation of thermally irreversible roll-resisting in-
terparticle contacts. By performing optical tweezer (OT) three-point bending tests on particle rods,
we show that these contacts yield by overcoming a rolling threshold, the critical bending moment
of which grows logarithmically with time. We demonstrate that this time-dependent contact-scale
rolling threshold controls the suspension yield stress and its aging kinetics. We identify a simple
constitutive relation between the contact-scale flexural rigidity and rolling threshold, which trans-
fers to macroscopic scales. This leads us to establishing a constitutive relation between macroscopic
shear modulus and yield stress that is generic for an array of colloidal systems.

Our understanding of aging in attractive colloidal sus-
pensions has been guided for decades by studies of trans-
parent and sterically stabilized experimental models [1, 2]
in which, by construction, van der Waals forces are ab-
sent and contact formation is excluded. In such systems,
aging results from a slow (glass-like) evolution of the mi-
crostructure [3, 4].

But most colloidal suspensions in the environment, in-
dustry, or in civil engineering, are saline and turbid. Tur-
bidity signals the existence of an index contrast between
particles and suspending fluid, i.e. of attractive van der
Waals forces; salinity introduces ions that screen particle
charges, thus weakening the repulsive Coulombic forces.
These two properties hence conspire to facilitate the for-
mation of solid-solid interparticle contacts.

It was pointed out very recently that moderate levels
of ionic strength and index contrast suffice to bias the
balance between Coulombic repulsion and van der Waals
attraction to the point that no repulsive barrier limits
the formation of adhesive, roll-resisting, and thermally
stable interparticle contacts, with the consequence that,
at intermediate (30% to 40%) packing fractions, the mi-
crostructure freezes within seconds of flow arrest [5]. But
these systems do present mechanical aging on timescales
up to hours [6–9], much beyond structural arrest. For
a broad class of real-life suspensions, mechanical aging
is hence non-structural, and governed by contact scale
physical processes.

Identifying these processes is a major challenge, requir-
ing joint advances in experiments (spotting and charac-
terizing the relevant contact scale processes) and theory
(rationalizing the underlying physical mechanisms; scal-
ing them up from contact to macroscopic properties).
Macroscopic shear modulus (G′) aging can be related to
the growth of contact-scale flexural rigidity [5]. But, it
leaves wide open the most crucial issue in most practical
situations: the mechanism of macroscopic yield stress σy
aging.

Most yield stress models for suspensions [10, 11] indeed
assume interactions to be centro-symmetric. They hence

do not offer any insight as to how roll-resisting contacts
determine macroscopic modulus and yield stress aging.
It was shown experimentally that interparticle flexural
contacts yield by overcoming a rolling threshold [12], but
no experimental evidence exists for microscopic yield ag-
ing at the scale of adhesive contacts between colloidal
particles. And no direct, quantitative link has ever been
established between contact and macroscopic yielding in
a given attractive colloidal suspension.

Here, we address these interrelated issues by inves-
tigating yielding at both the macroscopic and contact
scales in aqueous suspensions of Stöber silica particle
flocculated by addition of CaCl2 at moderate ionic
strengths. By performing three-point bending tests with
OTs on particle rods, we show that contacts yield when
reaching a rolling threshold. We then demonstrate that
the associated critical bending moment My ages and—by
comparison with macroscopic rheometry data—that this
contact-scale process controls macroscopic yield stress
aging with σy ∝ My. This yields a constitutive relation
between the macroscopic shear modulus and yield
stress σy(tw) ∝

√
G′(tw)/a, with tw the age and a the

particle radius, the prefactor being a material-dependent
constant of unit N1/2. One consequence of our finding is
that it is possible to track the growth of the yield stress
by monitoring the shear modulus, an observation with
far-reaching consequences for real-life situations.

Interparticle contacts are probed using Pantina and
Furst’s method [13, 14], which consists in a three point
bending test on a rod comprising an odd number of par-
ticles (see Fig. 1a). During a test, two fixed traps hold
the rod extremities; a third one grabs the central particle
and is then translated perpendicularly to the rod, at a
velocity slow enough to avoid hydrodynamic drag effects.
Sample preparation and measurement protocol follow the
Method section of Ref. [5] except otherwise stated below.

Here, we perform these tests using particles of diameter
2a = 1.9 µm. We find contacts to be thermally stable at
all the considered ionic strengths—our rods keep their in-
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tegrity for hours when held by the two end traps [5]. Also,
we find that two particles brought into contact cannot
be pulled apart using optical traps—we tried, but failed,
while developing forces up to about 15pN, i.e. ∼ 3 times
larger than those we will exert here. Consistently, the
Derjaguin-Muller-Toporov (DMT) [15] estimate places
the contact pull-off force ∼ πaW ' 24 nN [16], much
beyond the range accessible to OTs.

Force and deflection measurements rest on image
analysis with subpixel resolution [17]. Before each test,
the average trap stiffness k is measured by monitoring
the thermal fluctuations of particles held in our three
traps. Once the rod formed, before loading, the average
positions of both end particles are measured to identify
the end trap locations. The line connecting these two
points defines the x axis. Loading is performed along
the transverse and horizontal axis, denoted y. The
force exerted on the central particle is obtained, in
essence, as f = k(∆y1 + ∆yN ), with ∆y1 and ∆yN the
y-displacements of both end particles from the end trap
locations. Finally, the rod deflection δ is measured as
the difference between the y coordinates of the center
and end particles. In practice, rods are not strictly
linear: the associated misalignments are corrected by
analyzing the 3D rod structures [5].

At chosen aging times (tw, as counted starting from
the formation of the last bond in the assembly process)
we perform flexural tests and monitor force vs deflection
as illustrated in Fig. 2a.

At small deflections, rods respond elastically with f
increasing essentially linearly with δ. Meanwhile, the
rod deformation is well-described by the Euler-Bernoulli
beam equation (solid blue line in Fig. 1b), which en-
tails that contacts support finite torques, i.e. resist
rolling [5]. The associated effective bending rigidity is
k0 = 8(N − 1)3f/δ, with N the number of beads. Mod-
elling the rod as a series of beads connected by roll-
resisting contacts, yields the contact scale flexural stiff-
ness kr = k0a

2/Γ with Γ ' 96 a slightly N -dependent pa-
rameter [18]. These stiffnesses grow quasi-logarithmically
with time [5], which attests to the existence of contact-
scale aging dynamics.

With the increasing deflection, yielding eventually
occurs, quite abruptly, without any evidence of incipient
plastic activity, at a yield point (fy, δy). Immediately
afterwards (Fig. 1a,b, green data), the rods systemati-
cally display a triangular shape, which evidences that a
single contact (the apex, with abscissa x?), has rolled.
The rods do not break open after yielding; they can still
be held by traps and be reloaded, repetitively, through
other similar yield events [Fig. 2a].

To shed light on the yielding mechanism, we perform
a large number of tests and report the x? distribution in
Fig. 1c. If yielding resulted from frictional sliding, the
distribution of x? would be uniform, because the shear
force along a bent rod is. In contrast, we find that yield
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FIG. 1. (a) Two snapshots of a 13 silica particle rod, just
before and just after a yielding event. The colored circles
show the particle positions as reconstructed from subpixel
image analysis (radii are reduced for better legibility). Scale
bar = 5 µm. (b) The reconstructed particle positions in the
(x, y) plane, superposed, after magnification along the y axis.
Pre-yielding positions (blue) agree with the Euler-Bernoulli
equation (line); post-yielding ones (green) form two straight
segments connected at a finite angle. (c) Distribution of first
yield event locations (x?): ∼ 70% occur near the rod center,
where the bending moment is maximum.
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FIG. 2. (a) Typical bending force (f) vs deflection (δ) curves
after three aging times. Circles mark the yield points (fy, δy).
(b) Log-lin plot of the critical bending moment (My) versus
aging time (tw). Error bars are deduced from measurement
uncertainties in fy and x?. (c) Critical moment (My) versus
flexural stiffness (kr) for all ages and ionic strengths.

events occur overwhelmingly at x? = ±a, i.e. in the
contacts formed by the central particle, which is where
the local moment My = (fy/2) [L/2− |x?|] is maximal.
These data hence unambiguously demonstrate that yield-
ing results from the crossing of a rolling threshold [12].

Accordingly, the rare yield events occurring away from
the center particle must be attributed to experimental
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artifacts, such as contact-scale defects or poorly formed
rods. Therefore, in order to carry out a quantitative,
time-resolved analysis of roll yielding, we only retain the
x? = ±a events, and report My vs tw in Fig. 2b. Remark-
ably, My grows roughly logarithmically at late times,
like the flexural stiffness kr does [5]. It is also essen-
tially I-independent in the studied ionic strength range,
over which the charge carried by our particles is con-
stant [5, 9].

It was never previously reported that the contact scale
rolling threshold grows logarithmically in time. This ob-
servation hence constitutes a key experimental finding
about adhesive colloidal suspensions.

Plotting My vs kr as parametrized by tw [Fig. 2c], we
find that these two contact properties quite nicely obey
the relation (solid line)

My = g kαr (1)

with α = 1/2 and g = (3.56 ± 0.3) · 10−10N1/2m1/2.
This relation implies that the critical bending angle
θy = My/kr = g/

√
kr decreases with tw, i.e. that con-

tacts become increasingly brittle as they age. This is di-
rectly visible in Fig. 2a as δy clearly decreases with tw.
It points to a contact yield mechanism (contact line de-
pinning) akin to fragile rupture.

In this OT study, we focused on a single parti-
cle size, due to the difficulties in accumulating data
points. While g is a priori a-dependent, the prox-
imity of the measured exponent α to 1/2 suggest it
might be prescribed by simple physical principles, in
which case the scaling My(tw) = g × [kr(tw)]1/2 would
constitute a generic property of the contacts between mi-
crospheres. We explore this issue in the rest of the paper.

Rolling resistance signals that, at any aging time, when
a contact responds elastically, its contour remains pinned.
As flexural rigidity results from elastic strains inside the
particles and is determined by the contact geometry, its
aging unambiguously demonstrates the growth of the
contact radius ac. Following Furst et al [13], we esti-
mate k0 = 12πEa4c/a

3 [19], the bending stiffness of a rod
of diameter ac and Young’s modulus E, which yields:

kr =
12πEa4c
aΓ

(2)

This a4c scaling is supported by shear modulus aging data
for a range of particle sizes [5]. It arises because flexion
introduces a linear stress σ ∝ θ y throughout the contact
area Ac (y being the bending direction), so that integrat-
ing the associated torque yields

∫
Ac

dydz yσ ∼ a4c θ.
The growth of ac points to a type of sintering process

(e.g. the progressive formation of siloxane bridges [20–
22]), which increases the overall cohesion energy inside
the contact area. Thus, here, adhesion results from two
distinct types of interactions: van der Waals attraction
and intra-contact bonds formed by sintering. The for-
mer is time-independent and invariant under particle ro-
tations: it brings about contact formation and adhesion,

yet does not introduce rolling resistance, which explains
that contacts do not display measurable flexural rigidity
immediately after they form [5]. Intra-contact bonding
is time-dependent and begets rolling resistance.

We construct a schematic description of such a contact,
in the spirit of contact theories [23], all of which relate
the contact diameter to the adhesion energy W via:

ac(tw) = A

(
3π a2W (tw)

8E∗

)1/3

(3)

with E∗ = E/(1 − ν2)/2 the reduced modulus, E =
30 GPa [24], ν = 0.17 the Poisson’s ratio [25]. For our ag-
ing contacts, W should be interpreted as a tw-dependent
effective adhesion energy, which integrates all adhesive
forces inside the contact. The precise value of A, = 1
resp. 31/3 ' 1.44 in DMT and Johnson–Kendall–Roberts
(JKR) [26] theories, is irrelevant to our analysis.

Next, since adhesion arises from atomic-scale forces de-
veloped by sintering, the onset of rolling is expected to be
determined by a fragile rupture criterion. Namely [27],
roll-yielding should occur when the strain energy release
rate during rolling, ∆G, equals the adhesion hysteresis
∆W , i.e. the difference between the surface creation and
opening energies at the leading and trailing edges (resp.).
After calculating ∆G as a function of the bending level
for a JKR contact, Krijt et al [27] thus obtain the follow-
ing yielding criterion

θy(tw) =
ac(tw) ∆W

6 aW (tw)
(4)

where we explicitly write out all the tw-dependencies. In
Krijt et al ’s calculation, W appears via the global con-
dition of zero total force: it corresponds to the W (tw)
of Eq. (3), which integrates all age-dependent adhesive
contributions throughout the contact. In contrast, we
expect the adhesion hysteresis ∆W to be tw-independent
because (i) the closing energy obviously is; (ii) the open-
ing energy too because, at the onset of yielding, opening
occurs at the rim of the growing contact where sintering
has not taken place yet.

In our model, the time-dependent state of a contact
reduces to the contact radius ac(tw), which relates to the
effective adhesion energy via W (tw) ∼ a3c(tw) [Eq. (3)].
Equation (4) then yields θy(tw) ∼ 1/a2c(tw), all coeffi-
cients being constant. Since kr(tw) ∼ a4c(tw) [Eq. (2)],

we obtain θy(tw) ∼ 1/
√
kr(tw), or My(tw) ∼

√
kr(tw),

i.e. Eq. (1) with the prefactor:

g =
(3π)3/2A3(1− ν2)∆W

12
√

ΓE

√
a (5)

Using the JKR expression A3 = 3, the mea-
sured g ' 3.56 · 10−10N1/2m1/2 corresponds to
∆W ' 77 mJ/m2, a quite reasonable value [28],
which provides compelling support to our argument.
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For a fixed microstructure, we expect the shear modu-
lus [5] and yield stress to be proportional to the flexural
stiffness kr and critical moment My respectively. For
dimensional reasons, these macroscopic properties then
relate to their microscopic counterparts via:

G′(a, φ, tw) =
S(φ)

a3
× kr(a, tw) (6)

σy(a, φ, tw) =
Q(φ)

a3
×My(a, tw) (7)

where S and Q characterize the microstructure, and
are hence independent of time, particle size, and ionic
strength.

Equation (7) offers us an opportunity to test our theo-
retical analysis of the contact problem, which predicts the
non-trivial scaling My(a, tw) ∼W 2/3(tw) a4/3. This can-
not be done directly using OTs due to the limited range
of accessible particle sizes. But, together with Eq. (7), it
predicts that, for two different radii a and a?:

σy(a, φ, tw) =
Q(φ)

a3

( a
a?

)4/3
My(a?, tw) (8)

which expresses the macroscopic threshold of suspensions
of arbitrary a as a function of My(a?, tw).

We have systematically tested this relation against
rheometry data [9]. Like My, σy does not depend on
I, but strongly grows with φ over the studied range. A
typical test is presented in Fig. 3a, where filled symbols
represent σy(tw) for φ ' 0.35 suspensions, at aging
times tw = 300, 600, 1200 s, and for 2a = 0.7, 1.0, and
1.6 µm. As seen, σy increases with tw and decreases
with a. Testing Eq. (8) implies being able to reconstruct
both the tw and a-dependence of these data points using
our My(a?, tw) OT data, with 2a? = 1.9 µm [Fig. 2],
and a single free parameter Q. This highly constrained
fit yields the three series of open symbols: it works
remarkably well, which brings decisive support to all of
our analysis.

A major outcome of our observations and analysis is
that aging contacts obey the microscopic constitutive re-
lation My = g

√
kr [Eq. (1)]. Even more importantly,

combining Eqs. (1), (5), (6) and (7), we now predict that

σy(a, φ, tw) = C(φ)

√
G′(a, φ, tw)

a
(9)

which is a constitutive relation between the macroscopic
shear modulus and yield stress of an aging suspension.
Here, C(φ) = (g(a)/

√
a)Q(φ)/

√
S(φ) is a function of φ

only since g/
√
a only depends on physical properties of

the particles [Eq. (5)]. This relation is tested in Fig. 3b

where we plot σy vs
√
G′/a for φ ' 0.35 and an otherwise

broad range of conditions (2a from 0.7 to 1.6 µm, I from
0.1 to 0.2 M). The agreement is remarkable.

For various values of φ over the range (from φ ' 0.3
to 0.4) over which our suspensions are stable and present
a measurable yield stress, we have obtained Q and S
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FIG. 3. (a) Macroscopic yield stress (filled symbols) of φ '
0.35 suspensions as measured from rheology stress sweep tests.
Open symbols (in corresponding colors) are the predictions
obtained from Eq. (8) using the single value Q ' 0.9 for all
three series of points. (b) Test of the macroscopic constitutive

relation [Eq. (9)]: σy vs
√
G′/a for all φ ' 0.35 suspensions,

with 2a ranging from 0.7 to 1.6 µm and I from 0.1 to 0.2 M.
The solid line is not a fit, but the prediction of Eq. (9) using

the φ-average value of Q/
√
S ∼ 0.355 from panel (c) and

the fitted value of g(a?)/
√
a?. (c) Q/

√
S as a function of

φ, obtained from independent fits of Q and S by matching
microscopic and macroscopic data.

independently: the former, by matching Eq. (8) as in
Fig. 3; the latter via a similar analysis of G′ and kr
data [5]. The resulting values of Q(φ)/

√
S(φ), presented

in Fig. 3c, do not show any systematic φ-dependence.
This is quite meaningful because, although the accessi-
ble range of packing fractions is arguably limited, the
parameters S(φ) and Q(φ) vary separately by significant
factors: S from 1.9 to 47 (a factor of ' 25), and Q from
0.5 to 2.5 (a factor of 5).

What could be the cause of the φ-independence of
Q/
√
S? Observe that, despite experimental difficul-

ties, our kr(tw) data [5] show quite moderate sample-to-
sample fluctuations. Hence, within a given suspension at
rest, the flexural modulus grows essentially at the same
rate in all contacts. Thus, although contacts have slightly
different times of formation, their age difference rapidly
becomes negligible with the increasing time. Therefore,
we can safely assume that, within a suspension at rest,
beyond a short transient of order seconds, all contacts
present the same age-dependent kr(tw).

Normal stiffnesses being considered essentially infi-
nite, the homogeneity of kr(tw) guarantees that, when
a suspension is elastically loaded, the resulting micro-
scopic non-affine motions are time-independent. Thus, at
macroscopic strain γ within the elastic regime, for an ar-
bitrary contact ij, the flexion angle θij = Aijγ, with Aij
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time-independent. In a system of volume V , the energy
density Eel = 1

2V

∑
ij krA

2
ijγ

2 where the sums run over

all contacts. The elastic modulus G′ = (1/γ)dEel/dγ =
Nc

V 〈A
2
ij〉 kr with Nc the number of contacts and 〈·〉 the

spatial (or ensemble) average. Since we restrict our at-
tention to a limited range of packing fractions away from
jamming, we may write Nc/V ' ρ/a3, with ρ a constant
of order a few units. The effect of packing fraction, hence,
is entirely contained in the geometric factor 〈A2

ij〉, and

we recover Eq. (6) with S = ρ〈A2
ij〉.

Now, let us state an additional evidence: suspensions
are ductile. Yet, we just found that their yielding is
determined by a brittle process: the depinning of contact
lines, with contacts being increasingly fragile with age.
Clearly, macroscopic yielding cannot result from that of
a single or even a few contacts. It should instead occur
when a measurable fraction of contacts are brought past
their threshold, thus precipitating a drop in the elastic
modulus. Under such yielding conditions, the rescaled

moment
√
〈θ2ij〉/θy(tw) = κ should achieve a constant

value. Therefore, the yield strain γy = κθy/
√
〈A2

ij〉 and

σy = G′γy = (1/a3)
√
ρSκMy. Not only do we now

recover Eq. (7), but we also predict that Q/
√
S = κ

√
ρ

is a constant, which is exactly what our data supports.

In summary, we have brought compelling evidence
that adhesive colloidal suspensions yield by a mechanism
that depends on interparticle contacts reaching an age-
dependent rolling threshold associated with the depin-
ning of the contact line, a brittle rupture mechanism.
We have identified a microscopic constitutive relation
[Eq. (1)] relating this threshold to the flexural stiffness
and were able to explain its origin within a model which,
although schematic, is fully consistent with both our pre-
vious interpretation of the origin of flexural rigidity [5]
and an existing estimate of the rolling threshold [27].
This model, moreover, yields a prediction about the par-
ticle size dependence of the macroscopic yield stress,
which we successfully tested.

This led us to identify a macroscopic constitutive rela-
tion between the yield stress and shear modulus [Eq. (9),
with C a constant], which constitutes a major outcome.
It opens two perspectives of considerable practical in-
terest: identifying non-destructive probes of the age-
dependent yield stress of suspensions, the most impor-
tant property in many situations; or controlling the yield
stress (jointly with the modulus) by altering the surface
chemistry of particles.
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