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Abstract

Example-based color transfer between images, which
has raised a lot of interest in the past decades, con-
sists of transferring the color of an image to another
one. Many methods based on color distributions
have been proposed, and more recently, the efficiency
of neural networks has been demonstrated again for
color transfer problems. In this paper, we propose a
new pipeline with methods adapted from the image
domain to automatically transfer the color from a tar-
get point cloud to an input point cloud. These color
transfer methods are based on color distributions and
account for the geometry of the point clouds to pro-
duce a coherent result. The proposed methods rely
on simple statistical analysis, are effective, and suc-
ceed in transferring the color style from one point
cloud to another. The qualitative results of the color
transfers are evaluated and compared with existing
methods.

1 Introduction

Point clouds are now studied for decades and start
to be a regular format used in research and industry.
The emergence of new scanners, like Lidar technolo-
gies, helps a lot in making point cloud data format
necessary. It is useful for capturing the surrounding

environment of autonomous vehicles, scanning sculp-
tures to preserve the cultural heritage [35, 22], ob-
taining 3D models of buildings for renovation and
construction [33, 9], and so on.
In computer graphics, 3D models are represented ei-
ther by point clouds or by meshes. As meshes are
made of a set of triangles connected through vertices,
removing this connectivity results in a set of points
in a 3D space. Point clouds are a more general rep-
resentation of 3D models.
Indeed, an increasing number of 3D point clouds are
generated by scanning real-world objects. Besides,
several papers have tackled point cloud rendering,
such as Levoy and Whitted [16], but only one, to
the best of our knowledge, deals with color transfer
between point clouds [5].
On the other hand, color transfer between images is
a well-known process. Changing the color style of an
input image according to the color style of a target
one is the objective.
Many different approaches can be used to solve color
transfer problems (distribution-based color trans-
fer [27, 23, 11], histogram matching [24, 21], trans-
port optimization [3], etc.) More recently, the use of
Convolutional Neural Networks (CNNs) has proved
its efficiency regarding image color transfer [6, 13].
In this paper, we focus on color transfer between 3D
point clouds. To the best of our knowledge, the only
existing attempt to perform a color transfer between
3D point clouds [5] is a CNN-based method origi-
nally used for point clouds classification [25]. As will
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Input point cloud Target point cloud Output point cloud

Figure 1: Rendering a church point cloud (input) with the color style of a fantasy house point cloud (target)
using our MGDN color transfer method.

be seen in Section 4.2, this method does not provide
interesting results in terms of visual quality and met-
ric values. This is why we propose new color transfer
methods which account for the geometry of the 3D
point clouds.
Our methods rely on the matching of color distri-
bution variances and assume that the color channels
follow Gaussian distributions. For our purpose, we
want a color transfer coherent with the geometry of
the point clouds by accounting for the normals to
the surfaces. Before performing our color transfer,
the normals of the input and the target point clouds
are projected into the best fitting 3D coordinate sys-
tem by a Principal Component Analysis (PCA) and
decomposed into 6 directions. This pre-process im-
proves the robustness of our method and allows a
color transfer consistent with the geometry of the
point clouds as detailed in Section 3.2.
The paper is organized as follows. Section 2 re-
views previous work on image style transfer and point
cloud rendering. Then, we present our color transfer
pipeline for point clouds (considering both the color
distributions and the point clouds geometry) and de-
tail our two distribution-based methods in Section 3.
The results of our methods and different applications
are presented in Section 4. Thereafter, in Section 4.2,

we evaluate the performance of our methods and
compare them with other techniques that consider
or not the geometry. To conclude, the limits of our
methods and future work are discussed in Section 5.

2 Related work

Color style transfer for 2D images. Over the
past years, image style transfer aroused great inter-
est [2]. Reinhard et al. [27] proposed a color transfer
between images based on a simple statistical analy-
sis. Color signals are supposed to follow Gaussian
distributions and to be independent as they are first
converted into the decorrelated lαβ color space. The
transfer is then achieved by matching the distribu-
tions of the target colors with the distributions of
the input colors, as detailed in Section 3.3.1.
Later, Pitié and Kokaram [23] relaxed the indepen-
dence assumption and supposed that the color signals
follow a Multivariate Gaussian Distribution (MGD).
The transfer is achieved using a linear transforma-
tion defined by the Monge-Kantorovich closed-form
matrix. The authors experimented with several color
spaces and obtained better results when using the
CIELAB space. This transformation is detailed in
Section 3.3.2.
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Hristova et al. [10, 11, 12] went further by consid-
ering the color channels as a Multivariate General-
ized Gaussian Distribution (MGGD) or as a beta
distribution. Relaxing the shape parameter of the
MGGD allowed them to improve the style transfer
between images and even proposed to perform an n-
dimensionality style transfer. A 5 dimensions transfer
of image colors and gradients is given as an example
in their work.
More recently, CNNs have proved their efficiency in
addressing style transfer problems. Gatys et al. [6]
used a CNN optimized for object recognition to sep-
arate the semantic content of images from the style.
In their method, high-level features, corresponding to
the content, are extracted from the input image while
texture information of the target image is given by a
Gram matrix. An iterative process of gradient de-
scent gives the final stylized image that results from
a linear combination of the content and the style fea-
tures. Johnson et al. [13] achieved similar qualitative
results with a faster method. Furthermore, CNN-
based style transfer has been extended to different do-
mains, like fluids simulations [15] or interactive videos
[32].
Among all these existing color transfer methods, we
have extended two of them [27, 23] to color transfer
between point clouds. The choice of these two meth-
ods has been motivated by their efficiency and their
intensive use by the computer graphics community.

Style-based rendering of 3D point clouds.
While many research works seek to improve the qual-
ity of point clouds rendering (holes filling [26, 14, 19],
reducing edges aliasing [7], drawing curved shapes
instead of circles as a primitive [31]), only a few at-
tempts deal with point clouds stylization.
Xu et al. [34] proposed to render point clouds silhou-
ette to get a cartoon style. Their method is based
on two rendering passes. Points are firstly rendered
in black color with a large radius while the second
pass performs a rendering of the points with their
appropriate colors and radius. Flat surfaces are then
filled in with the right content while the edges are
surrounded by a black silhouette.
A few years later, Rosenthal and Linsen [28] proposed

to improve point clouds rendering in the image space.
A point cloud is rendered before proceeding to holes
filling, edge detection, and anti-aliasing in the image
space. Silhouette rendering is then a direct applica-
tion of edge detection.
Recently, Sabbadin et al. [30] proposed a method for
relighting point clouds with High Dynamic Range
(HDR) environments in real-time. Considering a cap-
tured point cloud with a Limited Dynamic Range as
a relighting environment, they expand its dynamic
range thanks to a single HDR image to obtain an
HDR point cloud. Then, this HDR point cloud is
used to relight virtual objects in real-time, realisti-
cally simulating the global illumination due to the
environment.

Color style transfer for 3D point clouds. Af-
ter a first attempt in transferring textures style for
3D models [18], a first study finally focused on point
clouds style transfer. Cao et al. [5] proposed PSNet,
a color transfer network for point cloud stylization.
Based on a network trained for point clouds classi-
fication and segmentation [25], they used the ability
of this network to capture high-level features [8] to
transfer either the color or the geometry (or both)
of a target point cloud to an input point cloud. Re-
garding color transfer, they also add the possibility
to consider a simple image as a target where each
pixel corresponds to a 3D point. As in [6], Cao et al.
used the Gram matrix of features map to represent
the color style of the target.

Nevertheless, PSNet is efficient for point clouds sim-
ilar to those used by its training dataset [4], which
consists of single objects across 16 categories (lamp,
chair, table, etc.), while our methods can be used
regardless of the nature of the point clouds. Fur-
thermore, while a deep learning approach would rely
on high-level features such as semantic meanings, the
two methods we propose are based on correlations be-
tween colors and normals to perform the color trans-
fer. We show later, by qualitative and quantitative
measures, that our methods produce better results
than PSNet. In the following section, we present our
simple, efficient, and formally defined color transfer
technique for point clouds.
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Figure 2: Our point clouds color transfer consists of three steps: First, normals and colors of both input I
and target T point clouds are transformed. Then, a color transfer method relying on a statistical analysis
of color distributions and accounting for the point clouds geometry is performed. Finally, the output color
is converted back to RGB and applied to the output point cloud O.

3 Point clouds color transfer

We are interested in transferring color style from a 3D
model to another. Actually, 3D models are generally
represented by meshes, a set of triangles connected
through vertices. However, we decided to apply the
color transfer to 3D point clouds, which is becoming
a largely used standard because of its more general
and compact format.
Furthermore, we assume that color transfer between
3D point clouds depends on their geometry. There
are at least two features that characterize the geom-
etry: positions and normals. We have chosen to rely
on normals because of their robustness. Indeed, nor-
mals are efficient as they characterize the local shape
of a surface. Besides, unlike positions, normals are
invariant under scaling and translation.
Before elaborating on the proposed pipeline, we for-
mally define the term of 3D point clouds. A point
cloud is a set of data points in a 3-dimensional space.
A point is generally defined by its position in space
(x, y, z), its color (r, g, b) and the direction of its nor-
mal to the surface (nx, ny, nz). The main goal is to
transfer the color style of a target point cloud T to
an input point cloud I.
Let PI, CI and N I be the set of positions, colors

and normals vectors of the input point cloud respec-
tively. PI = (pI

1, ...,p
I
N ), with pI

i = (xIi , y
I
i , z

I
i );

CI = (cI1, ..., c
I
N ), with cIi = (rIi , g

I
i , b

I
i ); and

N I = (nI
1, ...,n

I
N ), with nI

i = (nIxi, n
I
yi, n

I
zi) for

i ∈ {1, ..., N} where N is the number of points of
the input point cloud.
In the same way, let PT, CT and NT be respec-
tively the set of positions, colors and normals vec-
tors of the target point cloud. PT = (pT

1 , ...,p
T
M ),

with pT
j = (xTj , y

T
j , z

T
j ); CT = (cT1 , ..., c

T
M ), with

cTj = (rTj , g
T
j , b

T
j ); and NT = (nT

1 , ...,n
T
M ), with

nT
j = (nTxj , n

T
yj , n

T
zj) for j ∈ {1, ...,M} where M is

the number of points of the target style point cloud.
Note that, the exponent T is an index standing for
target rather than for transposed matrix, and the
number of points N in the input point cloud is not
necessarily the same as the number of points M in
the target point cloud.

3.1 Method overview

In this paper, we propose two point clouds color
transfer methods. As they account for the point
clouds geometry, the color transferred to a point de-
pends on the direction of its normal. Our two meth-
ods, defined in Section 3.3, are based on a statistical
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model applied to the color distributions of the point
clouds. While our first method is a geometric ap-
proach, our second method relies on the correlations
between color channels and normal directions.
The general flowchart of our color transfer is pre-
sented in Figure 2 and consists of three steps.
First, we project both colors and normals vectors into
new spaces where the components are less correlated,
which makes the color transfer more robust. More
precisely, for both input and target point clouds, the
color (orange boxes in Figure 2) of each point is con-
verted from the RGB space to the decorrelated lαβ
space [29], while the normal (blue boxes in Figure 2)
is projected to the best fitting 3D coordinate sys-
tem by PCA before being decomposed to get a 6-
dimensional vector to separate its positive and nega-
tive components. A 3D coordinate system is a set of
3D basis vectors called from now on basis.
Second, we want the shape of the input’s color dis-
tribution to fit with the shape of the target’s one,
depending on the direction of the points normal. To
do so, we propose two methods that make different
assumptions regarding the shape of the distributions
of the point clouds colors. The first method supposes
that the color channels are independent and follow
Gaussian distributions. We propose to perform six
different color transfers depending on the direction
of the point’s normal as detailed in Section 3.3.1.
The second supposes that points normals and col-
ors follow a Multivariate Gaussian Distribution. In
that case, we give the input distribution the aspect
of the target’s one thanks to a linear transformation,
as proposed by Pitié and Kokaram [23]. To do so, the
colors and the normals of point clouds are concate-
nated to obtain a 9-dimensional probability distribu-
tion for both input and target point clouds. A linear
transformation is computed between the covariance
matrices of these two 9D distributions as explained
in Section 3.3.2.
Finally, regardless of the used method, we convert
the colors of the output back to the RGB color space
to obtain the resulting point cloud.
All the steps of our pipeline are detailed in the fol-
lowing sections.

3.2 Making point clouds components
decorrelated

To make our color transfer more robust, we aim to
decorrelate the color channels from each other, as well
as normal directions.
Regarding color, we used the perceptually decorre-
lated lαβ color space [29]. The calculus of the color
space transform stems from [27].
On the other hand, the point clouds normals are not
necessarily well aligned with the origin axes, i.e. they
are strongly correlated. So, they are firstly projected
into the best fitting basis using a PCA, as explained
in the following section. Then, the normal vectors are
assigned 6 components corresponding to the 6 axes
directions of the basis by separating the positive from
the negative directions, as detailed in Section 3.2.2.

3.2.1 Transforming normals basis by PCA

To make our methods more efficient in determining
correlations between color channels and normal di-
rections, we project the normals into the best fitting
basis by PCA before proceeding to the color transfer.
A PCA is computed by performing an eigenvalue de-
composition on the covariance matrix of the normals
and used to project the normals into a new orthog-
onal basis that minimizes the distance from normals
to origin axes. In other words, a PCA defines a more
representative basis for the set of normals. Two PCA
are applied: one to the input point cloud and another
to the target one.
Figure 3 shows the result of our color transfer (us-

ing our MGDN method as explained later) applied
to an input point cloud that is not well aligned with
the original basis, i.e. the coordinate system in which
the point cloud is defined. By alignment, we mean
the normals of the point cloud are aligned with the
origin axes of the basis. In our example, while the
target (Figure 3a) is aligned with its original basis,
the input (Figure 3b) is not aligned with its original
basis. However, we expect the right, up, and forward
faces of the input point cloud to be colored in red,
yellow, and blue, in accordance with the faces’ color
of the target point cloud.
As the input point cloud is not well aligned with the
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(a) Target (b) Input (c) Output (d) Output with PCA (e) Output with reori-
ented PCA

Figure 3: Red, green, and blue arrows correspond to x, y, and z axes of the basis respectively. First row:
the colored point clouds. Second row: the corresponding point clouds normals (normals components x, y
and z are colored in red, green, and blue respectively). The target point cloud (3a) is well aligned with the
original basis: its normals are oriented toward the x direction for the right face (red), the y direction for the
up face (green), and the z direction for the forward face (blue). As the input (3b) is not well aligned with
the original basis (its normals are in between x, y and z axes), the color transfer fails in reproducing the
colors of the target on each face of the output (3c). Transforming the normals by PCA (3d) allows a more
coherent color transfer depending on the normals’ direction, but the global orientation is not preserved (axes
are inverted). Automatically mapping each axis given by the PCA with the closest axis of the original basis
results in the expected color transfer (3e).

original basis, the faces’ colors of the output (Fig-
ure 3c) result from the blending of different colors
from the target point cloud (Figure 3a). Instead of
appearing red, the right face of the output appears
purple, a blending between the blue and red faces
of the target, as well as the up face, appears green,
a blending between the yellow and blue faces of the
target.
Projecting the input normals into a more represen-
tative basis using a PCA results in well-transferred
colors for each face (Figure 3d). Nevertheless, while
the directions of the original basis are fixed (in our
case: x right, y up, and z forward; respectively red,
green, and blue arrows), the transformation of the
normals produced by the PCA does not conserve the
original global orientation (axes may be inverted).

Therefore, as the color transfer depends on the di-
rection of the normals, the color of the target in a
particular direction is transferred to the input in the
same direction. For example, target points with nor-
mals oriented toward the up (y axis) are colored in
yellow. This color is transferred to the points with
normals oriented toward the new y axis defined by
the PCA of the output (the forward direction in Fig-
ure 3d). Hence, the direction of the normals should
match between the two point clouds.
For this reason, we associate each axis, resulting from
the application of PCA, with the closest axis of the
original basis using a cosine distance (Figure 3e). In-
deed, as axes resulting from the PCA can be posi-
tively or negatively oriented, we retain the orienta-
tion which maximizes the cosine distance to an axis
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of the original basis (x, y, or z). As a PCA defines an
orthogonal basis, the mapping ensures that each axis
defined by the PCA matches exactly with one axis of
the original basis. Rather than using PCA, users can
also manually associate the axes, or apply a rotation
to the point clouds, to obtain specific results.
In conclusion, once the normals are transformed by
PCA and reoriented to match with the original basis,
we decompose the normal vectors into the 6 direc-
tions of the basis to separate the positive from neg-
ative components. This decomposition is detailed in
the following.

3.2.2 Decomposing normals

Because our methods rely on correlations between
colors and normals, we decompose the normal compo-
nents by separating its positive and negative values.
This process increases the robustness of the statisti-
cal models we used and provides a color transfer con-
sistent with the geometry of the point clouds. The
proposed decomposition is simple and consists of a 6-
dimensional normal vector defined as follows. Given
a 3-dimensional normal vector N = (x, y, z) with val-
ues in the range (-1,1), a 6-dimensional normal vector
M will be equal to:

M =
(
|min(x, 0)|, |min(y, 0)|, |min(z, 0)|,
|max(x, 0)|, |max(y, 0)|, |max(z, 0)|

)
,

(1)

with values in the range (0,1). Following that, all in-
put and target normal vectors are decomposed to get
6-dimensional vectors.

Figure 4 visually compares the color transfer con-
sidering 3-dimensional normal vectors with the one
considering 6-dimensional normal vectors N ′ andM
in Figure 2 respectively). In addition, the correla-
tion coefficient values from covariance matrices be-
tween colors (in RGB color space) and normals (3D
or 6D) are given in Table 1. For these results we used
our MGDN method as explained later. As an exam-
ple, the faces of the Rubik’s cube, oriented in the
x positive and x negative directions, are both com-
posed of red color (red for +x and orange for −x).
If we consider 3D normal vectors, the correlation co-
efficient value between the red color and the x axis

(a) Target (b) Output with
3D normals

(c) Output with
6D normals

Figure 4: Correlations between colors and normals
are better captured when decomposing the normals
into 6 directions as shown in Table 1. Decomposing
normals results in a more coherent color transfer.

is low (−0.023), which means there is no correlation
between these two components, i.e. no red color will
be transferred on these faces (see Figure 4b). On
the other hand, when the normals are 6D vectors,
the correlation coefficients (see covariance matrices
in Section 3.3.2) between red color and +x direction
and −x direction are both positive (0.246 and 0.159
respectively). When considering 6D normal vectors,
the color transfer preserves the red color for both
faces, which results in an efficient color transfer (see
Figure 4c and Table 1).
To sum up, our color transfer methods rely on the
correlations between color terms (in lαβ) and geo-
metric terms (normals transformed by PCA and de-
composed into 6 components). In the following sec-
tion, we detail our two methods of color transfer.

3.3 Color transfer methods

Our two methods are extensions of color transfer
techniques, applied to the geometry of point clouds,
that rely on a statistical analysis of color distribu-
tions considering the normals of the point clouds.
The first one (Section 3.3.1) assumes that the color
channels are independent and follow Gaussian dis-
tributions. The second (Section 3.3.2) assumes that
the 9-dimensional concatenated vectors of colors and
normals follow a Multivariate Gaussian Distribution.
The two following sections are organized as follows:
First, we present the existing color transfer method
that we have applied to point cloud colors. Then, we
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Correlation coefficient Color
red green blue

3D normals N ′
x -0.023 -0.160 0.080
y 0.072 0.054 -0.530
z 0.016 0.295 -0.262

6D normals M

−x 0.246 -0.112 0.283 orange
−y 0.131 0.209 0.532 white
−z -0.352 0.224 -0.101 green
+x 0.159 -0.364 -0.152 red
+y 0.246 0.297 -0.313 yellow
+z -0.377 -0.249 0.318 blue

Table 1: Correlation coefficient values between RGB colors and 3D normals or 6D normals for the target
point cloud (Figure 4a). Colors in the last column result from the three RGB correlation coefficients
normalized between 0 and 1. The color obtained for each direction of the 6D normals corresponds to the
color of the Rubik’s cube’s face in this direction.

go further by improving this method by leveraging
the point cloud geometry.

3.3.1 First method: Independent Gaussian
Distributions

Color based Independent Gaussian Distribu-
tions. Our first method relies on the color trans-
fer approach proposed by Reinhard et al. [27], called
IGD (Independent Gaussian Distributions) from now
on. Let us summarize this approach before present-
ing our first method. The goal of this IGD method is
to transform the shapes of each color channel distri-
bution of the input point cloud to match as much as
possible with the corresponding target color channel
distribution. Assuming that the color channels are
independent, Reinhard et al. suppose that each color
channel follows a Gaussian distribution.
For this purpose, the mean µ and the standard de-
viation σ of each component of the lαβ channels are
computed, for both input and target point clouds.
Then, the resulting output color channels are com-

puted as follows:

lOi = (lIi − µIl )×
σTl
σIl

+ µTl ,

αOi = (αIi − µIα)× σTα
σIα

+ µTα ,

βOi = (βIi − µIβ)×
σTβ
σIβ

+ µTβ .

(2)

Finally, we defined the output color
cOi
′ = (lOi , α

O
i , β

O
i ). At this stage, the color

transfer applied to the point clouds does not account
for geometry.

Color and geometry based Independent Gaus-
sian Distributions. Hereafter, we describe our
first method, called from now on IGDN . We per-
form the color transfer depending on both color and
geometry. To do so, we compute the means and the
standard deviations of each of the three lαβ com-
ponent weighted by the six components of the 6D
normal vector in Equation 1.
It results in 18 means µkc and 18 standard de-
viations σkc for both the input and target point
clouds, where the index c corresponds to one of the
three color component lαβ, and the index k corre-
sponds to one of the six component of the normal
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(−x,−y,−z,+x,+y,+z):

µIkc =
1∑N

i=0 n
I
ki

N∑
i=0

nIki · cIi ,

σIkc =
1∑N

i=0 n
I
ki

N∑
i=0

nIki ·
(
cIi − µIkc

)2
,

(3)

µTkc =
1∑M

j=0 n
T
kj

M∑
j=0

nTkj · cTj ,

σTkc =
1∑M

j=0 n
T
kj

M∑
j=0

nTkj ·
(
cTj − µTkc

)2
.

(4)

Once the 18 µkc and 18 σkc are computed for both
the input and target point clouds, we perform the
three color transfers of each input point for the six
directions using Equation 2, resulting in six new
lOki, α

O
ki, β

O
ki colors per point:

li =
(
lO−xi, l

O
−yi, l

O
−zi, l

O
+xi, l

O
+yi, l

O
+zi

)
,

αi =
(
αO−xi, α

O
−yi, α

O
−zi, α

O
+xi, α

O
+yi, α

O
+zi

)
,

βi =
(
βO−xi, β

O
−yi, β

O
−zi, β

O
+xi, β

O
+yi, β

O
+zi

)
.

(5)

Finally, the output lOi , α
O
i , β

O
i colors result from a lin-

ear combination between the color components and
the values of the 6D normal vector:

lOi = < mI
i, li >,

αOi = < mI
i, αi >,

βOi = < mI
i, βi > .

(6)

This scalar product (¡.,.¿) between normals and color
components ensures a smooth color transition for
points with a normal direction in-between 2 or 3 axes.
Finally, the output color cOi

′ = (lOi , α
O
i , β

O
i ).

3.3.2 Second method: Multivariate Gaussian
Distribution

Color based Multivariate Gaussian Distribu-
tion. Our second method relies on the color trans-
fer approach proposed by Pitié and Kokaram [23],
called MGD (Multivariate Gaussian Distribution)
from now on. Let us summarize this approach be-
fore presenting our second method. The goal of this

transformation is to match an input MGD (Multivari-
ate Gaussian Distribution) with a target MGD using
the Monge-Kantorovich closed-form mapping. With-
out considering the geometry, given the means (µ)
and covariances (

∑
) of input and target lαβ color

distributions, the transformation matrix of Monge-
Kantorovich mapping is computed as:

M =
∑−1/2

CI′

(∑1/2

CI′

∑
CT′

∑1/2

CI′

)1/2∑−1/2

CI′
(7)

with CI′ and CT′ the sets of lαβ color vectors for the
input and target point clouds respectively, as defined
in Section 3. Finally, the new set of color vectors
for the output point cloud CO′ = (cO1

′, ..., cON
′) are

computed as:

cOi
′ = (cIi

′−µCI′)·M+µCT′ , i ∈ {1, ..., N}, (8)

with cIi
′, µCI′ and µCT′ are the input color in lαβ,

the mean color of the input and the mean color of the
target respectively.

Color and geometry based Multivariate Gaus-
sian Distribution. Let us describe our second
method, called from now on MGDN . To consider the
point clouds geometry, we extend the MGD method
by concatenating colors and normals vectors to ob-
tain sets of 9-dimensional vectors f I and fT for the
input and target point clouds respectively where:

f Ii = (lIi , α
I
i , β

I
i , n

I
−xi, n

I
−yi, n

I
−zi, n

I
+xi, n

I
+yi, n

I
+zi),

(9)
fTj = (lTj , α

T
j , β

T
j , n

T
−xj , n

T
−yj , n

T
−zj , n

T
+xj , n

T
+yj , n

T
+zj).
(10)

Given the means µfI , µfT and the covariance matri-
ces

∑
fI ,
∑
fT of the input and target distributions

f I and fT respectively, the transformation of the in-
put distribution is given by:

M =
∑−1/2

fI

(∑1/2

fI

∑
fT

∑1/2

fI

)1/2∑−1/2

fI
,

(11)
and the samples of the output distribution are com-
puted as:

fOi =
(
f Ii − µfI

)
·M + µfT , i ∈ {1, ..., N}, (12)
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where fO is the set of 9-dimensional output vectors.
From this set of 9-dimensional output vectors, each
vector fOi is composed of 3 color components and
6 normal components. By preserving only the 3
color components, we obtain the new set of output
colors vectors CO′ = (cO1

′, ..., cON
′), where each

cOi
′ = (lOi , α

O
i , β

O
i ).

3.4 Applying output colors to point
cloud

The color transfer is finalized by applying the new
color to the input point cloud. In the final step, the
lαβ output colors are converted back to the RGB
colors following [27].
To sum up, each of our two methods consists of three
steps:

1. The colors and normals of both the input and
target point clouds are projected into more
decorrelated spaces (PCA + decomposition)

2. The color transfer is performed between the in-
put and target using one of our proposed method
(IGDN or MGDN )

3. The output colors of the points are converted
back to the RGB color space

4 Results

4.1 Qualitative comparison

In the following, we present several examples of point
cloud color transfers performed by our two methods.
Our proposed color transfers for point clouds can be
used for building colorization as illustrated in Fig-
ure 5. In the first row, the color style of the fantasy
house point cloud is transferred to the input church
point cloud. In addition to changing the color of roofs
and walls, our methods also change the lighting to fit
better with the target color style. Even color varia-
tions on flat surfaces are transferred (yellow insets).
In this example, MGDN better reproduces the col-
ors of the target. The performance of our MGDN

method regarding building colorization is confirmed

by the example of the second row.
Another application is the color transfer between two
inner rooms (see Figure 6). While our two methods
perform well in transferring the colors of the king’s
room to the red saloon, the result produced with the
IGDN method is a bit more reddish than the result
produced with the MGDN method. In a second ex-
ample, presented in Figure 7, the color of a room
with the style of Van Gogh is transferred to a scan of
a painted kitchen. The difference between the wood
color of the floor and the blue color of the walls is well
preserved in the resulting point clouds. Once again,
the global color seems more coherent when using our
MGDN method.
The color transfer can also be done for exterior envi-
ronments as illustrated in Figure 8. It can be useful
where shooting a movie in a particular environment
(the Mar Saba monastery in Cisjordan for example)
and wanting to give it the color style of a different
region (the Momoyama castle in Japan here). In this
case, the result produced with our MGDN method
has more color variations, which better corresponds
to the color style of the target. Another example
is showed in Figure 9. Both input and target point
clouds are scans of castles. Color variation between
walls, path, and grass are well transferred. Even the
shadows are smoothed to better match the target
color style.
Finally, we used our methods for color transfer be-
tween furniture, like chairs, as illustrated in Fig-
ure 10. For the example of the first row, while the
colors globally correspond to the target color style for
both of our methods, the different parts of the chairs
are not well separated. As our methods only rely on
low-level features (i.e. normal directions and color
distributions), in some cases the colors of the target
may be transferred to unexpected parts of the input
point cloud. As a result, we expect the color of the
chair legs to be whiter and the color of the leather to
have pink nuances. For the second example (second
row), the result produced when using IGDN encoun-
ters the same problem as in the previous example.
The color of the bamboo of the target beach chair is
transferred to the fabric of the input chair and blue
nuances from the fabric of the beach chair are trans-
ferred to the legs of the input chair. When using
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Input Target IGDN MGDN

Figure 5: Color transfer for building colorization. Our MGDN method better transfers the colors of the
target point clouds.

11



Input Target

IGDN MGDN

Figure 6: Color transfer between inner rooms. IGDN produces a slightly reddish result while MGDN

produces a faithful color transfer between the two rooms.
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Input Target

IGDN MGDN

Figure 7: The input point cloud is a scan of a painted kitchen and the target is a bedroom with the color
style of Van Gogh. The wood color of the floor and the blue color of the walls are well transferred with our
two methods.
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Input Target

IGDN MGDN

Figure 8: Color transfer between exterior environments. The color of the Momoyama castle in Japan is
transferred to the Mar Saba monastery in Cisjordan.
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Input Target

IGDN MGDN

Figure 9: The point clouds are scans of castles. While the input shows sunny weather, the target is a scan
of a castle in Norway, with snowy weather. Our two methods succeed in reproducing the snowy weather.
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Input Target IGDN MGDN

Figure 10: Color transfer between chairs. As our methods only rely on low-level features (i.e. normal
directions and color distributions), they cannot ensure a meaningful color transfer, resulting in mismatches
(i.e. the fabric color transferred to the legs or inversely).
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MGDN , the colors are better separated, the fabric
is composed of blue and white, and the legs tend to
yellow color as expected.
To conclude, both proposed methods produce qual-
itative color transfer depending on the considered
point clouds. However, it is difficult to know why
one of the methods performed better than the other
in some cases. For the sake of completeness, we evalu-
ated several techniques for transferring color between
point clouds.

4.2 Quantitative comparison with
other methods

In this section, we evaluate the quality of the color
transfer performed by the methods listed below:

• PSNet: CNN-based method proposed by Cao
et al. [5]

• IGD: Independent Gaussian Distributions not
accounting for normals (based on Reinhard et
al. [27])

• MGD: Multivariate Gaussian Distribution not
accounting for normals (based on Pitié and
Kokaram [23])

• IGDN : Independent Gaussian Distributions ac-
counting for normals (our first method)

• MGDN : Multivariate Gaussian Distribution ac-
counting for normals (our second method).

Figure 11 illustrates a resulting color transfer for each
method. The color distributions in lαβ are displayed
for the six directions of the basis.
We first discuss the processing time of those five
color transfer methods and then, for contrasting the
different methods, we propose several metrics that
compare the color distributions of the target point
cloud with the color distributions of the output point
clouds. We expect the color distribution of the out-
put to be close to the color distribution of the target.
To measure the similarity between these two color
distributions, we adapt objective metrics used in the
field of image color transfer. The value provided by
a metric will be called score from now on.

We propose three different approaches to calculate
the score of similarity between the color distributions
of two point clouds. First, the similarity score is cal-
culated on the global color distribution of the point
clouds (i.e. all the points of the cloud are considered),
as it is done for images. Second, several viewpoint-
dependent similarity scores are calculated on subsets
of the points, the final similarity score is then the
average of all the viewpoint scores as detailed later.
A third similarity score can be computed in the case
of color transfer for relighting and delighting. The
expected result (i.e. the ground truth) can be simu-
lated, so the color of each output point can be com-
pared with the color of the corresponding point of the
ground truth, as explained below.
In the following, as the evaluated point clouds are
well aligned with their original basis, it was not nec-
essary to make use of a PCA.

4.2.1 Processing time

As our methods are based on normals and colors
means, standard deviations, and covariance matri-
ces, the computation is very quick and has a linear
complexity of O(N + M), with N and M the num-
ber of points for the input and target point clouds
respectively. As an example, for point clouds (input
and target) that have between 103 and 105 points,
the color transfer produced by our IGD, MGD, and
MGDN methods takes 3.5 seconds maximum (7.5
seconds maximum for our IGDN method). Further-
more, once the means and the standard deviations
(Equations 2, 3 and 4 for IGD and IGDN methods),
or the Monge-Kantorovich closed-form matrix (Equa-
tions 7 and 11 for MGD and MGDN methods) are
calculated, the color transfer can be applied in real-
time when rendering the output point cloud.
On the other hand, PSNet relies on CNNs and the
result of the color transfer is calculated thanks to an
iterative process (in our results, the maximum num-
ber of iteration was fixed to 2000 and the stop con-
dition was a value difference under 10−7 between the
previous and the current values of the loss function).
Moreover, the operations made on the input and the
target point clouds are different and the computa-
tion time is difficult to estimate. On average, for
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Figure 11: Point clouds color transfer evaluation. The second row shows the lαβ distributions of the point
clouds for each of the 6 directions, from top to bottom: −x,+x,−y,+y,−z,+z. The red, green, and blue
colors correspond to l, α, and β distributions respectively.

the same sizes of point clouds (between 103 and 105

points), PSNet takes approximately 15 seconds to
compute the color transfer and up to 100 seconds in
the worst case. However, we think that, the more dif-
ferent the point clouds (in terms of color), the higher
the computation time. All the processing times are
reported in Figure 12 and have been obtained using
a computer with the following specification: Intel(R)
Core(TM) i7-7920HQ CPU 3.10GHz, processor x64,
NVidia Quadro M2200 GPU, 32Go RAM.

4.2.2 Global color distributions similarity
score

To compute the global similarity score between the
output and the target color distributions, we use the
metrics defined for image color transfer. As an exam-
ple, after performing their style-aware color transfer,
Hristova et al. [10] computed the Bhattacharya co-
efficient to measure the similarity between the tar-
get and the output color distributions. To evaluate

the color transfer in terms of color and luminance,
they calculate the score for each component of the
CIELAB color space. The final similarity score is
obtained by averaging the similarity scores of the lu-
minance channel and the two chroma channels.
Besides, several works performed a color transfer
based on the Wasserstein distance, between the color
distributions of two images, and obtained convincing
results [3, 20]. The Wasserstein distance is a solution
to the earth mover’s distance (EMD) problem and is
computed between the output and the target color
distributions. We decided to evaluate both Bhat-
tacharya and Wasserstein distances between output
and target point clouds color distributions in the
CIELAB color space. The final similarity score is
the average of the three components scores. Both
metrics give a similarity score between 0 and 1, where
1 means identical distributions (for clarity we take 1
- Wasserstein coefficient).
Overall, for 14 pairs of input and target point clouds
we have evaluated, when comparing the color trans-

18



(a) PSNet (b) IGD (c) MGD

(d) IGDN (e) MGDN

Figure 12: The processing time, first expressed in seconds, then represented in log-scale, for the five compared
methods. Input and Target axes correspond to the number of points which varies between 103 and 105 points.
IGD, MGD, and MGDN methods takes between 0.03 and 3.5 seconds while IGDN is slower (between 0.08
and 7.5 seconds). Our four methods have a linear complexity and the processing time only depends on
the number of points: O(N + M). On the other hand, PSNet is much slower and takes approximately 15
seconds to produce the color transfer (about 100 seconds in the worst case), depending on the sizes and the
colors of the point clouds.

fer produced by our methods against the others, our
methods perform better for both Bhattacharya and
Wasserstein distances as showed in Table 2. A Re-
peated Measures ANOVA has been performed and a
significant difference (p < 0.05) between the scores
obtained by the different methods has been found for
both metrics. A posthoc test showed that the scores
of IGDN and MGDN are significantly higher than
those of MGD (p < 0.05) for the Bhattacharya met-
ric. Regarding the Wasserstein metric, a posthoc test
showed that the scores of IGDN and MGDN are
significantly higher than those of PSNet and IGD
(p < 0.05).
Nevertheless, those metrics suffer from a limitation
when it comes to comparing color distributions of

point clouds as they globally consider all points of
the clouds, without accounting for geometry. For ex-
ample, regarding the color transfer presented in Fig-
ure 11, the score of PSNet is higher than the scores
of our two methods for the Bhattacharya metric
(PSNet=0.943, IGDN=0.930 and MGDN=0.931).
While the visual quality of the resulting point clouds
clearly shows that our two methods (Figures 11f and
11g) perform better than PSNet (Figure 11c), the
color distribution of the target point cloud is glob-
ally closer to the color distribution of PSNet than
the color distributions of our two methods. This first
metric suffers from a lack of consideration for the
geometry of the point clouds, resulting in scores that
are not representative of the visual quality of the color
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transfer.
To tackle this issue, we propose to calculate sim-
ilarity scores between rendered images of the two
point clouds when considering many viewpoints as
explained in the following section. Proceeding this
way, we ensure the score to be coherent with the color
transfer as it depends on the point clouds geometry
visualized from a particular point of view.

4.2.3 Per viewpoint color distributions simi-
larity score

To improve the relevance of the comparison, we calcu-
late several similarity scores depending on the view-
point the point clouds are visualized from. The point
clouds are rendered using splatting techniques with
a point radius large enough to ensure no holes in
the projection of the 3D models and the background
is not considered in the color distribution. Further-
more, the images are rendered from viewpoints uni-
formly distributed on a sphere surrounding the point
clouds. Following the suggestion of Alexiou et al. [1]
in their work that exploits user interactivity to as-
sess point clouds quality, the cameras are uniformly
placed on the vertices of a geodesic sphere as illus-
trated in Figure 13. This placement uniformly con-
siders all the point cloud areas when computing the
average scores. We decided to render 642 views per
point cloud to obtain a dense covering, where each
rendered image is 720× 720 pixels.
The Bhattacharya and Wasserstein scores are com-
puted on the color distributions of each rendered view
of the target and output point clouds. The result-
ing scores show that the color distributions of the
two point clouds are similar when visualized from a
particular viewpoint. Besides, we can display these

scores on a heat-map projected onto the sphere sur-
rounding the point clouds as showed in Figure 14.
Each point of the sphere corresponds to a viewpoint,
the color of a point corresponds to the similarity score
(Wasserstein in this example) where blue means not
similar and red means similar. We see that, with
our methods (Figures 14d and 14e), on average, the
similarity scores are higher than those obtained with
other methods.
Finally, a unique score is computed by averaging
all the viewpoint-dependent similarity scores. This
unique score corresponds to how the color distribu-
tions are similar when visualizing the point clouds
from every viewpoint, on average. Once again, our
methods obtain the best overall scores for both Bhat-
tacharya and Wasserstein metrics, as shown in Ta-
ble 3. A Repeated Measures ANOVA still shows a
significant difference (p < 0.05) between the scores
obtained with the different methods for both metrics.
A posthoc test showed that the scores of IGDN and
MGDN are significantly higher than those of PSNet
(p < 0.05), scores of IGDN are significantly higher

Figure 13: Cameras are uniformly placed on the
geodesic sphere surrounding the point cloud.

PSNet IGD MGD IGDN MGDN

Bhattacharya
0.84 0.87 0.86 0.89 0.90

±0.136 ±0.103 ±0.105 ±0.080 ±0.076

1-Wasserstein
0.43 0.45 0.48 0.50 0.52

±0.146 ±0.129 ±0.174 ±0.127 ±0.126

Table 2: Means and standard deviations of scores obtained with the 5 evaluated methods, for the metrics
applied globally to all points of the point clouds, and for the color transfer of 14 different point clouds.
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(a) PSNet
min=0.271;
max=0.561
mean=0.378;
std=0.053

(b) IGD
min=0.294;
max=0.596
mean=0.380;
std=0.055

(c) MGD
min=0.231;
max=0.553
mean=0.353;
std=0.081

(d) IGDN

min=0.361;
max=0.608
mean=0.461;
std=0.053

(e) MGDN

min=0.349;
max=0.651
mean=0.499;
std=0.063

Figure 14: Each point of the surrounding sphere corresponds to a viewpoint. The color of the point depends
on the Wasserstein score in this example. Blue color means not similar (low score) and red color means
similar (high score). The color distributions of our methods (14d and 14e) are globally more similar to the
target than the other methods.

than those of IGD, and scores of MGDN are sig-
nificantly higher than those of MGD for the Bhat-
tacharya metric. Regarding the Wasserstein metric,
a posthoc test showed the scores of MGD, IGDN

and MGDN to be significantly higher than those of
PSNet (p < 0.05), and scores of IGDN and MGDN

significantly higher than those of IGD.
This viewpoint-dependent metric is then more coher-
ent than the score computed over the global color

distributions. Using the same example as previ-
ously (Figure 11), the Bhattacharya score of our two
methods is now higher than the score of PSNet
(PSNet=0.874, IGDN=0.894 and MGDN=0.882).
In this case, the viewpoint-dependent metric is more
representative of the color transfer quality than the
global metric presented in Section 4.2.2.
Figure 15 shows an example where Bhattacharya and
Wasserstein viewpoint dependent scores are repre-

PSNet IGD MGD IGDN MGDN

Battacharya
0.81 0.84 0.84 0.87 0.88

±0.147 ±0.115 ±0.112 ±0.096 ±0.081

1-Wasserstein
0.41 0.44 0.46 0.47 0.50

±0.145 ±0.136 ±0.165 ±0.122 ±0.118

Table 3: Means and standard deviations of scores obtained by the 5 evaluated methods, for the averaged
viewpoint-dependent metrics, and for the color transfer of 14 different point clouds.
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Input

Target PSNet
B=0.889 ;
W=0.443

IGD
B=0.857 ;
W=0.424

MGD
B=0.836 ;
W=0.415

IGDN

B=0.896 ;
W=0.461

MGDN

B=0.845 ;
W=0.428

Figure 15: An example where MGDN fails in providing a qualitative color transfer while IGDN provides a
faithful and coherent color transfer. The surrounding spheres are colored with the Wasserstein scores while
the means of the Bhattacharya (B) and the Wasserstein (W) viewpoint-dependent scores are reported on
the figure. Both scores are coherent with the visual quality of the results.

sentative of the visual quality of the color transfer.
Indeed, with MGDN the orange color of the target
flowers is not preserved and the variety of green col-
ors are not rendered on the leaves. Contrarily, IGDN

provides a faithful and coherent color transfer as well
as PSNet. The efficiency of PSNet in this example
may come from the clear separations in colors and
positions, which helps to find meaning between all
parts of the models (i.e. flowers, leaves, and pots).

4.2.4 Point-to-point distance with ground
truth for relighting and delighting use
case

We finally propose a third metric that can only be
used in the case of relighting and delighting. Re-
lighting is the process of applying the lighting con-
dition of a target point cloud to an input one. On
the opposite, a delighting process is a high trend for

Input Target Ground truth

Figure 16: Simulating the expected result of relight-
ing.

a few years and consists of removing the lighting on
a model.
In this scenario, the ground truth can be simulated by
rendering the input point cloud with the lighting con-
ditions of the target point cloud as illustrated in Fig-
ure 16. The output point cloud is then compared with
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the simulation (i.e. the ground truth). As a result,
each point of the input cloud is assigned two colors:
one resulting from the color transfer and the other
resulting from the relighting (the ground truth). We
compute the PSNR and the cosine distance applied
to the pairs of colors (output and ground truth).
Note that the two scores (PSNR and cosine distance)
are computed for each color component in CIELAB.
The L, a, and b scores are averaged to get the final
scores.
Two examples of relighting (first row) and delighting
(second row) are presented in Figure 17. For those
examples, the cosine distance is more representative
of the visual quality of the color transfer than the
PSNR. All the metrics presented in Sections 4.2 are
valid for color transfer used for relighting or delight-
ing applications.
To conclude, according to the objective metrics, we
show that accounting for the point cloud geometry
improves significantly the color transfer, and even
more when considering correlations between colors
and normals. In the next section, we present few
other applications that can be tackled by our color
transfer methods for point clouds.

4.3 Other applications

While, with the presented results below, the input
and target point clouds have similar geometric struc-
tures, we proposed few other applications where the
geometric structures are not necessarily similar be-
tween the two point clouds. The first ideas of ap-
plications are concerned with aging and weathering
phenomena. Several techniques exist for those pur-
poses [17]. Aging consists in gradually deteriorating
a model depending on a period or on a chosen color
style as illustrated in Figure 18 (MGDN method has
been used to produce these results). Here, we intro-
duce the possibility of applying the color style to the
output depending on a coefficient τ :

newO
c i = τ × cOi + (1− τ)× cIi, (13)

where newO
c i is a linear combination between the in-

put color cIi and the output color cOi of the point
i, which replaces the output color in the final render-
ing. In this example, the statue is more or less aged

thanks to the target color style of a mossy stump.
On the other hand, weather-induced aging refers to
embedding a model at a particular season time with
specific environmental conditions. In the example
presented in Figure 19, we embed an archaic house
in a snowy environment defined by a simple snowed
rock as a target color style. The strong point of our
method is to transfer color depending on the direction
of the normals. In the target point cloud, the normals
oriented toward the up direction correspond to snow
and are white. In the outputs, the surfaces oriented
toward the up direction are then whiter, correspond-
ing to snow that better holds (see the door trim in
the yellow insets).
Finally, as it has been presented in Section 4.2.4, re-
lighting and delighting are two applications of our
color transfer for point clouds. Our method is very
efficient for this task as lighting directly depends on
normals, as showed in Figure 20. In this example,
IGDN does not succeed in transferring the red color
on the right side of the statue while MGDN produces
a color transfer very close to the expected result.
Furthermore, our method allows delighting point
clouds by taking a neutral point cloud as a target
color style, as illustrated in Figure 21. Contrary
to the previous example of relighting, IGDN color
transfer results in a uniform grey color on the entire
statue while color variations are still perceptible on
the MGDN resulting point cloud.

5 Conclusion

Point clouds are becoming a commonly used data for-
mat for many applications, such as cultural heritage
preservation, scanning of the surrounding environ-
ment, or the generation of 3D assets for video games
and computer graphics movies, to name a very few.
Improving the rendering quality of such point clouds
is essential and has been studied for years now.
In this paper, we have presented a new and inno-
vative pipeline for facilitating the transfer of point
clouds color. The proposed methods, which rely on
the color distribution as well as the geometry, are sim-
ple, unsupervised, and efficient. Our color transfers
provide very good results in terms of visual quality.
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Ground truth PSNet
PSNR=11.511
C=0.937

IGD
PSNR=17.486
C=0.954

MGD
PSNR=18.637
C=0.956

IGDN

PSNR=19.084
C=0.978

MGDN

PSNR=16.938
C=0.986

Ground truth PSNet
PSNR=12.272
C=0.989

IGD
PSNR=11.283
C=0.994

MGD
PSNR=12.520
C=0.985

IGDN

PSNR=13.793
C=0.996

MGDN

PSNR=13.866
C=0.994

Figure 17: The scores of the point-to-point metric for relighting and delighting. The cosine distance (C) is
coherent with the visual quality of the results while the PSNR is not very representative.
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Target Input (τ = 0) Output
(τ = 0.25)

Output (τ = 0.5) Output
(τ = 0.75)

Output (τ = 1)

Figure 18: Gradually aging using MGDN color transfer, with τ a coefficient of linear combination between
input and output point clouds. The input point cloud gets more and more greenish on its exterior surfaces.

Furthermore, the proposed methods outperform the
methods that do not account for the point clouds ge-
ometry as well as the PSNet method [5], in terms
of visual quality and objective metrics. However, our
methods still have some limitations. When different
parts of the point clouds present color similarities as
well as normals oriented toward the same direction,
the color transfer may assign colors of the target point
cloud to unexpected parts of the input point cloud as
in Figures 10 and 15.
In future work, we aim to go further by consider-
ing new research avenues, such as more representa-
tive objective quality metrics (considering similari-
ties between the geometry of the input and the tar-
get point clouds for example) and color distribution
modeling adapted to 3D point clouds. The former
is required to precisely determine the quality of the
transfer whereas the latter could relax the Gaussian
hypothesis of our method. We believe that a mix-
ture of multivariate generalized Gaussian distribution
could be a good candidate for further improving the
results [11]. Beyond these two points, we also aim to
investigate the potential of clustering-based methods
as well as deep networks to automatically generate
stylized point clouds by manipulating several visual
features, such as color, gradient, texture, and so on.
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Target Input (τ = 0) Output (τ = 0.25)

Output (τ = 0.5) Output (τ = 0.75) Output (τ = 1)

Figure 19: Gradually weather-induced aging using MGDN color transfer, with τ a coefficient of linear
combination between input and output point clouds. The input point cloud gets more and more snow-
covered on its surfaces oriented toward the up direction.
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